6. Lattice design/matching

Previous chapter

- We have developed transfer matrix for SCL elements
 - Drift, Quadrupole, solenoid, Rf gap
- We have introduced beam matrix and how to transport it in the SC linac elements (spreadsheet and trace3D)

This chapter

- We will introduce formalism for periodic transport
- We will show possible design layout for SC linac using
 - Quadrupole doublets or solenoid
- We will apply it and design accelerating period for SNS-like and FRIB like cases

Trace 3-D twiss conversion

- Trace 3D Transfer matrices are in $(z,\Delta p/p)$ coordinates
- Trace 3D input file needs twiss parameters in (ϕ , Δ KE) Conversion between the two sets of coordinates are as follow

$$z = -\frac{\beta\lambda}{360}\Delta\phi$$
 $\frac{\Delta p}{p} = \frac{\gamma}{\gamma+1}\frac{\Delta KE}{KE}$

- Conversion factors A and B

$$A[\deg/mm] = \frac{0.36}{\beta\lambda}$$
$$B[keV/mrad] = \frac{\gamma + 1}{\gamma} KE$$

Plug in the formulae: $\beta\lambda$ in meters and KE in MeV

- From (z, Δ p/p) twiss to (ϕ , Δ KE) twiss for Trace3D

Homework 6-1

- Consider a ⁴He¹⁺ at 100 MeV/u with initial twiss parameters of α =2.0 β =4.0m and ϵ =1 π .mm.mrad in a 500 MHz SC linac
 - Use Trace 3D to compute the final twiss parameters after a 3 meter long drift in (deg-keV) units
 - Give these twiss parameters in (mm-mrad) units
 - Use excel spreadsheet to compute final twiss parameters directly in (mm-mrad)

6-D beam matrix transport in periodic system (1)

A stable periodic system has a transfer matrix of the form

$$M_{period} = \begin{bmatrix} \cos\mu + \widetilde{\alpha}\sin\mu & \widetilde{\beta}\sin\mu \\ -\widetilde{\gamma}\sin\mu & \cos\mu - \widetilde{\alpha}\sin\mu \end{bmatrix}$$

- Where μ is the called the phase advance and α , β , and γ tildes are the twiss parameters of the period. μ interval is]0; π [
- Writing a general transfer matrix as

$$M_{period} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

- And identifying the two matrices leads to

$$\cos\mu = \frac{a+d}{2}$$
 $\widetilde{\alpha} = \frac{a-d}{2\sin\mu}$ $\widetilde{\beta} = \frac{b}{\sin\mu}$ $\widetilde{\gamma} = \frac{1+\widetilde{\alpha}^2}{\widetilde{\beta}}$

6-D beam matrix transport in periodic system (2) - spreadsheet

- One particle is tracked through a periodic system
- The particle follows the period ellipse

6-D beam matrix transport in periodic system (2) – properties of period matrix

- Period matrix can conveniently be rewritten

 $M = I \cos \mu + J \sin \mu$

- With

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad J = \begin{bmatrix} \widetilde{\alpha} & \widetilde{\beta} \\ -\widetilde{\gamma} & -\widetilde{\alpha} \end{bmatrix}$$

- Useful relation

$$J^{-1} = -J \qquad J^2 = -I$$

- Matrix after k-periods Multiple periods

$$M^{k} = I\cos k\mu + J\sin k\mu \qquad M_{k-periods} = \begin{bmatrix} \cos k\mu + \tilde{\alpha}\sin k\mu & \tilde{\beta}\sin k\mu \\ -\tilde{\gamma}\sin k\mu & \cos k\mu - \tilde{\alpha}\sin k\mu \end{bmatrix}$$

- Inverse

$$M^{-1} = I \cos \mu - J \sin \mu$$

Homework 6-2

- Show that

$$M^2 = I\cos 2\mu + J\sin 2\mu$$

6-D beam matrix transport in periodic system (3) – beam transport & matching

- Beam matrix rotate along the period ellipse, by an angle equal to the phase advance of the period
- The smallest beam size in a periodic channel occurs for a "matched" beam (e.g. a beam with twiss parameters equal to the one of the period)
- Any beam with twiss parameters different than the ones of the period is called "mismatched"

6-D beam matrix transport in periodic system (4) – spreadsheet

						S0		м		S1								
					Sxx	400.0	0.0	6.13E-17	0.50	25.0	0.0	Sxx				~		
						0.0	100.0	-2	0.00	0.0	1600.0		$\cos \mu$	$+\widetilde{\alpha}\sin$	и	$\beta \sin \mu$		
PERIOD	xx'	уу'	zz'		Syy	564.0	0.0	0.71	0.71	317.5	-246.5	Syy	$M_{period} = $	· . ·		~ .		
α	0	0	0			0.0	70.9	-0.71	0.71	-246.5	317.5		$\lfloor -\gamma$	$sin\mu$	cos	$\mu - \alpha s_1$	$\ln \mu$	
β	0.5	1	1	m	Szz	800.0	400.0	0.71	0.71	925.0	-275.0	Szz						
μ	90	45	45	degrees		400.0	250.0	-0.71	0.71	-275.0	125.0							
INPUT	xx'	yy'	zz'				Period ell	xx'	yy'	zz'			OUTPUT	xx'	yy'	zz'		
α	0.00	0.00	-2.00				α	0.00	0.00	0.00			α	0.00	1.23	1.38		
β	2.00	2.82	4.00	m			β	0.50	1.00	1.00	m		β	0.13	1.59	4.63	m	
3	200.00	200.00	200.00	pi-mm-m	rad		3	800.00	564.00	1010.41	pi-mm-m	rad	3	200.00	200.00	200.00	pi-mm-mrad	
γ	0.50	0.35	1.25	rad/m			γ	2.00	1.00	1.00	rad/m		γ	8.00	1.59	0.63	rad/m	
half-size	20.00	23.75	28.28	mm			half-size	20.00	23.75	31.79	mm		half-size	5.00	17.82	30.41	mm	
half-divergence	10.00	8.42	15.81	mrad		half-c	livergence	40.00	23.75	31.79	mrad		half-divergence	40.00	17.82	11.18	mrad	
full-size	40.00	47.50	56.57	mm			full-size	40.00	47.50	63.57	mm		full-size	10.00	35.63	60.83	mm	
full-divergence	20.00	16.84	31.62	mrad		full-c	livergence	80.00	47.50	63.57	mrad		full-divergence	80.00	35.63	22.36	mrad	
θ	0.00	0.00	0.48	rad			θ	-1.57	0.00	0.00	rad		θ	-1.57	0.00	-0.30	rad	
θ	0.00	0.00	27.75	deg			θ	-90.00	0.00	0.00	deg		θ	-90.00	0.00	-17.25	deg	
upright ellipse beta	2.00	2.82	5.05	m		upright e	llipse beta	2.00	1.00	1.00	m .,		upright ellipse beta	8.00	2.82	5.05	m	
upright ellipse gamma	0.50	0.35	0.20	rad/m	u	oright ellip	se gamma	0.50	1.00	1.00	rad/m		upright ellipse gamma	0.13	0.35	0.20	rad/m	
major axis	20.00	23.75	31.79	mm			major axis	40.00	23.75	31.79	mm		major axis	40.00	23.75	31.79	mm	
minor axis	10.00	8.42	6.29	mrad			minor axis	20.00	23.75	31.79	mrad		minor axis	5.00	8.42	6.29	mrad	
							R	4.25	3.17	5.25								
							Area fac	4.00	2.82	5.05								
							iviismatch	1.00	0.68	1.25	l							

beam mismatch factors

- Quantifies the difference between two ellipses
- Consider two centered beam ellipses

ell1
$$\gamma x^2 + 2\alpha x x' + \beta x'^2 = \varepsilon$$

- ell2 $Gx^2 + 2Axx' + Bx'^2 = \varepsilon$
- Area factor (AF) is how much the second ellipse must be enlarged so it covers the other ellipse
- Assuming the first ellipse is matched into a transport channel, the Mismatch factor (M) is how much larger the beam envelope for the second ellipse will be in the transport channel (i.e. M=0.1 means beam size will be 10% larger in the channel)

- Area factor:
$$AF = \left[\frac{1}{2}\left(R + \sqrt{R^2 - 4}\right)\right]$$

- Mismatch factor: $M = \sqrt{AF} 1$
- where R is given by: $R = \beta G + \gamma B 2\alpha A$

beam mismatch factor (2) - spreadsheet

					(deg)	(rad)	x(mm)	x'(mrad)	x(mm)	x'(mrad)	x(mm)	x'(mrad)
					0	0.000	7 071	0.000	10.000	0.000	30 190	0.000
	Ellipse1	Ellipse2	Scaled Ell		і _г							
α	-1.00	1.00	1.00			-	-ellips	ie 1				
β	1.00	2.00	2.00	m		-	-ellips	e 2 40	_			
3	100.00	100.00	685.41	pi-mm-mrad		_	– ellips	e2 scale	d total a	rea facto	or	
γ	2.00	1.00	1.00	rad/m				30	_			
half-size	10.00	14.14	37.02	mm								
half-divergence	14.14	10.00	26.18	mrad				20				
full-size	20.00	28.28	74.05	mm								
full-divergence	28.28	20.00	52.36	mrad	=	\		10				
θ	1.02	-0.55	-0.55	rad	rad			(7				
θ	58.28	-31.72	-31.72	deg	Ē			0	$\perp \mathbf{X}$			
upright ellipse beta	2.62	2.62	2.62	m		0 -40 -	-30 -20	-10	0 10	20	30 40	50
upright ellipse gamma	0.38	0.38	0.38	rad/m			50 20	-10			50 10	30
major axis	16.18	16.18	42.36	mm								
minor axis	6.18	6.18	16.18	mrad				-20				
								20				
R	7.0	see Trace	3D manual					-30				
Area factor	6.9	assumes e	emit ell1 a	nd ell2 are the same				-30				
Mismatch factor	1.6	see Trace	3D manual					_10				
total area factor	6.9	Enlarge ar	rea by that	factor				-40				
								FO				
								-50				
								x (n	nm)			Ð
					27	0.715	5.550	5.752	5.000	4.007	10.200	10.07J
					25	0.436	9.397	5.977	4.837	4.226	12.663	11.064

Superconducting Linac accelerating lattice (period)

- We consider two SRF linac lattice design
 - Cryomodule and room-temperature quadrupole doublet

- Cryomodule and superconducting solenoid

SCL lattice design

- For the design, it is simpler to use thin lens approximation for all elements
- The kicks are carried in the middle of the elements

- Drift
$$M_{xx,yy} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} M_{zz} = \begin{pmatrix} 1 & L/\gamma^2 \\ 0 & 1 \end{pmatrix}$$

- Quadrupole
$$M_{xx,yy} = \begin{pmatrix} 1 & 0 \\ \pm k_q & 1 \end{pmatrix}$$
 $M_{zz} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $k_q = \sqrt{K} \sin(\sqrt{K}L)$
 $K = \frac{G}{B\rho}$

Solenoid
$$M_{xx,yy} = \begin{pmatrix} 1 & 0 \\ -k_s & 1 \end{pmatrix}$$
 $M_{zz} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $k_s = K \sin(KL)$
 $K = \frac{B}{2B\rho}$

- RF cavity
$$M_{xx,yy} = \begin{pmatrix} 1 & 0 \\ k_{rfx} & 1 \end{pmatrix} \quad M_{zz} = \begin{pmatrix} 1 & 0 \\ -k_{rfz} & 1 \end{pmatrix} \quad \begin{array}{l} k_{rfx} = K / (\beta \gamma)_f \\ k_{rfz} = 2\gamma^2 k_{rfx} \\ K = -\frac{\pi}{\beta^2 \gamma^2 \lambda} \frac{Q}{A} \frac{E_0 T L}{m_u c^2} \sin \phi_s \end{array}$$

SCL lattice – cryomodule + quadrupole doublet (1)

- The transfer matrix for the lattice period is given by

$$M_{xx} = M_{drift}(a) . M_{quad}(k_q) . M_{drift}(b) . M_{rf} . M_{drift}(b) . M_{quad}(-k_q) . M_{drift}(a)$$

$$M_{xx} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ k_q & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ k_{rfx} & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -k_q & 1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$

$$M_{xx} = \begin{pmatrix} 1 - 2bk_q (1 + ak_q)(1 + bk_{rfx}/2) + k_{rfx} (a + b) & 2(a + b - a^2bk_q^2) + k_{rfx} ((a + b)^2 - (abk_q)^2) \\ & -2bk_q^2 + k_{rfx} (1 - b^2k_q^2) & 1 + 2bk_q (1 - ak_q)(1 + bk_{rfx}/2) + k_{rfx} (a + b) \end{pmatrix}$$

$$\mu_{x} = \operatorname{acos}\left(1 - 2abk_{q}^{2}\left(1 + bk_{rfx} / 2\right) + k_{rfx}(a + b)\right)$$

- Myy is obtained by replacing kq→-kq
- When rf cavity is off (krfx=0)

$$M_{xx} = \begin{pmatrix} 1 - 2bk_q (1 + ak_q) & 2(a + b - a^2 bk_q^2) \\ -2bk_q^2 & 1 + 2bk_q (1 - ak_q) \end{pmatrix} \qquad \mu_x = a\cos(1 - 2abk_q^2)$$

SCL lattice – cryomodule + quadrupole doublet (2)

- In the longitudinal direction

$$M_{zz} = M_{drift} (a+b) M_{rf} M_{drift} (a+b)$$

$$M_{zz} = \begin{pmatrix} 1 & (a+b)/\gamma^{2} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -k_{rfz} & 1 \end{pmatrix} \begin{pmatrix} 1 & (a+b)/\gamma^{2} \\ 0 & 1 \end{pmatrix}$$

$$M_{zz} = \begin{pmatrix} 1 - k_{rfz} (a+b)/\gamma^{2} & (a+b)/\gamma^{2} (2 - k_{rfz} (a+b)/\gamma^{2}) \\ -k_{rfz} & 1 - k_{rfz} (a+b)/\gamma^{2} \end{pmatrix}$$

$$\mu_{z} = a\cos(1 - k_{rfz} (a+b)/\gamma^{2})$$

SCL lattice – cryomodule + solenoid (1)

- The transfer matrix for the lattice period is given by

$$\begin{split} M_{xx} &= M_{drift}(a).M_{rf}.M_{drift}(b).M_{sol}(-k_{s})M_{drift}(b).M_{rf}.M_{drift}(a) \\ M_{xx} &= \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ k_{rfx} & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -k_{s} & 1 \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ k_{rfx} & 1 \end{pmatrix} \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \\ \\ M_{xx} &= \begin{pmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{pmatrix} \\ M_{11} &= 1 + 2bk_{rfx} - bk_{s} - b^{2}k_{rfx}k_{s} - a(1 + bk_{rfx})(k_{s} + k_{rfx}(-2 + bk_{s}))) \\ M_{12} &= -(a + b + abk_{rfx})(-2 + bk_{s} + a(k_{s} + k_{rfx}(-2 + bk_{s}))) \\ M_{21} &= -(1 + bk_{rfx})(k_{s} + k_{rfx}(-2 + bk_{s})) \\ M_{22} &= 1 + bk_{rfx} + b(k_{rfx} - (1 + bk_{rfx})k_{s}) - a(1 + bk_{rfx})(k_{s} + k_{rfx}(-2 + bk_{s})) \end{split}$$

- Myy is identical to Mxx

$$\mu_x = \operatorname{acos}\left(\frac{M_{11} + M_{22}}{2}\right)$$

SCL lattice – cryomodule + solenoid (2)

- When rf cavity is off (krfx=0)

$$M_{xx} = \begin{pmatrix} 1 - k_s(a+b) & (a+b)(2 - k_s(a+b)) \\ -k_s & 1 - k_s(a+b) \end{pmatrix} \qquad \mu_x = a\cos(1 - (a+b)k_s)$$

- In the longitudinal direction

$$M_{zz} = \begin{pmatrix} M_{55} & M_{56} \\ M_{65} & M_{66} \end{pmatrix}$$

$$M_{55} = 1 - 2bk_{rfz} / \gamma^2 - 2ak_{rfz} / \gamma^2 (1 - bk_{rfz} / \gamma^2)$$

$$M_{56} = -(a + b - abk_{rfz} / \gamma^2)(-2 + 2ak_{rfz} / \gamma^2) / \gamma^2$$

$$M_{65} = -2k_{rfz} (1 - bk_{rfz} / \gamma^2)$$

$$M_{66} = 1 - 2bk_{rfz} / \gamma^2 - 2ak_{rfz} / \gamma^2 (1 - bk_{rfz} / \gamma^2)$$

$$\mu_z = \operatorname{acos}\left(\frac{M_{55} + M_{66}}{2}\right)$$

SCL design – basic procedure

- 1) Define cavity types (frequency, geometric beta, number of cells
- 2) Design cavities
- 3) Define number of cavities for each cavity type
- 4) Define accelerating lattice
 - Number of cavities per cryomodule
 - Type of transverse focusing
- 5) Tune first cell for each type
- 6) Assemble overall linac

Scale transverse focusing to keep focusing strength similar from one period to the next (effect of change in magnetic rigidity as beam is accelerated and to the change of rf defocusing from one period to the next).

7) Match beam at the change of period if necessary

change magnet strength and rf phases of neighboring elements to adapt the beam to the new lattice period (Trace3D has tools for this)

SCL lattice – example (0)

- Let's design an "SNS-like" linac
- 1.4 MW average proton power on a Hg target
- 1-GeV energy
- 1.4-mA avg current
- 60-Hz repetition rate
- 1-ms pulse (6% duty)
- 170-m-circumference accumulator ring with 1060 injected turns
- 1.5E14 protons on target in 695 ns

SCL lattice – example (1)

- Let's design an "SNS-like" linac with the requirements
 - Proton, 185MeV to 1.3 GeV, 805 MHz using two cavity types
- 1) Define cavity types
 - Start by finding beta range (kinematics spreadsheet)
 - KE=185 MeV gives beta=0.55
 - KE=1.0 GeV gives beta=0.908
 - Investigate suitable types of cavities over that range of betas (design betas spreadsheet) using f=805 MHz

6-cell β =0.61 and 6-cell β =0.81 Transition around b=0.72 = 414 MeV 4-cell β =0.59 and 4-cell β =0.77 Transition around b=0.7 = 375 MeV

SCL lattice – example (2)

- Carrying forward with the 6-cell option, β =0.61 and β =0.81
- 2) Design cavities
 - Design and optimize cavity geometries using superfish
 - We assume that one can get
 - E0=15 MV/m for β =0.61 cavity
 - E0=17.5 MV/m for β =0.81 cavity
 - Export transit time factor table $T(\beta)$ from superfish
 - Polynomial fit of $T(\beta)$ for convenience
- 3) Define number of cavities for each cavity type
 - Start at 185 MeV, finish at 1.3 GeV
 - Transition should be around 414 MeV (see previous slide)
 - Use "linac" spreadsheet to optimize number of cavities
 - Possible design
 - 33 β 0.61 cavities at ϕ =-20 deg
 - 80 β 0.81 cavities at ϕ =-18 deg

SCL lattice – example (3) – "linac" spreadsheet

E	Beam	initial			Cav #	Amp	phi(deg)	Kei	gi	bi	Brhoi	cav type	TTF cav	EOTL cav	dKE	Kef	gf	bf	Brhof	
ſ	Иu	938.2723	MeV/c2		1	1	-20	185.000	1.197	0.550	2.060	cav1	0.618	6.321	5.940	190.940	1.204	0.556	2.096	
1	۹.	1			2	1	-20	190.940	1.204	0.556	2.096	cav1	0.650	6.641	6 240	197.180	1.210	0.563	2.133	
C	2	1			3	1	-20	1500 -							_	203.695	1.217	0.570	2.171	
t	oeta	0.550			4	1	-20	1400 -	Ket						_	210.456	1.224	0.577	2.211	
ş	gamma	1.197			5	1	-20	1300 -							_	217.429	1.232	0.584	2.251	
F	oc	617.564	MeV/u		6	1	-20	3 1200 -								224.582	1.239	0.591	2.291	
Ē	E	1123.272	MeV/u		7	1	-20	≶ 1100 -			/					231.879	1.247	0.598	2.332	
ł	KE	185.000	MeV/u		8	1	-20	e 1000 -		/					_	239.289	1.255	0.604	2.373	
F	oc tot	617.6	MeV		9	1	-20	S 900 -								246.778	1.263	0.611	2.415	
Ē	tot	1123.3	MeV		10	1	-20	60 800 -								254.318	1.271	0.617	2.456	
	KE tot	185.0	MeV		11	1	-20	e 700 -								261.882	1.279	0.624	2.496	
E	Brho	2.060	Tm		12	1	-20	ш ₆₀₀ -		/						269.446	1.287	0.630	2.536	
					13	1	-20	500 -								276.991	1.295	0.636	2.576	
- I	Cavities	cav1	cav2		14	1	-20	e 400 -								284.498	1.303	0.641	2.615	
5	Ncav	33	80		15	1	-20	⊻ 300 -								291,952	1.311	0.647	2.654	
f		805.000	805.000	MHz	16	1	-20	200 -								299.341	1.319	0.652	2.692	
	ocell	0.610	0.810		17	1	-20	100 -								306.654	1.327	0.657	2.729	
, I	Ncell	6	6		18	1	-20	0 -	1 N	50	100	150	200	250	200	313,885	1.335	0.662	2.766	
- li	0 cav	15	17.5	MV/m	19	1	-20	(J	50	100	120	200	250	300	321.026	1.342	0.667	2.802	
- F	го	3 674/F+02	3 7150E+02	,	20	1	-20				cav	ity#				328 072	1 350	0.672	2 837	
- 6	гı	-3 4052F+03	-2 5944F+03		20	1	-20	328 072	1 350	0.672	2 837	cav1	0 723	7 395	6 949	335 021	1 357	0.676	2.057	
— l;	- 12	1.2877F+04	7.3951E+03		22	1	-20	20.0 -								341,869	1.364	0.680	2.905	
- 1		-2 5535F+04	-1 1056F+04		23	1	-20	20.0	○ dKE							348 616	1 372	0.684	2 938	
- 1	Г <u>а</u>	2.33352+04	9 1909E+03		24	1	-20	(18.0 -								355 259	1 379	0.688	2.550	
- 6	15	-1 6420F+04	-4 0443E+03		25	1	-20	3 160 -								361 800	1 386	0.692	3 002	
	r6	3.9722F+03	7.3815E+02		26	1	-20	Σ								368,238	1.392	0.696	3.033	
- 1	ambda	0 372	0.372	m	27	1	-20	> 14.0								374 574	1 399	0.699	3.063	
- li	coll	0.372	0.372	m	28	1	-20	÷ 12.0 -				DOILDING				380 810	1.355	0.055	3.003	
- li	cav	0.6815	0.9050	m	20	1	-20	Ca			Musse		anon anono)		386.946	1 412	0.705	3 122	
- li	n axis	23.6	27.5	MV/m	30	1	-20	b ^{10.0}		A DEC						392 984	1 419	0.709	3 150	
	-p 0/15	23.0	21.5		21	1	_20	ط ط 8.0		U U						398 926	1 / 25	0.703	3 179	
- 6	inac				32	1	-20	gai	Contraction of the second seco	COLONNA - COLONNA						104 774	1 /131	0.715	3 205	
- F		22			22	1	20									410 520	1 /20	0.719	2 222	
—ť,		33 80			33	1	-20	ພ 4.0 -								410.529	1.430	0.718	3.232	
		00 112			25	1	-10	E 20								419.104	1.447	0.725	3.272	
!'		115	Mall		35	1	-10	2.0								420.103	1.450	0.727	3.313	
		410.5	MoV/u		30	1	-18	0.0		1		i.				437.277	1.400	0.731	3.355	
<u> </u>	Inal KE	1302.8	iviev/u		3/	1	-18	C) 20	40	60	80	100	120 1	40	440.09/	1.470	0.730	3.398	
					38	1	-18				cav	ity#				456.350	1.486	0.740	3.442	
					39	1	-18	466 225	1 407	0.744	2,400		0.670	10 004	10.005	466.225	1.497	0.744	3.486	
					40	1	-18	466.225	1.497	0.744	3.486	cav2	0.670	10.604	10.085	4/6.310	1.508	0.748	3.531	
					41	1	-18	476.310	1.508	0.748	3.531	cav2	0.683	10.810	10.281	486.591	1.519	0.753	3.577	

SCL lattice – example (4)

- 4) Define accelerating lattice
 - Number of cavities per cryomodule
 - Type of transverse focusing
 - Use "lattice" spreadsheet to investigate possible designs
 - We try to pack
 - 3-cavities per cryomodule for β 0.61 cavities
 - 4 cavities per cryomodule for β 0.81 cavities
 - We choose room-temperature doublet for focusing
 - Find focusing parameters for rf focusing and defocusing ("foc strength" spreadsheet)
 - For easiness, concentrate all the rf kick in one equivalent cavity
 - (multiply E0TL of a single cavity by number of cavities in cryomodule)
 - Adjust lengths, transverse focusing, and rf phase to define an acceptable lattice
 - Phase advances around 75 degrees are a good starting point
 - Avoid parametric resonance by maintaining transverse phase advance above half longitudinal phase advance

$$\mu_{x,y} > \frac{\mu_z}{2}$$

SCL lattice – example (5)

4) And 5)

- Start working on lattice for the first type of cavity β0.61
- Get E0TL for single cavity from "linac" spreadsheet
- Multiply by 3 to get E0TL for 3 rf cavities in a cryomodule (we're trying to pack 3 β0.61 cavities per cryomodule and we'll use this E0TL in "lattice" spreadsheet to check if the design is acceptable)
- Use this in "foc strength" spreadsheet to get krf x and krfz focusing values in "lattice" spreadsheet

Beam		in	out	
	Mu	938.2723	938.2723	MeV/c2
	Α	1	1	
	Q	1	1	
	beta	0.550	0.569	
	gamma	1.197	1.216	
	рс	617.564	649.412	MeV/u
	Е	1123.272	1141.092	MeV/u
	KE	185.000	202.820	MeV/u
	pc tot	617.6	649.4	MeV
	Etot	1123.3	1141.1	MeV
	KE tot	185.0	202.8	MeV
	Brho	2.060	2.166	Tm
rf cavity	f	805		MHz
	EOTL	18.963		MV
	Phi	-20		deg
	lambda	0.372		
	к	0.135		m-1
	krf x	0.194		m-1
	krf z	0.575		m-1
	f rf x	5.14		m
	f rf z	1.74		m

SCL lattice – example (6)

- 4) And 5) continued
- Use the krfx and krf z values in "lattice" spreadsheet and try to design a period layout so that the dimensions are reasonable (e.g. space between cavities, end of cryomodule, size of magnets etc..) and twiss parameters for the period are satisfactory

lattice	drift 1	0.4	0.279	m
Quad	quad	0	m	
doublet	drift 2	2.2	1.535	m
	rf cav	0	m-1	
	drift2	2.2	m	
	quad	0	m	
	drift 1	0.4	m	
	k quad	0.750	m-1	
	k rf x	0.194	m-1	
	k rf z	0.575	m-1	
Мхх	-3.702	6.034	detx	
	-2.810	4.310	1	
Муу	4.310	6.034	dety	
	-2.810	-3.702	1	
Mzz	-0.044	1.735	detz	
	-0.575	-0.044	1	
TWISS	XX	уу	zz	
alpha	-4.20	4.20	0.00	
beta	6.33	6.33	1.74	m
mu	72.31	72.31	92.50	deg
			ZZ	
alpha			0.00	
beta			0.0090	deg/keV
mu			92.50	deg

SCL lattice – example (7)

- 4) And 5) continued
- Verify that the focusing strength for the chosen magnets are reasonable

Beam			Tm
	Mu	938.2723	MeV/c2
	А	1	
	Q	1	
	beta	0.550	
	gamma	1.197	
	рс	617.564	MeV/u
	E	1123.272	MeV/u
	KE	185.000	MeV/u
	pc tot	617.6	MeV
	Etot	1123.3	MeV
	KE tot	185.0	MeV
	Brho	2.060	Tm
Quad	Length	0.2	m
	Gradient	7.9	T/m
	rad apert	5	cm
	B pole tip	0.395	Т
	К	3.84	m-1
	k quad	0.75	m-1
	f quad	1.338	m

SCL lattice – example (8)

- The period for the low beta cavity type is 5.2 m long and looks like

 Dimensions for each of the elements needs to be sorted out and building a Trace-3D model. For example, one can assume that all SRF cavities needs to have 200mm of distance on either of its side. And that the end of cryomodules to transition from cold to room temperature requires another 200mm.

SCL lattice – example (9)

- Trace 3D input

```
X
 805 beta 61 lattice 1period.t3d - Notepad
File Edit Format View Help
&data
er= 938.2723 q= 1.,
        805, pqext= 2.50, ichrom= 0,
freg=
xm= 8.00 xpm= 8.00, dpm= 8.0, dwm= 250.0, ym= 8.0 dpp= 10.0.
smax=
        2.0, pqsmax=
                      2.0,
emiti=1.8175 1.8175 582.10000
beami= -4.2 6.33 4.2 6.33 0.0 0.009
w=185.00 xi=0, nel1=1, nel2=21, np1=1, np2=21
n1=1, n2=21
 nt(1) = 1, a(1, 1) = 300
 nt(2) = 3, a(1, 2) = 7.9,200
 nt(3) = 1, a(1, 3) = 477
 nt(4) = 1, a(1, 4) = 200
 nt(5) = 1, a(1, 5) = 341.0
 nt(6) = 10, a(1, 6) = 6.321, -20, 0, 1
 nt(7) = 1, a(1, 7) = 341.0
 nt(8) = 1, a(1, 8) = 200
 nt(9) = 1, a(1, 9) = 200
 nt(10) = 1, a(1, 10) = 341.0
 nt(11) = 10, a(1, 11) = 6.321, -20, 0, 1
 nt(12) = 1, a(1, 12) = 341.0
 nt(13) = 1, a(1, 13) =
                        200
 nt(14) = 1, a(1, 14) = 200
 nt(15) = 1, a(1, 15) = 341.0
 nt(16) = 10, a(1, 16) = 6.321, -20, 0, 1
 nt(17) = 1, a(1, 17) = 341.0
 nt(18) = 1, a(1, 18) = 200
 nt(19) = 1, a(1, 19) = 477
 nt(20) = 3, a(1, 20) = -7.9,200
 nt(21)= 1, a(1, 21)= 300
&end
```

SCL lattice – example (10)

- Trace 3D output

Homework 6-3

- Design a period for the second type of cavity $\beta 0.81$ for energy of 410 MeV/u

SCL lattice – example2 (0)

- Let's design an "FRIB-like" linac segment

Energy (MeV/u)

210

210

265

270

610

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

SCL lattice – example2 (1)

- Let's design an "FRIB-like" linac segment with the requirements
 - A/Q=3, 20MeV/u to 200 MeV/u, 322 MHz using two cavity types
- 1) Define cavity types
 - Start by finding beta range (kinematics spreadsheet)
 - KE=20 MeV/u gives beta=0.203
 - KE=200 MeV/u gives beta=0.566
 - Investigate suitable types of cavities over that range of betas (design betas spreadsheet) using f=322 MHz.

2-cell β =0.23 and 2-cell β =0.44 Transition around b=0.37 = 72 MeV/u

SCL lattice – example2 (2)

- Carrying forward with the 2-cell option, β =0.23 and β =0.44
- 2) Design cavities
 - Design and optimize cavity geometries. In this regime, the cavity type (halfwave, spoke) is not cylindrically symmetric.
 - We assume that one has
 - E0=10 MV/m for β =0.23 cavity
 - E0=10 MV/m for β =0.44 cavity
 - Use transit time factor table $T(\beta)$ and do polynomial fit for convenience
- 3) Define number of cavities for each cavity type
 - Start at 20 MeV/u, finish at 200 MeV/u
 - Transition should be around 72 MeV (see previous slide)
 - Use linac spreadsheet to optimize number of cavities
 - Possible choice
 - 96 β 0.23 cavities at ϕ =-20 deg
 - 128 β 0.44 cavities at ϕ =-20 deg

SCL lattice – example2 (3)

SCL lattice – example2 (4)

Beam	initial			Cav #	Amp	phi(de	g)	Kei	gi	bi	Brhoi	cav type	TTF cav	E0TL cav	dKE	Kef	gf	bf	Brhof	
Mu	938.2723	MeV/c2		1	1	-20	2	0.000	1.021	0.203	1.949	cav1	0.716	1.533	0.480	20.480	1.022	0.206	1.972	
Α	3			2	1	-20	2	0.400	4 000	0.200	4 072	4	0 704	4 664	^ 136	20.966	1.022	0.208	1.996	
Q	1			3	1	-1	3	300	Kef						91	21.457	1.023	0.210	2.019	
beta	0.203			4	1	-1									96	21.953	1.023	0.213	2.043	
gamma	1.021			5	1	-1	2	250							01	22.454	1.024	0.215	2.066	
рс	194.759	MeV/u		6	1	-1	(n								05	22.958	1.024	0.217	2.090	
E	958.272	MeV/u		7	1	-1	Š								09	23.467	1.025	0.220	2.113	
KE	20.000	MeV/u		8	1	-1	Š ²	200							13	23.980	1.026	0.222	2.136	
pc tot	584.3	MeV		9	1	-1	Ň								16	24.496	1.026	0.224	2.159	
Etot	2874.8	MeV		10	1	-1	200 1	50							19	25.015	1.027	0.226	2.183	
KE tot	60.0	MeV		11	1	-1	, e								22	25.538	1.027	0.229	2.206	
Brho	1.949	Tm		12	1	-1	ີວຸ	00							25	26.063	1.028	0.231	2.228	
				13	1	-1	- Ei								28	26.591	1.028	0.233	2.251	
Cavities	cav1	cav2		14	1	-1	ín								30	27.121	1.029	0.235	2.274	
 Ncav	96	128		15	1	-:	-	50							32	27.654	1.029	0.238	2.296	
f	322.000	322.000	MHz	16	1	-1									34	28.188	1.030	0.240	2.319	
bcell	0.230	0.440		17	1	-1		0	1	1		1	1	1	36	28.724	1.031	0.242	2.341	
Ncell	2	2		18	1	-1		0	50	10	0 15	50 2	200	250	300 <mark>38</mark>	29.262	1.031	0.244	2.363	
E0 cav	10	10	MV/m	19	1	-1					cavity	#			39	29.802	1.032	0.246	2.385	
то	-5.6549E+00	-2.9565E+00		20	1	-20	2	9.802	1.032	0.240	2.385	Cavi	0.800	1./2/	v.541	30.343	1.032	0.248	2.407	
T1	9.0096E+01	1.4320E+01		21	1										542	30.885	1.033	0.250	2.429	
T2	-5.1888E+02	2.1971E+01		22	1	-	2	.0	dKE						643	31.428	1.033	0.253	2.450	
Т3	1.6043E+03	-2.0168E+02		23	1	-	3 1	.8							544	31.972	1.034	0.255	2.472	
T4	-2.8355E+03	4.1808E+02		24	1	-	ີ								645	32.517	1.035	0.257	2.493	
T5	2.7077E+03	-3.7949E+02		25	1	-	Š								546	33.063	1.035	0.259	2.514	
т6	-1.0870E+03	1.3178E+02		26	1		5 1	.4							547	33.610	1.036	0.261	2.536	
lambda	0.931	0.931	m	27	1	-	Ę.	,							547	34.157	1.036	0.263	2.556	
L cell	0.107	0.205	m	28	1	-	S 1					1	CONTRACTOR OF MAN)	648	34.704	1.037	0.265	2.577	
Lcav	0.2141	0.4097	m	29	1	-	1	.0			and the second	Contraction of the second		/	548	35.252	1.038	0.267	2.598	
Ep axis	15.7	15.7	MV/m	30	1		ă o	.8			Caller				548	35.801	1.038	0.269	2.618	
	0.1071			31	1		air								649	36.349	1.039	0.271	2.639	
Linac				32	1		20 0	.6	ACMONTRE DE DATA	N CONTRACTOR CONTRACTOR	10))				;49	36.898	1.039	0.272	2.659	
N cav1	96			33	1		5 0	.4 —							;49	37.447	1.040	0.274	2.679	
Ncav2	128			34	1		Ĕ.								649	37.995	1.040	0.276	2.699	
N total	224			35	1	-	- 0	.2							649	38.544	1.041	0.278	2.719	
KEf cav1	71.0	MeV/u		36	1	-	0	.0 +			1	1			549	39.093	1.042	0.280	2.738	
Final KE	200.7	MeV/u		37	1	-		0	5	0	100	150	200	0	²⁵⁰ ;49	39.641	1.042	0.282	2.758	
				38	1	-					cavity #	ŧ			548	40.190	1.043	0.284	2.777	
				39	1	-20	4	0.190	1.043	0.284	2.777	cav1	0.817	1.750	0.548	40.738	1.043	0.285	2.797	

SCL lattice – example2 (5)

- 4) Define accelerating lattice
 - Number of cavities per cryomodule
 - Type of transverse focusing
 - Use "lattice" spreadsheet to investigate possible designs
 - We try to pack
 - 6-cavities per cryomodule for β0.23 cavities
 - 8 cavities per cryomodule for β 0.44 cavities
 - We choose superconducting for focusing
 - Find focusing parameters for rf focusing and defocusing ("foc strength")
 - For easiness, concentrate all the rf kick on each side of the solenoid in one equivalent cavity
 - (multiply E0TL of a single cavity by half the number of cavities in the cryomodule)
 - Adjust lengths, transverse focusing, and rf phase to define an acceptable lattice
 - Phase advances around 75 degrees are a good starting point
 - Avoid parametric resonance by maintaining transverse phase advance above half longitudinal phase advance

SCL lattice – example2 (6)

- The chosen dimensions need to be realistic (e.g. space between cavities, end of cryomodule, size of magnets etc..)

Beam		in	out	
	Mu	938.2723	938.2723	MeV/c2
	Α	3	3	
	Q	1	1	
	beta	0.203	0.210	
	gamma	1.021	1.023	
	рс	194.759	201.812	MeV/u
	E	958.272	959.731	MeV/u
	KE	20.000	21.458	MeV/u
	pc tot	584.3	605.4	MeV
	Etot	2874.8	2879.2	MeV
	KE tot	60.0	64.4	MeV
	Brho	1.949	2.020	Tm
rf cavity	f	322		MHz
	EOTL	4.6		MV
	Phi	-18		deg
	lambda	0.931		
	к	0.040		m-1
	krf x	0.184		m-1
	krf z	0.385		m-1
	f rf x	5.44		m
	f rf z	2.60		m

lattice	drift 1	1.221	1.171	m
Solenoid	rf cav	0	m	
	drift 2	1.021	0.979	m
	sol	0	m-1	
	drift2	1.021	m	
	rf cav	0	m	
	drift 1	1.221	m	
	k sol	0.550	m-1	
	k rf x	0.184	m-1	
	k rf z	0.385	m-1	
Мхх	0.294	2.693	detx	
	-0.339	0.294	1	
Муу	0.294	2.693	dety	
	-0.339	0.294	1	
Mzz	-0.315	1.878	detz	
	-0.480	-0.315	1	
TWISS	ХХ	уу	zz	
alpha	0.00	0.00	0.00	
beta	2.82	2.82	1.98	m
mu	72.88	72.88	108.35	deg
			ZZ	
alpha			0.00	
beta			0.0951	deg/keV
mu			108.35	deg

SCL lattice – example2 (7)

- Verify that the focusing strength for the chosen magnets are reasonable

Beam			Tm
	Mu	938.2723	MeV/c2
	Α	3	
	Q	1	
	beta	0.210	
	gamma	1.023	
	рс	202.010	MeV/u
	E	959.772	MeV/u
	KE	21.500	MeV/u
	pc tot	606.0	MeV
	Etot	2879.3	MeV
	KE tot	64.5	MeV
	Brho	2.021	Tm
Solenoid	Length	0.4	m
	В	4.85	Т
	К	1.20	m-1
	k sol	0.55	m-1
	f quad	1.81	m

- Build Trace 3-D model to check overall design

SCL lattice – example2 (7)

- Trace 3D input

322 b23 lattice.t3d - Notepad	
<u>File Edit Fo</u> rmat <u>V</u> iew <u>H</u> elp	
&data er= 938.2723 q= -0.33333,	*
freq= 322, pqext= 2.50, ichrom= 0, xm= 8.00 xpm= 8.00, dpm= 8.0, dwm= 250.0, ym= 8.0 dpp= 10.0, smax= 2.0, pqsmax= 2.0,	
emiti=1.8175 1.8175 582.10000 beami= 0.0 2.62 0.0 2.62 0.0 0.105 beamo= 1.047373 1.088715 1.438201 0.500933 -1.544348 1.141240	
<pre>w=20.00 xi=0, nell=1, nel2=38, npl=1, np2=38 nl=1, n2=38 nl=1, n2=38 nt(1)=1, a(1, 1)= 300 nt(2)=1, a(1, 2)= 300 nt(3)=1, a(1, 4)= 107.0 nt(5)=10, a(1, 5)= 107.0 nt(6)=1, a(1, 6)= 107.0 nt(7)=1, a(1, 7)= 100 nt(8)=1, a(1, 8)= 100 nt(10)= 10, a(1, 10)= 1.533, -18,0,1 nt(11)= 10, a(1, 11)= 107.0 nt(12)=1, a(1, 12)= 100 nt(14)=1, a(1, 14)= 107.0 nt(14)=1, a(1, 14)= 10.0 nt(14)=1, a(</pre>	
	Ψ.

SCL lattice – example2 (10)

- Trace 3D output

SCL lattice – non linear effects in longitudinal phase space

- We assumed that the longitudinal restoring force was linear with respect to the phase, which is a good approximation if the beam has a small spread in phases
- Taking into account the non-linearities from the energy gain cosine curve, the motion in phase space can be separated in stable and unstable regions
- As a rule of thumb, the linear approximation is justified if the phase extent of the beam is much smaller than φ_s along the linac

$$\frac{d(KE - KE_s)}{ds} = qE_0T(\cos\phi - \cos\phi_s)$$
$$\frac{d\phi}{ds} = -\frac{2\pi(KE - KE_s)}{mc^2\gamma_s^3\beta_s^3\lambda}$$
$$\frac{d^2\phi}{ds^2} + \frac{2\pi qE_0T}{mc^2\gamma_s^3\beta_s^3\lambda}(\cos\phi - \cos\phi_s) = 0$$

(T. Wangler MSU-PHY905)

