Lasers for Electron Generation: Photoinjector

Electron Beam requirements

- > High Peak current
- Low emittance
- > High brightness
- > High average current
- > Reproducible
- > Reliable

Options: Field emitter

Arrays of emitters in high electric field

- > High current density/emitter
- > Low emittance (for single emitter)
- > Short pulse possible
- Short life time
- > Not very reliable or reproducible
- > Not easily controllable

Thermionic emitter

- Cathode kept at high temperature
- >~1 A average current
- > Mature technology
- > Reliable and reproducible
- > DC-short pulse not possible w/o beam loss
- Large energy spread-large longitudinal emittance
- > Not easily controllable

Photoemitter

- Irradiate cathode to produce photoelectrons
- > Short pulse
- Current controlled by # of photons and photon pulse duration
- E beam cross section controlled by photon spot size
- > Longitudinal emittance dictated by photon energy
- Large range of reliability, reproducibility and life time
- > Complex system

Past Performance of Electron Guns Improvement in emittance in past 50 years

Topics to be covered

- > Theoretical underpinning
- Metal cathode and corresponding laser system
- > PEA cathode and corresponding laser system
- NEA Cathode and corresponding laser system
- > NEA polarized electron cathode+laser system
- General considerations

Photo injector Principle

Choice of Cathode material : Metal, Semiconductor PEA, Semiconductor NEA Laser Accelerating field:

Determine electron beam parameters Select Cathode Charge, pulse duration, peak current, average current, life time, vacuum requirement Select laser • Wavelength, energy, average power, pulse duration Determine cathode preparation Fabrication, transport, in-situ preparation Determine Laser system configuration Gain medium, amplifier, frequency conversion, pulse selection, pulse shaping Triveni Rao, USPAS 2013,

Durham

PhotoemissionPrinciple Three Step Model of Photoemission in metal

 Excitation of e⁻ in metal Reflection Absorption of light Energy distribution of excited e⁻
 Transit to the Surface e⁻e⁻ scattering Direction of travel
 Escape surface Overcome Workfunction Reduction of Φ due to applied field (Schottky Effect)

Integrate product of probabilities over all electron energies capable of escape to obtain Quantum Efficiency

Medium

M. Cardona and L. Ley: <u>Photoemission in Solids 1,</u> (Springer-Verlag, 1978) Triveni Rao, USPAS 2013, Durham Step 1 – Absorption and Excitation

Fraction of light absorbed:

 $I_{ab}/I = (1-R)$

Probability of absorption and electron excitation:

 $P(E,h\nu) = \frac{\overline{N(E)N(E-h\nu)}}{\int_{E_f+h\nu} N(E')N(E'-h\nu)dE'}$

•Medium thick enough to absorb all transmitted light

•Only energy conservation invoked, conservation of k vector is not an important selection rule

Step 2 – Probability of reaching the surface w/o e⁻-e⁻ scattering

$$T(E,\nu) = \frac{\lambda_e(E)/\lambda_{ph}(\nu)}{1+\lambda_e(E)/\lambda_{ph}(\nu)}$$

Energy loss dominated by e-e scatteringOnly unscattered electrons can escape

Step 3 - Escape Probability

Criteria for escape:

$$\frac{\hbar^2 k_\perp^2}{2m} > E_T = E_f + \phi$$

Requires electron trajectory to fall within a cone defined by angle:

$$\cos\theta = \frac{k_{\perp \min}}{\left|\vec{k}\right|} = \left(\frac{E_T}{E}\right)^{\frac{1}{2}}$$

Fraction of electrons of energy E falling with the cone is given by:

$$D(E) = \frac{1}{4\pi} \int_{0}^{\theta} \sin \theta' d\theta' \int_{0}^{2\pi} d\phi = \frac{1}{2} (1 - \cos \theta) = \frac{1}{2} (1 - (\frac{E_T}{E})^{1/2})$$

For small values of E-E_T, this is the dominant factor in determining the emission. For these cases:

> This gives:

$$QE(\nu) \propto \int_{\phi+E_f}^{h\nu+E_f} D(E)dE = \int_{E_T}^{(h\nu-\phi)+E_T} D(E)dE$$

θ

$$QE(\nu) \propto (h\nu - \phi)^2$$

Schottky Effect

 $\Phi' (eV) = \Phi - 3.7947 * 10^{-5} \sqrt{E}$ $= \Phi - 3.7947 * 10^{-5} \sqrt{\beta E} \quad \text{If field is enhanced}$ $\sqrt{QE} = (1 - R)(h\nu - \phi_0 + \alpha \sqrt{\beta E}) \quad \text{near photoemission threshold}$

Slope and intercept at two wavelengths determine Φ and β uniquely Triveni Rao, USPAS 2013, Durham

EDC and QE

At this point, we have N(E,hv) - the Energy Distribution Curve of the emitted electrons

Tield:

$$Y(v) = I(v)(1 - R(v)) \int_{\phi + E_f}^{hv + E_f} P(E)T(E, v)D(E)dE$$

Quantum efficiency:

 $QE(v) = (1 - R(v)) \int_{\phi + E_f}^{hv + E_f} P(E)T(E, v)D(E)dE$

Typical metals: Copper, Magnesium—Tested successfully in RT RF injectors Niobium, lead– Tested successfully in SC RF guns

Cathode preparation

Procure High purity metal from commercial vendor Polish using commercial diamond slurry >Avoid exposure to oxygen containing cleaners ➢Rinse in hexane Clean in ultrasonicator in hexane bath Transport to vacuum chamber in hexane bath Bake and pump ➤Laser/ion clean in 10⁻⁹ Torr vacuum

Niobium cathode — QE vs. laser cleaning

H Ion Beam Cleaning

Advantages

- Prompt emission
- Easy preparation
- Long lifetime
- Tolerant to contaminants
- In situ rejuvenation
- Wide choice

Disadvantages

- Low QE
- UV wavelength
 - Complicated laser system
 - Low average current

LCLS Laser System Overview

Ti:Sapphire Choice:

-high bandwidth available-high average power output-stable, industrial standard for broadband

Courtesy: http://www-ssrl.slac.stanford.edu/lcls/doe_reviews/2002-04/april_2002_talk_finals/bolton_laser_2002.ppt#529,4,Slide 4

ATF Nd: YAG Laser - Functional Units and Beam path

Courtesy: http://www.bnl.gov//dtf/core_sapabilities/yaglayout.asp

Semiconductor photocathodes

Three Step Model of Photoemission - Semiconductors

Medium

Energy

Typical materials :
Multi alkali
•K₂CsSb, Cs₂Te used in RT RF injectors
>GaAs:Cs used in DC guns

			TTF specs
synchronized	~1 dg of RF cycle	~2 ps @1.3 GHz	< 1 ps rms
longitudinal and transverse size	~5 dg == ~ 10 ps	field uniformity ~ some mm	length 20 ps, Ø = 3 mm
charge of ~1 nC per bunch required	Cs ₂ Te cathode QE ~ 1…10% (UV)	∼1 µJ/pulse@UV	factor of ~10 overhead
long trains of pulses with low rep rate	trains 800 µs long with up to 7200 pulses (9 MHz) @ 10 Hz		

Laser System for Cs₂Te Cathode

Courtesy: http://www.desy.de/xfel-beam/data/talks/talks/schreiber_-_laser_pulse_issues_20060227.pdf^{reni Rao, USPAS 2013, Durham}

TTF Laser System: Oscillator

- Mode-locked pulsed oscillator: diode pumped (32 W)
- Synchronized to 1.3 GHz from the master oscillator, stabilized with quartz rods
 - 1.3 GHz EO modulator with two AOM phase stability 0.2 ps rms pulse length 12 ps fwhm
- 27 MHz pulse train
 - length 2.5 ms, pulsed power 7 W pulse picker up to 3 MHz

Amplifiers

Laser diodes: \rightarrow 32 W pulsed, 805 nm \rightarrow end pumped through fibers \rightarrow energy from 0.3 µJ to 6 µJ/pulse Triveni Rao, US

Flashlamps: → cheap, powerful (pulsed, 50 kW electrical/head)

- \rightarrow current control with IGPT switches
- \rightarrow allows flat pulse trains

→ energy up to 300 µJ (1 MHz), 140 µJ (3 Triveni Rao, USPA 2013 Durham

Time

Courtesy: Siegfried Schreiber, DESY * XFEL Beam Dynamics 27-Feb-2006, DESY Triveni Rao, USPAS 2013, Durham

Longitudinal shape is Gaussian Average over 50 gives $\sigma L= 4.4 \pm 0.1 \text{ ps}$ (at 262 nm)

Advantages:

- Relatively high QE
- Relatively easy preparation
- Relatively long Life time
- Workable Load-lock

Disadvantages:

- Sensitive to vacuum contamination
- Preparation
- Life time
- UV wavelength

Laser System for K₂CsSb Cathode and GaAs:Cs Cathode for unpolarized electrons

Courtesy:

http://www.jlab.org/intralab/calend/ai/9/aireni/ver04/er1/talks/WG1/WG1_Shinn_Tue_0830.pdf

Parameter Specification For upgrade

IR output wavelength: **IR** output Power SHG output wavelength SHG output power SHG amplitude stability Timing stability Beam quality Pointing stability Beam profile

1064 nm ~ 70 W 532 nm ≥ 25 W ≤ +/- 0.5 % $\leq 1 \text{ ps}$ Better than 3x diffraction-ltd $< 20 \mu rad$ Circular (up to 25% ellipticity OK

Laser system for K2CsSb Cathode At Boeing

Drive Laser Characteristics

@1053 nm = 30 μJ @527 nm = 15 μJ @263 nm = 5 μJ (1 nC at 0.1%) Macropulse = 2000 Micropulses Macropulse Rep. Rate = 10 Hz Diode-pumping to increase duty factor.

K₂CsSb cathode

Advantages:

- High QE
- Visible wavelength
 - Laser system is
 feasible for high
 current

Tested in RT RF injector

Disadvantages:

- Sensitive to vacuum contamination
- Complicated preparation
- Load Lock needed

GaAs: Cs unpolarized e⁻

Advantages:

- High QE
 - Visible wavelength
 - Laser system is
 feasible for high
 current
- Tested in RT DC injector
- Low thermal emittance: NEA surface

Disadvantages:

- Delayed emission
- Extremely sensitive to
 vacuum
 contamination
- Sensitive to lon
 bombardment
- Charge limited life time

Fiber Laser System for GaAs:Cs Polarized Electrons

Schematic of the fiber-based laser system. DFB, distributed feedback Bragg reflector diode laser; ISO, fiber isolator; SRD, step recovery diode; L, lens; PPLN, periodicallypoled lithium niobate frequency-doubling crystal; DM, dichroic mirror.

Courtesy:http://www.jlabionig/accel/sng/accel/

Output power of the fiber-based laser system at 780 nm versus input power from the seeded ErYb-doped fiber amplifier at 1560 nm. Three different seed conditions were tested; DC and rf-pulsed input at 499 and 1497 MHz

Maintaining Spatial Profile

ATF Gun Hutch Laser Optics

Timing Synchronization critical for all Laser applications:

Electron generation

- Reduce emittance
- Reduce energy spread
- Reduce loss in e Beam transport
- Electron-Laser Interaction
 - Maintain Phase relationship between e & laser
 - Optimize interaction-overlap time
- Electron diagnostics
 - Improve resolution
 - Increase signal/noise

Timing diagram of the laser system

Courtesy: EUROFEL-Report-2006-DS3-027: SPARC photo-injector synchronization system and time jitter measurements, M. Bellaveglia, A. Gallo, C. Vicario

Measurement setup and results for the home-designed electronic frequency divider card (PLL BW = 5kHz)

Histograms relative to (a) 79MHz IR and (b) 10Hz UV phase noise measurements

Typical Synchronization Scheme: Phase lock loop

Courtesy: Proceedings of FEL 2006, BESSY, Berlin, Germany

S. Zhang, S. Benson, J. Hansknecht, D. Hardy, G. Neil, and M. Shinn

Phase noise of a Laser with stable cavity length and AOM to control the phase

Phase noise of laser w/ Semiconductor saturable absorber mirror (SESAM) for mode locking and active cavity length control for phase locking Triveni Rao, USPAS 2013, Durham

Figure 5. Stripline BPM sum video out vs. Local oscillator phase.

The sensitivity of our system was measured to be 6.5mV/ps. Using this technique, we have measured the rms timing jitter between the laser and RF system is 0.5±0.25 ps.

Courtesy: X.J. Wang, I. Ben-Zvi, Proceeding of BIW'96, AIP Conference Proceeding 390 (1996) 232-239

Synchronizing Self Excited Cavity

Synchronizing two lasers and RF cavity

Maintaining Control of phase in transport

Control laser path length

- Temperature and temperature gradient
- Air current
- Humidity

Vacuum transport

> Adjustable delay line

Amplitude Stability:

✓ Commercial oscillator stability acceptable
 oAmplifier stability

•Compromise between gain and stability

•Gain-higher energy, lower stages but higher fluctuation

•Stability-saturation-higher stability but lower gain, more stages, beam shape

oHarmonic conversion

High conversion efficiency Vs stability

 Impact on beam profile-spatial and temporal