1411

1

Fundamentals of Accelerators Lecture - Day 2 - Beam properties

William A. Barletta

Director, US Particle Accelerator School Dept. of Physics, MIT Economics Faculty, University of Ljubljana

Beams: particle bunches with directed velocity

✤ Ions - either missing electrons (+) or with extra electrons (-)

Iniversity of Ljubl

- Electrons or positrons
- Plasma ions plus electrons
- Source techniques depend on type of beam & on application

Electrons with enough momentum can escape from the metal

Integrating over electrons going in the z direction with

$$p_z^2/2m > E_F + \phi$$

yields

$$J_e = \int_{-\infty}^{\infty} dp_x \int_{-\infty}^{\infty} dp_y \int_{p_{z,free}}^{\infty} dp_x (2/h^3) f(E) v_z$$

some considerable manipulation yields the Richardson-Dushman equation

$$I \propto AT^2 \exp\left(\frac{-q\phi}{k_B T}\right)$$

$$A = 1202 \ mA/mm^2K^2$$

University of Ljubljand

A C U L T Y C O N O M I

$$\mathcal{B} = \frac{\text{Beam current}}{\text{Beam area} \circ \text{Beam Divergence}} = \frac{\text{Emissivity (J)}}{\sqrt{\text{Temperature/mass}}}$$

$$=\frac{J_e}{\left(\sqrt{\frac{kT}{\gamma m_o c^2}}\right)^2}=\frac{J_e\gamma}{\left(\frac{kT}{m_o c^2}\right)}$$

Typically the normalized brightness is quoted for $\gamma = 1$

Other ways to get electrons over the potential barrier

- Field emission
 - Sharp needle enhances electric field

- Photoemission from metals & semi-conductors
 - Photon energy exceeds the work function
 - These sources produce beams with high current densities & low thermal energy

+ HV

University of Ljublja

> This is a major topic of research

Electron beams can also be used to ionize the gas or sputter ions from a solid

141ii

What properties characterize particle beams?

5 minute exercise

Beams have directed energy

* The beam momentum refers to the average value of p_z of the particles

$$p_{beam} = \langle p_z \rangle$$

✤ The beam energy refers to the mean value of

$$E_{beam} = \left[\left\langle p_z \right\rangle^2 c^2 + m^2 c^4 \right]^{1/2}$$

✤ For highly relativistic beams pc>>mc², therefore

$$E_{beam} = \langle p_z \rangle c$$

Measuring beam energy & energy spread

University of Ljubljand

CONOMIC

- > small sample emittance ε , (parallel particle velocities)
- > a large beamwidth w in the bending magnet
- \succ a large angle ϕ

✤ Examples:

- Non-intercepting: Wall current monitors, waveguide pick-ups
- Intercepting: Collect the charge; let it drain through a current meter
 - Faraday Cup

Collecting the charge: Right & wrong ways

The Faraday cup

Simple collector

Proper Faraday cup

Thermal characteristics of beams

♦ Beams particles have random (thermal) \perp motion

Beams must be confined against thermal expansion during transport

Beams have internal (self-forces)

- Space charge forces
 - Like charges repel
 - Like currents attract
- For a long thin beam

$$E_{sp}(V/cm) = \frac{60 \ I_{beam}(A)}{R_{beam}(cm)}$$

$$B_{\theta}(gauss) = \frac{I_{beam}(A)}{5 R_{beam}(cm)}$$

University of Ljubljana

Net force due to transverse self-fields

In vacuum:

Beam's transverse self-force scale as $1/\gamma^2$

- > Space charge repulsion: $E_{sp,\perp} \sim N_{beam}$
- $\succ \text{ Pinch field: } B_{\theta} \sim I_{beam} \sim \ v_z \ N_{beam} \sim v_z \ E_{sp}$

$$\therefore \mathbf{F}_{\text{sp},\perp} = \mathbf{q} \left(\mathbf{E}_{\text{sp},\perp} + \mathbf{v}_{z} \times \mathbf{B}_{\theta} \right) \sim (1 - v^{2}) \mathbf{N}_{\text{beam}} \sim \mathbf{N}_{\text{beam}} / \gamma^{2}$$

Beams in collision are *not* in vacuum (beam-beam effects)

The International Linear Collider proposes to collide bunches of e^- & e^+ with 10 nC each. Each bunch will be 3 μ m long & 10 nm in radius.

When the bunches overlap at the Interaction Point, what selfforces will particles at the edges of the beams experience? How large are the fields?

What consequences might you expect?

Bunch dimensions

For uniform charge distributions We may use "hard edge values

For gaussian charge distributions Use rms values σ_x , σ_y , σ_z

We will discuss measurements of bunch size and charge distribution later

We need to measure the particle distribution

1417

What is this thing called beam quality? *or* How can one describe the dynamics of a bunch of particles?

Configuration space:

 $6N_b$ -dimensional space for N_b particles; coordinates (x_i, p_i) , $i = 1, ..., N_b$ The bunch is represented by a single point that moves in time

Useful for Hamiltonian dynamics

Configuration space example: One particle in an harmonic potential

University of Ljublja

But seeing both the $x \& p_x$ looks useful

Option 3: Phase space (gas space in statistical mechanics)

6-dimensional space for N_b particles The ith particle has coordinates (x_i, p_i) , i = x, y, zThe bunch is represented by N_b points that move in time

University of Ljublja

In most cases, the three planes are to very good approximation decoupled ==> One can study the particle evolution independently in each planes:

Particles Systems & Ensembles

- The set of possible states for a system of N particles is referred as an *ensemble* in statistical mechanics.
- ✤ In the statistical approach, particles lose their individuality.
- ✤ Properties of the whole system are fully represented by particle density functions f_{6D} and f_{2D} :

$$f_{6D}(x, p_x, y, p_y, z, p_z) dx dp_x dy dp_y dz dp_z \qquad f_{2D}(x_i, p_i) dx_i dp_i \quad i = 1, 2, 3$$

where

$$\int f_{6D} \, dx \, dp_x \, dy \, dp_y \, dz \, dp_z = N$$

From: Sannibale USPAS lectures

University of Ljubljana FACULTY OF ECONOMICS

Longitudinal phase space

- ✤ In most accelerators the phase space planes are only weakly coupled.
 - Treat the longitudinal plane independently from the transverse one
 - Effects of weak coupling can be treated as a perturbation of the uncoupled solution
- ✤ In the longitudinal plane, electric fields accelerate the particles
 - Use *energy* as longitudinal variable together with its canonical conjugate *time*
- * Frequently, we use *relative energy variation* δ & *relative time* τ with respect to a reference particle

$$\delta = \frac{E - E_0}{E_0} \qquad \tau = t - t_0$$

✤ According to Liouville, in the presence of Hamiltonian forces, the area occupied by the beam in the longitudinal phase space is conserved

Transverse phase space

• For transverse planes $\{x, p_x\}$ and $\{y, p_y\}$, use a modified phase space where the momentum components are replaced by:

$$p_{xi} \rightarrow x' = \frac{dx}{ds} \qquad p_{yi} \rightarrow y' =$$

where s is the direction of motion

• We can relate the old and new variables (for $Bz \neq 0$) by

$$p_i = \gamma m_0 \frac{dx_i}{dt} = \gamma m_0 v_s \frac{dx_i}{ds} = \gamma \beta m_0 c x'_i \qquad i = x, y$$

 $\frac{dy}{ds}$

where
$$\beta = \frac{v_s}{c}$$
 and $\gamma = (1 - \beta^2)^{1/2}$

Note: x_i and p_i are canonical conjugate variables while x and x_i ' are not, unless there is no acceleration (γ and β constant)

US PARTICLE ACCELERATOR SCHOOL

From: Sannibale USPAS lectures

W $\overline{p}_{WS \ PROJECTION}$ $\overline{\phi}_{W}$ S

Particles stay on their energy contour.

Again the phase area of the ensemble is conserved

Emittance describes area in phase space of the ensemble of beam particles

Emittance - Phase space volume of beam

What is the significance of (physical interpretation of) the term

$$\frac{R^2(R')^2}{c^2} \quad \mathcal{E}$$

$$R^{2} = R_{o}^{2} + V_{o}^{2}L^{2} = R_{o}^{2} + \frac{\varepsilon^{2}}{R_{o}^{2}}L^{2}$$

Plif

This emittance is the phase space area occupied by the system of particles, divided by π

The rms emittance is a measure of the mean non-directed (thermal) energy of the beam

Why is emittance an important concept

 $Z = \lambda/8$

 $Z = \lambda/12$

Z = 0

x'

 $Z = \lambda/4$

 Liouville: Under conservative forces phase space evolves like an incompressible fluid ==>

2) Under linear forces macroscopic (such as focusing magnets) & γ =constant
 emittance is an invariant of motion

3) Under acceleration $\gamma \varepsilon = \varepsilon_n$ is an adiabatic invariant

US PARTICLE ACCELERATOR SCHOOL

Χ

Emittance conservation with *B_z*

- An axial B_z field, (e.g., solenoidal lenses) couples transverse planes
 - The 2-D Phase space area occupied by the system in each transverse plane is no longer conserved

- Liouville's theorem still applies to the 4D transverse phase space
 the 4-D hypervolume is an invariant of the motion
- In a frame rotating around the *z* axis by the *Larmor frequency* $\omega_L = qB_z/2g m_0$, the transverse planes decouple
 - > The phase space area in each of the planes is conserved again

Emittance during acceleration

- When the beam is accelerated, $\beta \& \gamma$ change
 - $\succ x$ and x' are no longer canonical
 - Liouville theorem does not apply & emittance is not invariant

University of Ljubljan

CONOMI

$$T = kinetic \ energy$$

US PARTICLE ACCELERATOR SCHOOL

From: Sannibale USPAS lectures

$$y'_{0} = \tan \theta_{0} = \frac{p_{y0}}{p_{z0}} = \frac{p_{y0}}{\beta_{0} \gamma_{0} m_{0} c} \qquad y' = \tan \theta = \frac{p_{y}}{p_{z}} = \frac{p_{y0}}{\beta \gamma m_{0} c} \qquad \frac{y'}{y'_{0}} = \frac{\beta_{0} \gamma_{0}}{\beta \gamma}$$

In this case
$$\frac{\varepsilon_y}{\varepsilon_{y0}} = \frac{y'}{y'_0} \implies \beta \gamma \varepsilon_y = \beta_0 \gamma_0 \varepsilon_{y0}$$

- * Therefore, the quantity $\beta \gamma \varepsilon$ is invariant during acceleration.
- ✤ Define a conserved *normalized emittance*

$$\varepsilon_{n\,i} = \beta \gamma \varepsilon_i \qquad i = x, y$$

Acceleration couples the longitudinal plane with the transverse planes The 6D emittance is still conserved but the transverse ones are not

From: Sannibale USPAS lectures

Nonlinear space-charge fields filament phase space via Landau damping

Consider a cold beam with a Gaussian charge distribution entering a dense plasma

At the beam head the plasma shorts out the E_r leaving only the azimuthal B-field

The beam begins to pinch trying to find an equilibrium radius

University of Ljublic

ACULT

Experimental example: Filamentation of longitudinal phase space

EACULTY OF

CONOMIC

Data from CERN PS

The emittance according to Liouville is still conserved

Macroscopic (rms) emittance is not conserved

Non-conservative forces increase emittance (scattering)

University of Ljubljana

FACULTY OF

Measuring the emittance of the beam

$$\varepsilon^2 = R^2 (V^2 - (R')^2) / c^2$$

- RMS emittance
 - Determine rms values of velocity & spatial distribution
- Ideally determine distribution functions & compute rms values
- Destructive and non-destructive diagnostics

University of Ljubljand

CONOMIC

- Size of image \implies R
- ✤ Spread in overall image ==> R'
- \diamond Spread in beamlets ==> V
- Intensity of beamlets ==> current density

Wire scanning to measure R and ɛ

- Measure x-ray signal from beam scattering from thin tungsten wires
- Requires at least 3 measurements along the beamline

Plif

Is there any way to decrease the emittance?

This means taking away mean transverse momentum, but keeping mean longitudinal momentum

We'll leave the details for later in the course.

47

Schematic: radiation & ionization cooling

Limited by quantum excitation

University of Ljubljana

FACULTY OF

Transverse cooling:

3) Mix up the particles & repeat