Fundamentals of Accelerators

Lecture - Day 2 - Beam properties

William A. Barletta
Director, US Particle Accelerator School
Dept. of Physics, MIT
Economics Faculty, University of Ljubljana

|| Beams: particle bunches with directed velocity

* Ions - either missing electrons (+) or with extra electrons (-)
* Electrons or positrons
* Plasma - ions plus electrons
* Source techniques depend on type of beam \& on application

1|FElectron sources - thermionic

* Heated metals
$>$ Some electrons have energies above potential barrier

Electrons in a metal obey Fermi statistics

$$
\frac{d n(E)}{d E}=A \sqrt{E} \frac{1}{\left[e^{\left(E-E_{F}\right) / k T}+1\right]}
$$

|l|e Electrons with enough momentum can escape from the metal

Univestity of Lumblyana
FACULTY OF

* Integrating over electrons going in the z direction with

$$
p_{z}^{2} / 2 m>E_{F}+\phi
$$

yields

$$
J_{e}=\int_{-\infty}^{\infty} d p_{x} \int_{-\infty}^{\infty} d p_{y} \int_{p_{z, \text { free }}}^{\infty} d p_{x}\left(2 / h^{3}\right) f(E) v_{z}
$$

some considerable manipulation yields the Richardson-Dushman equation

$$
I \propto A T^{2} \exp \left(\frac{-q \phi}{k_{B} T}\right)
$$

$$
A=1202 \mathrm{~mA} / \mathrm{mm}^{2} \mathrm{~K}^{2}
$$

|liiī
 Brightness of a beam source

* A figure of merit for the performance of a beam source is the brightness

$$
\begin{gathered}
\mathcal{B}=\frac{\text { Beam current }}{\text { Beam area } \circ \text { Beam Divergence }}=\frac{\text { Emissivity }(\mathrm{J})}{\sqrt{\text { Temperature } / \text { mass }}} \\
=\frac{J_{e}}{\left(\sqrt{\frac{k T}{\gamma m_{o} c^{2}}}\right)^{2}}=\frac{J_{e} \gamma}{\left(k T / m_{o} c^{2}\right)}
\end{gathered}
$$

Typically the normalized brightness is quoted for $\gamma=1$

||| Other ways to get electrons over the potential barrier

* Field emission
> Sharp needle enhances electric field

* Photoemission from metals \& semi-conductors
$>$ Photon energy exceeds the work function
$>$ These sources produce beams with high current densities \& low thermal energy
$>$ This is a major topic of research

|l||in Anatomy of an ion source

Electron beams can also be used to ionize the gas or sputter ions from a solid

What properties characterize particle beams?

5 minute exercise

|||| Beams have directed energy

* The beam momentum refers to the average value of p_{z} of the particles

$$
\mathrm{p}_{\text {beam }}=\left\langle\mathrm{p}_{\mathrm{z}}\right\rangle
$$

* The beam energy refers to the mean value of

$$
E_{\text {beam }}=\left[\left\langle p_{z}\right\rangle^{2} c^{2}+m^{2} c^{4}\right]^{1 / 2}
$$

* For highly relativistic beams $\mathrm{pc} \gg \mathrm{mc}^{2}$, therefore

$$
E_{\text {beam }}=\left\langle p_{z}\right\rangle c
$$

||| Measuring beam energy \& energy spread

* Magnetic spectrometer - for good resolution, $\Delta \mathrm{p}$ one needs
$>$ small sample emittance ε, (parallel particle velocities)
$>$ a large beamwidth w in the bending magnet
$>$ a large angle φ

|||| Beam carry a current

$$
\text { Duty factor }=\frac{\sum \tau_{\text {pulse }}}{T}
$$

Iliī
 Measuring the beam current

* Examples:
> Non-intercepting: Wall current monitors, waveguide pick-ups
> Intercepting: Collect the charge; let it drain through a current meter
- Faraday Cup

Iliī
 Collecting the charge: Right \& wrong ways

The Faraday cup

Simple collector

Proper Faraday cup

|l||i] Thermal characteristics of beams

* Beams particles have random (thermal) \perp motion

* Beams must be confined against thermal expansion during transport

|||| Beams have internal (self-forces)

* Space charge forces
> Like charges repel
> Like currents attract
* For a long thin beam

$$
\begin{aligned}
& E_{s p}(V / \mathrm{cm})=\frac{60 I_{\text {beam }}(A)}{R_{\text {beam }}(\mathrm{cm})} \\
& B_{\theta}(\text { gauss })=\frac{I_{\text {beam }}(A)}{5 R_{\text {beam }}(\mathrm{cm})}
\end{aligned}
$$

IIIIT
 Net force due to transverse self-fields

In vacuum:
Beam's transverse self-force scale as $1 / \gamma^{2}$
$>$ Space charge repulsion: $\mathrm{E}_{\text {sp }, \perp} \sim \mathrm{N}_{\text {beam }}$
$>$ Pinch field: $\mathrm{B}_{\theta} \sim \mathrm{I}_{\text {beam }} \sim \mathrm{v}_{\mathrm{z}} \mathrm{N}_{\text {beam }} \sim \mathrm{v}_{\mathrm{z}} \mathrm{E}_{\text {sp }}$
$\therefore \mathrm{F}_{\text {sp }, \perp}=\mathrm{q}\left(\mathrm{E}_{\text {sp }, \perp}+\mathrm{v}_{\mathrm{z}} \times \mathrm{B}_{\theta}\right) \sim\left(1-\mathrm{v}^{2}\right) \mathrm{N}_{\text {beam }} \sim \mathrm{N}_{\text {beam }} / \gamma^{2}$

Beams in collision are not in vacuum (beam-beam effects)

Illiī
 Interaction point fields in the proposed ILC (10 minute exercise)

The International Linear Collider proposes to collide bunches of $\mathrm{e}^{-} \& \mathrm{e}^{+}$with 10 nC each. Each bunch will be $3 \mu \mathrm{~m}$ long \& 10 nm in radius.

When the bunches overlap at the Interaction Point, what selfforces will particles at the edges of the beams experience? How large are the fields?

What consequences might you expect?

|||F Bunch dimensions

For uniform charge distributions
We may use "hard edge values
For gaussian charge distributions
Use rms values $\sigma_{x}, \sigma_{y}, \sigma_{z}$
We will discuss measurements of bunch size and charge distribution later

||| But rms values can be misleading

Gaussian beam

Beam with halo

We need to measure the particle distribution

What is this thing called beam quality? or
 How can one describe the dynamics of a bunch of particles?

||| Coordinate space

Each of N_{b} particles is tracked in ordinary 3-D space

Not too helpful

||| Configuration space:

$6 \mathrm{~N}_{\mathrm{b}}$-dimensional space for N_{b} particles; coordinates $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}}\right), \mathrm{i}=1, \ldots, \mathrm{~N}_{\mathrm{b}}$ The bunch is represented by a single point that moves in time

Useful for Hamiltonian dynamics

|| Configuration space example: One particle in an harmonic potential

But for many problems this description carries much more information than needed :

We don't care about each of 10^{10} individual particles
But seeing both the $x \& p_{x}$ looks useful

||le Option 3: Phase space (gas space in statistical mechanics)

6-dimensional space for N_{b} particles
The $i^{\text {th }}$ particle has coordinates ($\mathrm{x}_{\mathrm{i}}, \mathrm{p}_{\mathrm{i}}$), $\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z}$
The bunch is represented by N_{b} points that move in time

In most cases, the three planes are to very good approximation decoupled $==>$ One can study the particle evolution independently in each planes:

|||| Particles Systems \& Ensembles

* The set of possible states for a system of N particles is referred as an ensemble in statistical mechanics.
* In the statistical approach, particles lose their individuality.
* Properties of the whole system are fully represented by particle density functions $f_{6 D}$ and $f_{2 D}$:

$$
f_{6 D}\left(x, p_{x}, y, p_{y}, z, p_{z}\right) d x d p_{x} d y d p_{y} d z d p_{z} \quad f_{2 D}\left(x_{i}, p_{i}\right) d x_{i} d p_{i} \quad i=1,2,3
$$

where

$$
\int f_{6 D} d x d p_{x} d y d p_{y} d z d p_{z}=N
$$

|||| Longitudinal phase space

* In most accelerators the phase space planes are only weakly coupled.
$>$ Treat the longitudinal plane independently from the transverse one
$>$ Effects of weak coupling can be treated as a perturbation of the uncoupled solution
* In the longitudinal plane, electric fields accelerate the particles
> Use energy as longitudinal variable together with its canonical conjugate time
* Frequently, we use relative energy variation $\delta \&$ relative time τ with respect to a reference particle

$$
\delta=\frac{E-E_{0}}{E_{0}} \quad \tau=t-t_{0}
$$

* According to Liouville, in the presence of Hamiltonian forces, the area occupied by the beam in the longitudinal phase space is conserved

|||| Transverse phase space

* For transverse planes $\left\{x, p_{x}\right\}$ and $\left\{y, p_{y}\right\}$, use a modified phase space where the momentum components are replaced by:

$$
p_{x i} \rightarrow x^{\prime}=\frac{d x}{d s} \quad p_{y i} \rightarrow y^{\prime}=\frac{d y}{d s}
$$

where s is the direction of motion

$$
\begin{aligned}
& p_{i}=\gamma m_{0} \frac{d x_{i}}{d t}=\gamma m_{0} v_{s} \frac{d x_{i}}{d s}=\gamma \beta m_{0} c x_{i}^{\prime} \quad \mathrm{i}=\mathrm{x}, \mathrm{y} \\
& \text { where } \beta=\frac{v_{s}}{c} \quad \text { and } \quad \gamma=\left(1-\beta^{2}\right)^{-1 / 2}
\end{aligned}
$$

Note: x_{i} and p_{i} are canonical conjugate variables while x and $x_{i}{ }^{\prime}$ are not, unless there is no acceleration (γ and β constant)

|||- Consider an ensemble of harmonic oscillators in phase space

Particles stay on their energy contour.
Again the phase area of the ensemble is conserved

\| $\|$ Emittance describes area in phase space of the ensemble of beam particles

Emittance - Phase space volume of beam

$$
\varepsilon^{2} \equiv R^{2}\left(V^{2}-\left(R^{\prime}\right)^{2}\right) / c^{2}
$$

What is the significance of
 (physical interpretation of)
 the term

$\frac{R^{2}\left(R^{\prime}\right)^{2}}{c^{2}}$
?

Iliī

Notice: The phase space area is conserved

$$
\binom{x}{x^{\prime}}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\binom{x_{0}}{x_{0}^{\prime}} \Rightarrow \begin{gathered}
x=x_{0}+L x_{0}^{\prime} \\
x^{\prime}=x_{0}^{\prime}
\end{gathered}
$$

||F| A numerical example: Free expansion of a due due to emittance

$$
R^{2}=R_{o}^{2}+V_{o}^{2} L^{2}=R_{o}^{2}+\frac{\varepsilon^{2}}{R_{o}^{2}} L^{2}
$$

This emittance is the phase space area occupied by the system of particles, divided by π

The rms emittance is a measure of the mean non-directed (thermal) energy of the beam

Iliit
 Why is emittance an important concept

1) Liouville: Under conservative forces phase space evolves like an incompressible fluid $==>$
2) Under linear forces macroscopic (such as focusing magnets) \& $\gamma=$ constant
emittance is an invariant of motion
\qquad
3) Under acceleration

$$
\gamma \varepsilon=\varepsilon_{\mathrm{n}}
$$

is an adiabatic invariant

\||| Emittance conservation with $\boldsymbol{B}_{\boldsymbol{z}}$

* An axial B_{z} field, (e.g.,solenoidal lenses) couples transverse planes
$>$ The 2-D Phase space area occupied by the system in each transverse plane is no longer conserved

* Liouville's theorem still applies to the 4D transverse phase space
> the 4-D hypervolume is an invariant of the motion
* In a frame rotating around the z axis by the Larmor frequency $\omega_{L}=q B_{z} / 2 g m_{0}$, the transverse planes decouple
$>$ The phase space area in each of the planes is conserved again

|||| Emittance during acceleration

* When the beam is accelerated, $\beta \& \gamma$ change
$>x$ and x, are no longer canonical
$>$ Liouville theorem does not apply \& emittance is not invariant

Accelerate by \boldsymbol{E}_{z}

$$
\begin{aligned}
p_{z} & =\sqrt{\frac{T^{2}+2 T m_{0} c^{2}}{T_{0}^{2}+2 T_{0} m_{0} c^{2}}} p_{z 0} \\
T & \equiv \text { kinetic energy }
\end{aligned}
$$

Illiī Then...

$y_{0}^{\prime}=\tan \theta_{0}=\frac{p_{y 0}}{p_{z 0}}=\frac{p_{y 0}}{\beta_{0} \gamma_{0} m_{0} c} \quad y^{\prime}=\tan \theta=\frac{p_{y}}{p_{z}}=\frac{p_{y 0}}{\beta \gamma m_{0} c} \quad \frac{y^{\prime}}{y_{0}^{\prime}}=\frac{\beta_{0} \gamma_{0}}{\beta \gamma}$
In this case $\frac{\varepsilon_{y}}{\varepsilon_{y 0}}=\frac{y^{\prime}}{y_{0}^{\prime}} \quad==>\beta \gamma \varepsilon_{y}=\beta_{0} \gamma_{0} \varepsilon_{y 0}$

* Therefore, the quantity $\beta \gamma \varepsilon$ is invariant during acceleration.
* Define a conserved normalized emittance

$$
\varepsilon_{n i}=\beta \gamma \varepsilon_{i} \quad i=x, y
$$

Acceleration couples the longitudinal plane with the transverse planes
The 6D emittance is still conserved but the transverse ones are not

Iliī
 Nonlinear space-charge fields filament phase space via Landau damping

Consider a cold beam with a Gaussian charge distribution entering a dense plasma

At the beam head the plasma shorts out the E_{r} leaving only the azimuthal B-field

The beam begins to pinch trying to find an equilibrium radius

$2=3.506=00$

Iliit

 Univesity of LimblanaFACULTY OF
ECONOMICS

US PARTICLE AcCELERATOR SCHOOL

\|He Experimental example: Filamentation of longitudinal phase space

Data from CERN PS
The emittance according to Liouville is still conserved
Macroscopic (rms) emittance is not conserved

Illiī
 Non-conservative forces increase emittance (scattering)

||| Measuring the emittance of the beam

$$
\varepsilon^{2}=R^{2}\left(V^{2}-\left(R^{\prime}\right)^{2}\right) / c^{2}
$$

* RMS emittance
$>$ Determine rms values of velocity \& spatial distribution
* Ideally determine distribution functions \& compute rms values
* Destructive and non-destructive diagnostics

\||| Example of pepper-pot diagnostic

* Size of image $==>$ R
* Spread in overall image $==>$ R' $^{\prime}$
* Spread in beamlets $==>$ V
* Intensity of beamlets $==>$ current density

||| Wire scanning to measure R and ε

* Measure x-ray signal from beam scattering from thin tungsten wires
* Requires at least 3 measurements along the beamline

SNS Wire Scanner

Iliī

||| The Concept of Acceptance

Example: Acceptance of a slit

Is there any way to decrease the emittance?

This means taking away mean transverse momentum, but
keeping mean longitudinal momentum

We'll leave the details for later in the course.

IIIIT

Phase-Space Cooling in Any One Dimension

\|\|| Schematic: radiation \& ionization cooling

Transverse cooling:

Passage through dipoles

Acceleration in RF cavity

Limited by quantum excitation

||| Cartoon of transverse stochastic cooling

Van der Meer Nobel prize

Divide (sample) the beam into disks

1) rf pick-up samples centroid of disks
2) Kicker electrode imparts v_{\perp}
to center the disk

3) Mix up the particles \& repeat
