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 Ions - either missing electrons (+) or with extra electrons (-)

 Electrons or positrons

 Plasma - ions plus electrons

 Source techniques depend on type of beam & on application

Beams: particle bunches
with directed velocity
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Electron sources - thermionic

 Heated metals
 Some electrons have energies above potential barrier
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Electrons in a metal obey Fermi statistics
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Electrons with enough momentum can escape
from the metal

 Integrating over electrons going in the z direction with

yields

some considerable manipulation yields the Richardson-Dushman
equation
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Brightness of a beam source

 A figure of merit for the performance of a beam source is
the brightness

Typically the normalized brightness is quoted for  γ = 1
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Other ways to get electrons
over the potential barrier

 Field emission
 Sharp needle enhances electric field

 Photoemission from metals & semi-conductors
 Photon energy exceeds the work function
 These sources produce beams with high current densities & low

thermal energy
 This is a major topic of research

+ HV
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Anatomy of an ion source

Gas in

Energy in to 
ionize gas

Plasma

Container 
for plasma

Electron filter

Extraction 
electrodes

Beam

out

Electron beams can also be used to ionize the gas or sputter ions from a solid
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What properties characterize particle beams?

5 minute exercise
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Beams have directed energy

 The beam momentum refers to the average value of pz of
the particles

pbeam = <pz>

 The beam energy refers to the mean value of

 For highly relativistic beams  pc>>mc2, therefore

! 
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Ebeam = pz c
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Measuring beam energy & energy spread

 Magnetic spectrometer - for good resolution, Δp one needs
 small sample emittance ε, (parallel particle velocities)
 a large beamwidth w in the bending magnet
 a large angle ϕ
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Beam carry a current

I ~ ne<vz>

Imacro
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τpulse
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Measuring the beam current

 Examples:
 Non-intercepting: Wall current monitors, waveguide pick-ups
 Intercepting: Collect the charge; let it drain through a current meter

• Faraday Cup

Beam current

Return current

Voltage meter

Βeam pipe

Beam current

Stripline waveguide
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Collecting the charge: Right & wrong ways

Proper Faraday cupSimple collector

The Faraday cup
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 Beams particles have random (thermal) ⊥ motion

 Beams must be confined against thermal expansion during
transport

Thermal  characteristics of beams
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Beams have internal (self-forces)

 Space charge forces
 Like charges repel
 Like currents attract

 For a long thin beam

! 

Esp (V /cm) =
60 Ibeam (A)
Rbeam (cm)

! 

B" (gauss) =
 Ibeam (A)

5 Rbeam (cm)
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Net force due to transverse self-fields

In vacuum:
Beam’s transverse self-force scale as 1/γ2

 Space charge repulsion: Esp,⊥ ~ Nbeam

 Pinch field: Bθ ~ Ibeam ~  vz Nbeam ~ vz Esp

∴Fsp ,⊥ =  q (Esp,⊥ + vz x Bθ) ~ (1-v2) Nbeam ~ Nbeam/γ2

Beams in collision are not in vacuum (beam-beam effects)
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Interaction point fields in the proposed ILC
(10 minute exercise)

The International Linear Collider  proposes to collide bunches
of e- & e+ with 10 nC each.  Each bunch will be 3 µm long &
10 nm in radius.
When the bunches overlap at the Interaction Point, what self-
forces will particles at the edges of the beams experience? How
large are the fields?
What consequences might you expect?

electrons positrons
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Bunch dimensions

X

Y

Z

For uniform charge distributions
We may use “hard edge values

For gaussian charge distributions 
        Use rms values σx, σy, σz

We will discuss measurements of 
bunch size and charge distribution later

σx,

σy

σz,
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But rms values can be misleading

σ σ

Gaussian beam Beam with halo

We  need to measure the particle distribution
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What is this thing called beam quality?
or

How can one describe the dynamics of
a bunch of particles?
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Coordinate space

Each of Nb particles is tracked in ordinary 3-D space

Not too helpful

Orbit  traces
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Configuration space:

6Nb-dimensional space for Nb particles; coordinates (xi, pi), i = 1,…, Nb

The bunch is represented by a single point that moves in time

Useful for Hamiltonian dynamics
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Configuration space example:
One particle in an harmonic potential

px

x

But for many problems this description carries
much more information than needed :

We don’t care about each of 1010 individual particles
But seeing both the x & px looks useful

ωb constant

! 

Fx = "kx = m˙ ̇ x 
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Option 3: Phase space
(gas space in statistical mechanics)

6-dimensional space for Nb particles
The ith particle has coordinates (xi, pi), i = x, y, z
The bunch is represented by Nb points that move in time

px

x

In most cases, the three planes are to very good approximation decoupled 
==> One can study the particle evolution independently in each planes:
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Particles Systems & Ensembles

 The set of possible states for a system of N particles is referred as an
ensemble in statistical mechanics.

 In the statistical approach, particles lose their individuality.

 Properties of the whole system are fully represented by particle density
functions  f6D  and f2D :

where

! 

f6D x, px,y, py,z, pz( )  dx dpx dy dpy dz dpz

! 

f2D xi, pi( )dxi dpi i =1,2,3

Ndpdzdpdydpdxf zyxD =! 6

From: Sannibale USPAS lectures
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Longitudinal phase space

 In most accelerators the phase space planes are only weakly coupled.
 Treat the longitudinal plane independently from the transverse one
 Effects of weak coupling can be treated as a perturbation of the

uncoupled solution

 In the longitudinal plane, electric fields accelerate the particles
 Use energy as longitudinal variable together with its canonical

conjugate time

 Frequently, we use relative energy variation δ & relative time τ  with
respect to a reference particle

 According to Liouville, in the presence of Hamiltonian forces, the area
occupied by the beam in the longitudinal phase space is conserved

! 
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E # E0

E0
0tt !="

From: Sannibale USPAS lectures
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Transverse phase space

 For  transverse planes {x, px} and {y, py}, use a modified phase space where
the momentum components are replaced by:

where s is the direction of motion

 We can relate the old and new variables (for Bz ≠0 ) by

Note: xi and pi are canonical conjugate variables while x and xi’  are not, unless
there is no acceleration (γ and β constant)

From: Sannibale USPAS lectures
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Consider an ensemble of harmonic oscillators
in phase space

px

x

Particles stay on their energy contour.

Again the phase area of the ensemble is conserved
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Emittance describes area in phase space
of the ensemble of beam particles

Phase space of an
harmonic oscillator

Emittance - Phase space volume of beam 

! 

"2 # R2(V 2 $ ( % R )2) /c 2
RMS emittance

kβ(x) - frequency of
rotation of a phase

volume
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What is the significance of
(physical interpretation of)

the term

! 

R2( " R )2

c 2    ?

5 minute exercise
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Force-free expansion of a beam

Notice: The phase space area is conserved

px

x

px

x

Drift distance L

0

00

0

0

10
1

xx
xLxx

x
xL

x
x

!=!

!+=
"##

$

%
&&
'

(
!##

$

%
&&
'

(
=##
$

%
&&
'

(
!

31



US Particle Accelerator School

A numerical example:
Free expansion of a due due to emittance
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2
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The rms emittance is a measure
of the mean non-directed (thermal) energy

of the beam

This emittance is the phase space area 
occupied by the system of particles, divided by π
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Why is emittance an important concept

@ t1

@ t2
1) Liouville: Under conservative forces phase space

evolves like an incompressible fluid ==>

Z = λ/12

Z = λ/8
Z = λ/4

Z = 0
x

x’
2) Under linear forces macroscopic

(such as focusing magnets) &
γ =constant

emittance is an invariant of motion

3) Under acceleration
γε = εn 

is an adiabatic invariant
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 An axial Bz field, (e.g.,solenoidal lenses) couples transverse planes
 The 2-D Phase space area occupied by the system in each transverse plane is no

longer conserved

 Liouville’s theorem still applies to the 4D transverse phase space
 the 4-D hypervolume is an invariant of the motion

 In a frame rotating around the z axis by the Larmor frequency
ωL = qBz / 2g m0, the transverse planes decouple
 The phase space area in each of the planes is conserved again

Emittance conservation with Bz
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Emittance during acceleration

 When the beam is accelerated, β & γ change
 x and x’  are no longer canonical
 Liouville theorem does not apply & emittance is not invariant
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From: Sannibale USPAS lectures
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Then…

 Therefore, the quantity β γ ε  is invariant during acceleration.
 Define a conserved normalized emittance

Acceleration couples the longitudinal plane with the transverse planes
The 6D emittance is still conserved but the transverse ones are not
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From: Sannibale USPAS lectures
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Consider a cold beam with a
Gaussian charge distribution
entering a dense plasma

At the beam head the plasma shorts
out the Er leaving only the
azimuthal B-field

The beam begins to pinch trying to
find an equilibrium radius

Nonlinear space-charge fields
filament phase space via Landau damping

38



US Particle Accelerator School

39



US Particle Accelerator School

Experimental example:
Filamentation of longitudinal phase space

Data from CERN PS

The emittance according to Liouville is still conserved 

Macroscopic (rms) emittance is not conserved
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Non-conservative forces increase emittance
(scattering)

 Scatterer! 

 Scatterer! <Vx> <Vx + "Vx>  

Px/Pz

X

Px/Pz

X

Px/Pz

X

Px/Pz

X
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Measuring the emittance of the beam

 RMS emittance
 Determine rms values of velocity & spatial distribution

 Ideally determine distribution functions & compute rms
values

 Destructive and non-destructive diagnostics

! 

"2 = R2(V 2 # ( $ R )2) /c 2

42



US Particle Accelerator School

Example of pepper-pot diagnostic

 Size of image ==> R
 Spread in overall image ==> R´
 Spread in beamlets ==> V
 Intensity of beamlets ==> current density
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Wire scanning to measure R and ε

SNS Wire Scanner

 Measure x-ray signal from beam
scattering from thin tungsten wires

 Requires at least 3 measurements along
the beamline
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Horizontal, 0.22 pi mm mrad       Vertical, 0.15 pi mm mrad
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Measured 33-mA Beam RMS Emittances
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The Concept of Acceptance

Example: Acceptance of a slit

y

y’

-h/2

h/d

-h/d

-h/2h

d

Electron
Trajectories

Matched beam
emittance

Acceptance at
the slit entrance

Unmatched beam
emittance

From: Sannibale USPAS lectures
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Is there any way to decrease the emittance?

This means taking away mean transverse momentum,
but

keeping mean longitudinal momentum

We’ll leave the details for later in the course.
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Phase-Space Cooling in Any One Dimension
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Schematic: radiation & ionization cooling

Transverse cooling:

Passage 
through dipoles

Acceleration 
in RF cavity

P⊥ less
P|| less

P⊥ remains less
P|| restored

Limited by quantum excitation
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Cartoon of transverse stochastic cooling

Divide (sample) the beam into disks

1) rf pick-up samples centroid of disks

2) Kicker electrode imparts v⊥ 

    to center the disk

3) Mix up the particles & repeat

Van der Meer Nobel prize 
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