Designing and Characterizing the laser system

First things first

Determine the operating parameters:

- Wavelength
- Pulse duration
- Energy/power
- Pulse structure
- Synchronization
- Beam quality
- Polarization
- Stability
 - Energy
 - Pulse duration
 - Timing
 - Direction
- Pre/post pulse energy

Safety

- Infra-structure
 - Power
 - Water
 - Temperature control
 - Humidity control
 - Particulate control
 - Vibration
- Data collection
- Parameter control

Typical Laser System

Based on Requirements, each of these components (+ a few others) have to be defined

Laser Oscillator

Cavity of length L

Consists of Gain medium-Energized by pumping source Cavity mirrors Synchronizing elements Gain medium determines: Fundamental wavelength Minimum pulse duration Maximum storable energy

Cavity configuration determines: Repetition rate Synchronism Max extractable power Pulse duration Transverse parameters Maximum extractable energy

Pump Source determines: Pulse repetition rate Maximum stored energy

Wavelength

Properties of most common Bulk Solid State Laser Gain Media

Host	Dopant	Wavelength	Band Width	Gain Cross	Upper State		
		(µm)	(nm)	Section	Lifetime		
				$(\times 10^{-20} \text{ cm}^2)$	(µs)		
YAG	Nd	1.064	0.6	33	230		
YLF	Nd	1.047-1.0530	1.2	18	480		
Vanadate	Nd		0.8	300	100		
Phosphate	Nd	1.0535-1.054	24.3	4.5	323		
Glass							
KGW	Yb	1.026	25	2.8	250		
YAG	Yb	1.030	6.3	2.0	950		
Phosphate	Yb	1.06-1.12	62	0.049	1 300		
Glass							
Sapphire	Ti	0.790	230	41	3.2		
Pulse duration							

E. Wolf, Ed., *Progress in Optics*, Vol. 34, Amsterdam: Elsevier Science, 2004

Pump Sources > Arc Lamp-CW laser Flash lamp-Pulsed laser Electron beam > Electric discharge > Diode-CW and pulsed High efficiency Current or voltage modulation Scalable to high energy/power Compact • Fiber coupled Triveni Rao, USPAS 2013, Duke University

10 W diode laser

How to get pulses?

- Change the Q of the cavity:
 - Sudden change in gain
 - Pulse pumping (Flash lamp, e beam, electric discharge)
 - Sudden change in loss
 - Q switching
 - Mode-locking
 - Active mode-locking AO/EO modulator
 - Passive mode locking- Saturable absorber(intensity dependent absorption), Kerr lens (Intensity dependent focusing)

Modulating the pump laser diode pump Triveni Rao, USPAS 2013, Duke University

Mode locking

Youtube video: Principles of mode-lockingpassively mode-locked lasers

http://www.youtube.com/watch?v=efxFduO2YI8

http://upload.wikimedia.org/wikipedia/commons/c/ca/Modelock-1.png

Gain switching in diode laser

http://www.rpphotonics.com/gain_switching.html

http://www.ilxlightwave.com/appnote s/AN%2022%20REV01%20Modulati ng%20Laser%20Diodes.pdf

Current modulation of the power supply

Amplifier

- > Determine Number of stages
 - Required amplification
 - S/N Ratio
- > Determine amplifier configuration:
 - Regenerative
 - Good transverse mode quality, Multiple passes
 - Higher noise, optical damage
 - Multipass
 - Scalable, higher energy/power
 - Poor mode quality, larger fluctuation

Pulse selection

Choose the process • (eg. Pockell's cell) Choose the hardware • S/N Damage threshold Operating conditions (temp. etc) Choose the location After oscillator, amplifier, harmonic crystals

Synchronization

Need to synchronize laser pulse to other pulses: electron, RF, other lasers etc.

Diagnostics

Energy, Power

 Energy, Power: energy meter, power meter
 Pulse to Pulse Stability: Photodiode
 Online Monitoring: Calibrated photodiode
 Droop correction: Calibrated photodiode+ feedback/feed forward

Spatial distribution

Profile
Spot size
stability

Cavity supports transverse (spatial profile) and longitudinal (frequency spectrum) modes

Transverse Profile E(r)

Limiting to lowest order mode, $E(r) = E_0 e^{-(\frac{r}{w})^2}$

 $I(r) = I_0 e^{-(\frac{2r^2}{w^2})}$

Gaussian Intensity profile!

Important Parameters/Equations of Gaussian Beam

- The parameter w is called the beam radius within which 86.5% of the total power of the Gaussian beam is contained.
- > The spot size at any axial distance z from beam waist w_0 can be calculated using

$$w(z) = w_0 \left\{ 1 + \left(\frac{\lambda z}{\pi w_0} \right)^2 \right\}$$

The full divergence angle θ is given bý

$$\theta = 1.27 \frac{\lambda}{(2w_0)}$$

The confocal parameter b, the distance between points on either side of the beam waist for which the spot size $w(z) = \sqrt{2w_0}$ and the region over which the phase front is nearly planar, is given by

 $b = \frac{2\pi w_0^2}{\lambda}$

Typical commercial lasers have outputs that are nearly Gaussian, but not exactly. The extent to which they approach Gaussian is given by the *m* parameter

m = w_{laser}/w_{gaussian}

Supergaussian (Flat Top) Intensity Profile $-2(\frac{r}{w})^n$ n>2

Measurement Techniques for Transverse Profile

Technique	Advantage	Disadvant.	Application
CCD	Direct Ease of measurements w/algorithms Good resolution	Dynamic range Long/short wavelength sensitivity	On line beam diagnostics
Slit scan	Inexpensive	Poor resolution Multi-shot Data analysis	Low cost beam diagnostics
Video camera	Multiple displays Inexpensive	Poor resolution Data analysis	Monitoring, aligning

Photosensitive material

IR: Ge response curve 0.8-1.8 micron. HgCdT 1-12 micron (Cryo cooled) UV: Fluorescence

Principle of CCD

Video

http://en.wikipedia.org/wiki/Chargecoupled_device http://nofilmschool.com/2012/06/everwondered-how-a-ccd-sensor-works/

Selection Criteria

Sensor and array:

- Wavelength
- Size and resolution
- Dynamic Range

Software:

- Parameters required
- Theory behind software

Longitudinal modes-Spectral Content, Pulse Duration

The pulse duration of the laser beam is dictated by a number of factors Storage time (upper state life time) of the lasing medium Bandwidth of the lasing line **Pump duration** >Design of the cavity elements, their linear and nonlinear dispersion Minimum Pulse duration for Gaussian profile is

Measurement Techniques for Longitudinal (temporal) profile

Technique	Advantage	Disadvant.	Application
Photodiode, phototube	Direct Inexpensive Sensitive Linear simple	Bandwidth limited	ns, subns pulses
Streak camera	Direct Vis-UV	Expensive Complicated	Few ps
Auto/cross correlator Single, multi shot	Moderately inexpensive	Indirect Insensitive to assymmetry	ps, fs
Spectral domain measurements	Complete characterization	Complicated	fs

Streak Camera Principle

Laser spot size, intensity: Space charge Vs s/n

Synchronization

Ultra short pulses may not be transform limited: Need to measure amplitude and phase simultaneously

Characterizing fs pulses

$$E(t) = \sqrt{I(t)}e^{i\omega_0 t}e^{i\psi(t)}$$

$$E(\omega) = \sqrt{S(\omega)}e^{i\phi(\omega)}$$

Need to measure both spectrum and spectral phase simultaneously

FROG: Frequency Resolved Optical Gating

Most commonly used technique

GRENOUILLE: (Grating eliminated no-nonsense Observation of Ultrafast laser light efields) simplified device based on SHG FROG-Thick SHG crystal for 2ω and spectrometer, Fresnel biprism for beam splitter, delay line and beam recombination

Courtesy: http://www.phys.ufl.edu/reu/1999/reports/mei/mei.htm

SPIDER: Spectral Phase Interferometry for Direct Electric field Reconstruction

The interference of the two fields is given by

$$\begin{split} \tilde{S}(\varpi) &= \tilde{I}(\varpi) + \tilde{I}(\varpi + \Omega) + 2\sqrt{\tilde{I}(\varpi)}\sqrt{\tilde{I}(\varpi + \Omega)}\cos(\phi(\varpi) - \phi(\varpi + \Omega)) \\ \text{where} \quad \tilde{E}(\varpi) &= \sqrt{\tilde{I}(\varpi)}e^{i\phi(\omega)} \end{split}$$

Use Algorithms to extract the phase information

http://ultrafast.physics.ox.ac.uk/spider/tech.html

Other Design Criteria

- Beam transport from laser to interaction region
 - Simulation codes (eg., Zemax)
 - Remote manipulation, vacuum transport
 - Radiation considerations (fiber transport)
- Computer system and platform
 - Data collection
 - Parameter control
- Environmental control
 - Temperature
 - Humidity
 - Dust
- Safety

Interlock, entry Triveni Rao, USPAS 2013, Duke.
 University

> BNL ERL laser: Commercial, custom unit from Lumera for illuminating photocathode

Oscillator

- > Gain medium: Nd vanadate
- > Pump: 18 W fiber coupled 808 nm diode laser
- Mode-Locking: Passive Saturable absorber
- Cavity: Folded cavity w/ resonator length of 16 m
- Synchronization: Piezo-driven mirror in cavity

Synchronization

Amplifier

Gain Medium: Nd: vanadate

Pump: 100 W diode laser at 888 nm (lower absorption, uniform longitudinal pumping)

> # of passes: 2, polarization rotation between passes

Entire pulse train amplified

Pulse selector

- Method: Pockel's cell, pulse picked when voltage on
- Material: BBO
- Pulse train structure: Micro and macro pulse,
 - macro pulse length adjustable from tens of ns to 100 µs,
 - PRF from on demand to 10 kHz
 - # of pulses in macro pulse adjustable from 1 to CW

Harmonic Crystal

- > 1064 nm to 532 nm:
 - LBO, non-critically phase matched, 150 C
 - 50 % efficiency- 10 W
- > To 355 nm:
 - LBO, non-critically phase matched, 40 C
 - Green to UV efficiency 50 %- 5W

Pulse Shaping

Spatial: Commercial pi shaper
 Temporal: Beam stacking

 3 YVO₄ crystals of length 6, 12 and 24 mm

Diagnostics

> On-line:

- Pulse energy and stability-Calibrated Photodiode
- Beam profile-Video camera
- Pointing stability-Video camera

> Performance:

- Pulse energy: energy meter
- Beam profile, pointing stability: CCD
- Pulse duration in IR: Autocorrelator
- Pulse picker, S/N: Photodiode

Energy and energy stability

IR image

IR image Core

Gaussian beam Triveni Rao, USPAS 2013, Duke University

Green Image

UV image Nonlinear process distorts the profile Ellipticity and nonuniformity

<mark>²s</mark> Frame 3		€ <frame 3=""/>	
Current -Quantitative—4 Sigma Fotal 114,002,814 & Above Clip 100.00 Peak 2.914e+03 Ain -3.262e+01 Peak Loc X 3.617e+03	Units % um		4036 3973 3840 3584 3328 3072 2816 2560
Peak Loc Y 2.653e+03 Centroid X 3.495e+03 Centroid Y 2.649e+03 Width X 1.921e+03 Width Y 1.644e+03 Diameter 1.783e+03	um um um um um um		2304 2048 1792 1536 1280 1024 512 255 0
■ 1600 X 1200 X 1			
<u></u>	×		

Pointing Stability

Centroid deviation: 3.3 and 2.3 μ m in x and y respectively at 1 m from laser

Corresponds to 3.3 and 2.3 µrad angular deviation

Pulse Duration in IR

FWHM of autocorrelator trace =17.5 ps Corresponding FWHM for Gaussian laser pulse = 12 ps Triveni Rao, USPAS 2013, Duke University

Spatial shaping

Temporal and Spatial Shaping @ 532 nm

Timing Jitter

Timing Jitter of Lumera–Laser with RRE (fast PIC) Repetition rate lock: CG=7, FG=7.0, HF=10.0, 23.07.2008

Pulse Selection

