Fundamentals of Accelerators - 2012 Lecture - Day 8

William A. Barletta
Director, US Particle Accelerator School
Dept. of Physics, MIT
Economics Faculty, University of Ljubljana

$\|^{[1]}$ What do we mean by radiation?

* Energy is transmitted by the electromagnetic field to infinity
$>$ Applies in all inertial frames
$>$ Carried by an electromagnetic wave
* Source of the energy
$>$ Motion of charges

IIIIT
 Schematic of electric field

(a) Electric Field Lines

(b) Wavefronts

From: T. Shintake, New Real-time Simulation Technique for Synchrotron and Undulator Radiations, Proc. LINAC 2002, Gyeongju, Korea

|l||ic Static charge

|||P Particle moving in a straight line with constant velocity

|||- Consider the fields from an electron with abrupt accelerations

At $\mathrm{r}=\mathrm{ct}, \exists$ a transition region from one field to the other. At large r , the field in this layer becomes the radiation field.

\| ${ }^{-1}$ Particle moving in a circle at constant speed

Field energy flows to infinity

Iliī Remember that fields add, we can compute radiation from a charge twice as long

The wavelength of the radiation doubles

I\|F All these radiate

Not quantitatively correct because E is a vector; But we can see that the peak field hits the observer twice as often

|||| Current loop: No radiation

Field is static

B field

||PE QED approach: Why do particles radiate when accelerated?

* Charged particles in free space are "surrounded" by virtual photons
> Appear \& disappear \& travel with the particles.

* Acceleration separates the charge from the photons \& "kicks" photons onto the "mass shell"
* Lighter particles have less inertia \& radiate photons more efficiently
* In the field of the dipoles in a synchrotron, charged particles move on a curved trajectory.
> Transverse acceleration generates the synchrotron radiation
Electrons radiate $\sim \alpha \gamma$ photons per radian of turning

|||| Longitudinal vs. transverse acceleration

Radiated power for transverse acceleration increases dramatically with energy
Limits the maximum energy obtainable with a storage ring

Energy lost per turn by electrons

$$
\frac{d U}{d t}=-P_{S R}=-\frac{2 c r_{e}}{3\left(m_{0} c^{2}\right)^{3}} \frac{E^{4}}{\rho^{2}} \quad \Rightarrow \quad U_{0}=\int_{\text {finite } \rho} P_{S R} d t \text { energy lost per turn }
$$

For relativistic electrons:

$$
s=\beta c t \cong c t \Rightarrow d t=\frac{d s}{c} \quad \Longrightarrow \quad U_{0}=\frac{1}{c} \int_{\text {finite } \rho} P_{S R} d s=\frac{2 r_{e} E_{0}^{4}}{3\left(m_{0} c^{2}\right)^{3}} \int_{\text {finite } \rho} \frac{d s}{\rho^{2}}
$$

For dipole magnets with constant radius r (iso-magnetic case):

$$
U_{0}=\frac{4 \pi r_{e}}{3\left(m_{0} c^{2}\right)^{3}} \frac{E_{0}^{4}}{\rho}=\frac{e^{2}}{3 \varepsilon_{o}} \frac{\gamma^{4}}{\rho}
$$

The average radiated power is given by:

$$
\left\langle P_{S R}\right\rangle=\frac{U_{0}}{T_{0}}=\frac{4 \pi c r_{e}}{3\left(m_{0} c^{2}\right)^{3}} \frac{E_{0}^{4}}{\rho L} \quad \text { where } L \equiv \text { ring circumference }
$$

| \mid Energy loss to synchrotron radiation (practical units)

Energy Loss per turn (per particle)

$$
\begin{array}{r}
U_{o, \text { electron }}(k e V)=\frac{e^{2} \gamma^{4}}{3 \varepsilon_{0} \rho}=88.46 \frac{E(G e V)^{4}}{\rho(m)} \\
U_{o, \text { proton }}(\mathrm{keV})=\frac{e^{2} \gamma^{4}}{3 \varepsilon_{0} \rho}=6.03 \frac{E(\mathrm{TeV})^{4}}{\rho(\mathrm{~m})}
\end{array}
$$

Power radiated by a beam of average current I_{b} : to be restored by RF system

$$
N_{t o t}=\frac{I_{b} \cdot T_{r e v}}{e}
$$

Power radiated by a beam of average current I_{b} in a dipole of length L (energy loss per second)

$$
P_{e}(k W)=\frac{e \gamma^{4}}{6 \pi \varepsilon_{0} \rho^{2}} L I_{b}=14.08 \frac{L(m) I(A) E(G e V)^{4}}{\rho(m)^{2}}
$$

|||| Frequency spectrum

* Radiation is emitted in a cone of angle $1 / \gamma$
* Therefore the radiation that sweeps the observer is emitted by the particle during the retarded time period

$$
\Delta t_{r e t} \approx \rho / \gamma c
$$

* Assume that γ and ρ do not change appreciably during $\Delta \mathrm{t}$.
* At the observer

$$
\Delta t_{\text {obs }}=\Delta t_{\text {ret }} \frac{d t_{\text {obs }}}{d t_{r e t}}=\frac{1}{\gamma^{2}} \Delta t_{r e t}
$$

* Therefore the observer sees $\Delta \omega \sim 1 / \Delta t_{\text {obs }}$

$$
\Delta \omega \sim \frac{c}{\rho} \gamma^{3}
$$

||| Critical frequency and critical angle

$$
\frac{d^{3} I}{d \Omega d \omega}=\frac{e^{2}}{16 \pi^{3} \varepsilon_{0} c}\left(\frac{2 \omega \rho}{3 c \gamma^{2}}\right)^{2}\left(1+\gamma^{2} \theta^{2}\right)^{2}\left[K_{2 / 3}^{2}(\xi)+\frac{\gamma^{2} \theta^{2}}{1+\gamma^{2} \theta^{2}} K_{1 / 3}^{2}(\xi)\right]
$$

Properties of the modified Bessel function $==>$ radiation intensity is negligible for $\mathrm{x} \gg 1$

$$
\xi=\frac{\omega \rho}{3 c \gamma^{3}}\left(1+\gamma^{2} \theta^{2}\right)^{3 / 2} \gg 1
$$

Critical frequency $\omega_{c}=\frac{3}{2} \frac{c}{\rho} \gamma^{3}$

$$
\approx \omega_{r e} \gamma^{3}
$$

Critical angle

$$
\theta_{c}=\frac{1}{\gamma}\left(\frac{\omega_{c}}{\omega}\right)^{1 / 3}
$$

For frequencies much larger than the critical frequency and angles much larger than the critical angle the synchrotron radiation emission is negligible

||1| Integrate over all angles ==> Frequency distribution of radiation

The integrated spectral density up to the critical frequency contains half of the total energy radiated, the peak occurs approximately at $0.3 \omega_{c}$
where the critical photon energy is

$$
\varepsilon_{c}=\hbar \omega_{c}=\frac{3}{2} \frac{\hbar c}{\rho} \gamma^{3}
$$

For electrons, the critical energy in practical units is

$$
\varepsilon_{c}[\mathrm{keV}]=2.218 \frac{E[\mathrm{GeV}]^{3}}{\rho[\mathrm{~m}]}=0.665 \cdot E[\mathrm{GeV}]^{2} \cdot B[\mathrm{~T}]
$$

|l||i| Number of photons emitted

* Since the energy lost per turn is

$$
U_{0} \sim \frac{e^{2} \gamma^{4}}{\rho}
$$

* And average energy per photon is the

$$
\left\langle\varepsilon_{\gamma}\right\rangle \approx \frac{1}{3} \varepsilon_{c}=\frac{\hbar \omega_{c}}{3}=\frac{1}{2} \frac{\hbar c}{\rho} \gamma^{3}
$$

* The average number of photons emitted per revolution is

$$
\left\langle n_{\gamma}\right\rangle \approx 2 \pi \alpha_{\text {fine }} \gamma
$$

$|1| \mid \overline{\mid c}$ Comparison of S.R. Characteristics

		LIP200	LHIC	SSC	HIDRA	VLBIC
Beam particle		$\mathrm{e}+\mathrm{e}-$	p	p	p	p
Circumference	km	26.7	26.7	82.9	6.45	95
Beam energy	TeV	0.1	7	20	0.82	50
Beam current	A	0.006	0.54	0.072	0.05	0.125
Critical energy of SR	eV	710^{5}	44	284	0.34	3000
SR power (total)	kW	1.710^{4}	7.5	8.8	310^{-4}	800
Linear power density	W / m	882	0.22	0.14	810^{-5}	4
Desorbing photons	$\mathrm{s}^{-1} \mathrm{~m}^{-1}$	2.410^{16}	110^{17}	6.610^{15}	none	310^{16}

|||- Synchrotron radiation plays a major role in electron storage ring dynamics

- Charged particles radiate when accelerated
- Transverse acceleration induces significant radiation (synchrotron radiation) while longitudinal acceleration generates negligible radiation $\left(1 / \gamma^{2}\right)$.

$$
\frac{d U}{d t}=-P_{S R}=-\frac{2 c r_{e}}{3\left(m_{0} c^{2}\right)^{3}} \frac{E^{4}}{\rho^{2}}
$$

$r_{e} \equiv$ classical electron radius

$$
\alpha_{D}=-\left.\frac{1}{2 T_{0}} \frac{d U}{d E}\right|_{E_{0}}=\frac{1}{2 T_{0}} \frac{d}{d E}\left[\oint P_{S R}\left(E_{0}\right) d t\right]
$$

$\rho \equiv$ trajectory curvature

$$
U_{0}=\int_{\text {finite } \rho} P_{S R} d t \text { energy lost per turn }
$$

$\alpha_{D X}, \alpha_{D Y} \quad$ damping in all planes

$$
\frac{\sigma_{p}}{p_{0}} \text { equilibrium momentum spread and emittances }
$$

|l| RF system restores energy loss

Particles change energy according to the phase of the field in the RF cavity

$$
\Delta E=e V(t)=e V_{o} \sin \left(\omega_{R F} t\right)
$$

For the synchronous particle

$$
\Delta E=U_{0}=e V_{0} \sin \left(\varphi_{s}\right)
$$

Energy loss + dispersion ==>
Longitudinal (synchrotron) oscillations
Longitudinal dynamics are described by

1) ε, energy deviation, w.r.t the synchronous particle
2) τ, time delay w.r.t. the synchronous particle

$$
\varepsilon^{\prime}=\frac{q V_{0}}{L}\left[\sin \left(\phi_{s}+\omega \tau\right)-\sin \phi_{s}\right] \quad \text { and } \quad \tau^{\prime}=-\frac{\alpha_{c}}{E_{s}} \varepsilon
$$

Linearized equations describe elliptical phase space trajectories

$$
\varepsilon^{\prime}=\frac{e}{T_{0}} \frac{d V}{d t} \tau \quad \tau^{\prime}=-\frac{\alpha_{c}}{E_{s}} \varepsilon
$$

$\omega_{s}^{2}=\frac{\alpha_{c} e \dot{V}}{T_{0} E_{0}}$ angular synchrotron frequency

||| Radiation damping of energy fluctuations

The derivative $\frac{d U_{0}}{d E} \quad(>0)$
is responsible for the damping of the longitudinal oscillations

Combine the two equations for (ε, τ) in a single $2^{\text {nd }}$ order differential equation

$$
\frac{d^{2} \varepsilon}{d t^{2}}+\frac{2}{\tau_{s}} \frac{d \varepsilon}{d t}+\omega_{s}^{2} \varepsilon=0 \quad \longrightarrow \quad \varepsilon=A e^{-t / \tau_{s}} \sin \left(\sqrt{\omega_{s}^{2}-\frac{4}{\tau_{s}^{2}}} t+\varphi\right)
$$

$\omega_{s}^{2}=\frac{\alpha e \dot{V}}{T_{0} E_{0}} \quad$ angular synchrotron frequency

$$
\frac{1}{\tau_{s}}=\frac{1}{2 T_{0}} \frac{d U_{0}}{d E} \quad \text { longitudinal damping time }
$$

|l||" Damping times

* The energy damping time \sim the time for beam to radiate its original energy
* Typically

$$
T_{i}=\frac{4 \pi}{C_{\gamma}} \frac{R \rho}{J_{i} E_{o}^{3}}
$$

\not Where $\mathrm{J}_{\mathrm{e}} \approx 2, \mathrm{~J}_{\mathrm{x}} \approx 1, \mathrm{~J}_{\mathrm{y}} \approx 1$ and $C_{\gamma}=8.9 \times 10^{-5}$ meter $-\mathrm{GeV}^{-3}$
$\%$ Note $\Sigma \mathrm{J}_{\mathrm{i}}=4$ (partition theorem)

Iliit

Quantum Nature of Synchrotron Radiation

* Synchrotron radiation induces damping in all planes.
$>$ Collapse of beam to a single point is prevented by the quantum nature of synchrotron radiation
* Photons are randomly emitted in quanta of discrete energy
$>$ Every time a photon is emitted the parent electron "jumps" in energy and angle
* Radiation perturbs excites oscillations in all the planes.
> Oscillations grow until reaching equilibrium balanced by radiation damping.

|||| Energy fluctuations

* Expected $\Delta \mathrm{E}_{\text {quantum }}$ comes from the deviation of $\left\langle\mathscr{S}_{\gamma}\right\rangle$ emitted in one damping time, τ_{E}
$\left.*<\mathscr{S}_{\gamma}\right\rangle=\mathrm{n}_{\gamma} \tau_{\mathrm{E}}$

$$
=\Rightarrow \Delta<\mathscr{H} / \gamma=\left(\mathrm{n}_{\gamma} \tau_{\mathrm{E}}\right)^{1 / 2}
$$

* The mean energy of each quantum $\sim \varepsilon_{\text {crit }}$
$\dot{*}=\Rightarrow \sigma_{\varepsilon}=\varepsilon_{\text {crit }}\left(n_{\gamma} \tau_{\mathrm{E}}\right)^{1 / 2}$
$*$ Note that $\mathrm{n}_{\gamma}=\mathrm{P}_{\gamma} / \varepsilon_{\text {crit }}$ and $\tau_{\mathrm{E}}=\mathrm{E}_{\mathrm{o}} / \mathrm{P}_{\gamma}$

Iliī

* The quantum nature of synchrotron radiation emission generates energy fluctuations

$$
\frac{\Delta E}{E} \approx \frac{\left\langle E_{c r i t} E_{o}\right\rangle^{1 / 2}}{E_{o}} \approx \frac{C_{q} \gamma_{o}^{2}}{J_{\varepsilon} \rho_{c u r v} E_{o}} \sim \frac{\gamma}{\rho}
$$

where C_{q} is the Compton wavelength of the electron

$$
\mathrm{C}_{\mathrm{q}}=3.8 \times 10^{-13} \mathrm{~m}
$$

* Bunch length is set by the momentum compaction \& V_{rf}

$$
\sigma_{z}^{2}=2 \pi\left(\frac{\Delta E}{E}\right) \frac{\alpha_{c} R E_{o}}{e \dot{V}}
$$

* Using a harmonic rf-cavity can produce shorter bunches

||| Schematic of radiation cooling

Transverse cooling:

Passage through dipoles

Acceleration in RF cavity

Limited by quantum excitation

Emittance \& momentum spread are set by beam energy $\&$ lattice functions

- At equilibrium the momentum spread is given by:

$$
\left(\frac{\sigma_{p}}{p_{0}}\right)^{2}=\frac{C_{q} \gamma_{0}^{2}}{J_{S}} \frac{\oint 1 / \rho^{3} d s}{\oint 1 / \rho^{2} d s} \quad \text { where } C_{q}=3.84 \times 10^{-13} \mathrm{~m}
$$

$$
\begin{gathered}
\left(\frac{\sigma_{p}}{p_{0}}\right)^{2}=\frac{C_{q} \gamma_{0}^{2}}{J_{S} \rho} \\
\text { iso - magnetic case }
\end{gathered}
$$

- For the horizontal emittance at equilibrium:

$$
\varepsilon=C_{q} \frac{\gamma_{0}^{2}}{J_{X}} \frac{\oint H / \rho^{3} d s}{\oint 1 / \rho^{2} d s}
$$

$$
\text { where: } \quad H(s)=\beta_{T} D^{\prime 2}+\gamma_{T} D^{2}+2 \alpha_{T} D D^{\prime}
$$

- In the vertical plane, when no vertical bend is present, the synchrotron radiation contribution to the equilibrium vertical emittance is very small
- Vertical emittance is defined by machine imperfections \& nonlinearities that couple the horizontal \& vertical planes:

$$
\varepsilon_{Y}=\frac{\kappa}{\kappa+1} \varepsilon \quad \text { and } \quad \varepsilon_{X}=\frac{1}{\kappa+1} \varepsilon
$$

$$
\text { with } \kappa \equiv \text { coupling factor }
$$

||||ie Equilibrium emittance \& $\Delta \mathbf{E}$

Growth rate due to fluctuations (linear) = exponential damping rate due to radiation
$==>$ equilibrium value of emittance or $\Delta \mathrm{E} \sim \gamma^{2} \theta^{3}$

$$
\varepsilon_{n a t u r a l}=\varepsilon_{1} e^{-2 t / \tau_{d}}+\varepsilon_{e q}\left(1-e^{-2 t / \tau_{d}}\right)
$$

IIIIT
 Quantum lifetime

* At a fixed observation point, transverse particle motion looks sinusoidal

$$
x_{T}=a \sqrt{\beta_{n}} \sin \left(\omega_{\beta_{n}} t+\varphi\right) \quad T=x, y
$$

\star Tunes are chosen in order to avoid resonances.
> At a fixed azimuth, turn-after-turn a particle sweeps all possible positions within the envelope

* Photon emission randomly changes the "invariant" a
$>$ Consequently changes the trajectory envelope as well.
* Cumulative photon emission can bring the envelope beyond acceptance at some azimuth
> The particle is lost
This mechanism is called the transverse quantum lifetime

\|He Several time scales govern particle dynamies in storage rings

* Damping: several ms for electrons, ~infinity for heavier particles
* Synchrotron oscillations: ~ tens of ms
* Revolution period: ~ hundreds of ns to ms
* Betatron oscillations: ~ tens of ns

||||| Interaction of Photons with Matter

Radiography

Diffraction

Compton Scattering

|||| Brightness of a Light Source

* Brightness is a principal characteristic of a particle source
> Density of particle in the 6-D phase space
* Same definition applies to photon beams
$>$ Photons are bosons \& the Pauli exclusion principle does not apply
$>$ Quantum mechanics does not limit achievable photon brightness

$$
\text { Brightness }=\frac{\# \text { of photons in given } \Delta \lambda / \lambda}{\sec , \operatorname{mrad} \theta, \operatorname{mrad} \varphi, \mathrm{mm}^{2}}
$$

Flux $=$ \# of photons in given $\Delta \lambda / \lambda$ sec

$$
F l u x=\frac{d \dot{N}}{d \lambda}=\int \text { Brightness } d S d \Omega
$$

|l|i] Spectral brightness

* Spectral brightness is that portion of the brightness lying within a relative spectral bandwidth $\Delta \omega / \omega$:

|l|in How bright is a synchrotron light source?

||||| Angular distribution of SR

|||| Energy dependence of SR spectrum

$\left\|^{\|}\right\|^{-}$Spectrum available using SR

- See smaller features
- Write smaller patterns
- Elemental and chemical sensitivity

|"E Two ways to produce radiation from highly relativistic electrons

Synchrotron radiation

- 10^{10} brighter than the most powerful (compact) laboratory source
- An x-ray "light bulb" in that it radiates all "colors" (wavelengths, photons energies)

Undulator radiation

- Lasers exist for the IR, visible, UV, VUV, and EUV
- Undulator radiation is quasimonochromatic and highly directional, approximating many of the desired properties of an x-ray laser

\|He Relativistic electrons radiate in a narrow cone

Dipole radiation

Frame of reference moving with electrons

Illiit
 Third generation light sources have long straight sections \& bright e-beams

Modern Synchrotron
Radiation Facility

- Many straight sections for undulators and wigglers
- Brighter radiation for spatially resolved studies (smaller beam more suitable for microscopies)
- Interesting coherence properties at very short wavelengths

|l||| Light sources provide three types of SR

|||| Bend magnet radiation

* Advantages:
> Broad spectral range
> Least expensive
> Most accessible
- Many beamlines
* Disadvantages:
> Limit coverage of hard X-rays
$E_{c}(\mathrm{keV})=0.6650 E_{e}^{2}(\mathrm{GeV}) B(\mathrm{~T})$
> Not as bright at undulator radiation

|l|e For brighter X-rays add the radiation from many small bends

|l||i Undulator radiation: What is $\lambda_{\text {rad }}$?

An electron in the lab oscillating at frequency, f, emits dipole radiation of frequency f

|HE Power in the central cone of undulator radiation

$$
\begin{aligned}
& \lambda_{x}=\frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}+\gamma^{2} \theta^{2}\right) \\
& \bar{P}_{\text {cen }}=\frac{\pi e^{2} I}{\epsilon_{0} \lambda_{u}} \frac{\mathrm{~K}^{2}}{\left(1+\frac{K^{2}}{2}\right)^{2}} f(\mathrm{~K}) \\
& \theta_{\text {cen }}=\frac{1}{\gamma^{*} \sqrt{N}} \\
& \left(\frac{\Delta \lambda}{\lambda}\right)_{\text {cen }}=\frac{1}{N} \\
& K=\frac{e B_{0} \lambda_{u}}{2 \pi m_{0} C} \\
& \gamma^{*}=\gamma / \sqrt{1+\frac{K^{2}}{2}}
\end{aligned}
$$

Iliī

$\lambda=2.5 \mathrm{~nm}$

$1 \mu \mathrm{~m}$ pinhole
25 mm wide CCD at 410 mm

$$
d \cdot \theta=\frac{\lambda}{2 \pi}
$$

Courtesy of Patrick Naulleau, LBNL/Kris Rosfjord, UCB and LBNL

||| Characteristics of wiggler radiation

* For $\mathrm{K} \gg 1$, radiation appears in high harmonics, \& at large horizontal angles $\theta= \pm \mathrm{K} / \gamma$
> One tends to use larger collection angles, which tends to spectrally merge nearby harmonics.
> Continuum at high photon energies, similar bend magnet radiation,
- Increased by 2 N (the number of magnet pole pieces).

||P X-ray beamlines transport the photons to the sample

Observe at sample:

- Absorption spectra
- Photoelectron spectra
- Diffraction
-

Focusing lens (pair of curved mirrors, zone plate lens, etc.)

HRE To get brighter beams we need another great invention

* The Free Electron Laser (John Madey, Stanford, 1976)
* Physics basis: Bunched electrons radiate coherently

* Madey's discovery: the bunching can be self-induced!

Iliii
 Coherent emission ==> Free Electron Laser

See movie manipulates electron beam in longitudinal phase

Electron trajectory through wiggler with two periods

In resonance the electrons always "run uphill" against the E field

Energy lost from the electrons augments the electromagnetic field

|||| Fundamental FEL physics

* Electrons see a potential

$$
V(x) \sim|A|(1-\cos (x+\varphi))
$$

where

$$
A \propto B_{w} \lambda_{w} E_{\text {laser }}
$$

and φ is the phase between the electrons and the laser field

* Imagine an electron part way up the potential well but falling toward the potential minimum at $\theta=0$
$>$ Energy radiated by the electron increases the laser field \& consequently lowers the minimum further.
$>$ Electrons moving up the potential well decrease the laser field

|||| The equations of motion

* The electrons move according to the pendulum equation

$$
\frac{d^{2} x}{d t^{2}}=|A| \sin (x+\varphi)
$$

* The field varies as

$$
\frac{d A}{d t}=-J\left\langle e^{-i x}\right\rangle
$$

where $\quad x=\left(k_{w}-k\right) z-\omega t$

The simulation will show us the bunching and signal growth

||||i| Basic Free Electron Laser Physics

Resonance condition:
Slip one optical period per wiggler period
FEL bunches beam on an optical wavelength at $A L L$ harmonics

Bonifacio et al. NIM A293, Aug. 1990
Gain-bandwidth \& efficiency $\sim \rho$
Gain induces $\Delta \mathrm{E} \sim \rho$

$$
\rho=\frac{1}{\gamma}\left(\frac{a_{w}\left(\omega_{p}\right.}{4 c k_{w}}\right)^{2 / 3} \propto \frac{I^{1 / 3} B^{2 / 3} \lambda_{w}^{4 / 3}}{\gamma}
$$

1) Emittance constraint

Match beam phase area to diffraction limited optical beam
2) Energy spread condition

Keep electrons from debunching
3) Gain must be faster than diffraction

Harmonic Bunching vs. Z

Delta Gamma vs. Z

\| ${ }^{-1}$ FOM 1 from condensed matter studies: Light source brilliance v. photon energy

|||| Near term: x-rays from betatron motion and Thomson scattering

Betatron oscillations:

Strength parameter
Betatron: $a_{\beta}=\pi(2 \gamma)^{1 / 2} r_{\beta} / \lambda_{p}$
Thomson scattering: $\mathrm{a}_{0}=\mathrm{e} / \mathrm{mc}^{2} \mathrm{~A}$

Radiation pulse duration = bunch duration

\|RE Potential Thompson source from all optical accelerator

