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The synchrotron introduces two new ideas:
change Bdipole & change ωrf

 For low energy ions, frev

increases as Eion increases

 ==> Increase ωrf to maintain
synchronism

 For any Eion circumference
must be an integral number
of rf wavelengths

L = h λrf

 h is the harmonic number

R

L = 2πR

frev = 1/τ = v/L
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Ideal closed orbit in the synchrotron

 Beam particles will not have
identical orbital positions &
velocities

 In practice, they will have
transverse oscillatory
motion (betatron
oscillations) set by radial
restoring forces

 An ideal particle has zero
amplitude motion on a
closed orbit along the axis
of the synchrotron
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Ideal closed orbit & synchronous particle

 The ideal synchronous
particle always passes
through the rf-cavity when
the field is at the same phase
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Synchrotron acceleration

 The rf cavity maintains an electric field at ωrf =h ωrev = h 2πv/ L

 Around the ring, describe the field as  E(z,t)=E1(z)E2(t)

 E1(z) is periodic with a period of L

 The particle position is
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Phasing in a linac

 In the linac we must control the rf-phase so that the
particle enters each section at the same phase.

RF 1 RF 2 RF 3

Space for magnets, vacuum pumps and diagnostics

L LL
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Energy gain

  The energy gain for a particle that moves from 0 to L is given by:

 V  is the voltage gain for the particle.
 depends only on the particle trajectory
 includes contributions from all electric fields present

• (RF, space charge, interaction with the vacuum chamber, …)

 Particles can experience energy variations U(E) that depend on energy
 synchrotron radiation emitted by a particle under acceleration

! 

W = q E
0

L

" z,t( ) # dz = q E1
$g / 2

+g / 2
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Energy gain -II

 The synchronism conditions for the synchronous particle
 condition on rf- frequency,
 relation between rf voltage & field ramp rate

 The rate of energy gain for the synchronous particle is

 Its rate of change of momentum is

! 

dEs

dt
=
"sc
L
eV sin#s =

c
h$rf

eV sin#s

! 

dps
dt

= eEo sin"s =
eV
L
sin"s
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Beam rigidity links B, p and ρ

 Recall that  ps = eρBo

 Therefore,

 If the ramp rate is uniform then Vsinφs = constant

 In rapid cycling machines like the Tevatron booster

 Therefore Vsinφs varies sinusoidally

! 

dBo

dt
=
V sin"s

#L

! 

Bo(t) = Bmin +
Bmax " Bmin

2
1" cos2#fcyclet( )
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Phase stability
&

Longitudinal phase space
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Phase stability: Will bunch of finite length
stay together & be accelerated?

Let’s say that the synchronous particle
makes the ith revolution in time: Ti

Will particles close to the synchronous
particle in phase stay close in phase?

Discovered by MacMillan & by Veksler

V
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What do we mean by phase?
Let’s consider non-relativistic ions

From E. J. N. Wilson CAS lecture

ΔΕ

φ

A
B

φs
How does the ellipse
change as B lags
further behind A?
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How does the ellipse change as
B lags further behind A?

RF-bucket

φs

How does the size
of the bucket
change with φs ?
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This behavior can be though of as
phase or longitudinal focusing

 Stationary bucket: A special case obtains when  φs = 0
 The synchronous particle does not change energy
 All phases are trapped

 We can expect an equation of motion in φ of the form

! 

d2"
ds2

+#2 sin" = 0 Pendulum equation
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Length of orbits in a bending magnet

In the sector bending magnet  L > L0 so that a > 0
Higher energy particles will leave the magnet later.
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Definition: Momentum compaction

6

Momentum compaction, α, is the change in the
closed orbit length as a function of momentum.

! 

"L
L

=#
"p
p

! 

" =
Dx

#0

Lo

$ ds

where dispersion, Dx, is the change in the 
closed orbit as a function of energy

ΔE/E = 0

ΔE/E > 0

x

s
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Phase stability: Basics

 Distance along the particle orbit between rf-stations is L

 Time between stations for a particle with velocity v is
τ = L/v

 Then

 Note that

 For circular machines, L can vary with p

 For linacs L is independent of p

! 

"#
#

=
"L
L
$
"v
v

! 

"v
v

=
1
# 2
"p
p

(Exercise)
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Phase stability: Slip factor & transition

 Introduce γt such that

 Define a slip factor

 At some transition energy η changes sign

 Now consider a particle with energy En and phase ψn w.r.t. the rf that
enters station n at time Tn

! 

" #
1
$ t
2 %

1
$ 2

! 

"L
L

=
1
# t
2
"p
p

Station n Station n+1

En
ψn

En+1
ψn+1

V V
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Equation of motion for particle phase

 The phase at station n+1 is

 By definition the synchronous particle stays in phase (mod 2π)
 Refine the phase mod 2π

! 

"n+1 ="n +#rf ($ + %$ )n+1

       ="n +#rf$ n+1 +#rf$ n+1
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US Particle Accelerator School

Equation of motion in energy

! 

Es( )n+1 = Es( )n + eV sin"s

! 

En+1 = En + eV sin"nand in general

Define   ΔE= E - Es

! 

"En+1 = "En + eV (sin#n $ sin#s)

Exercise: Show that

! 

"p
p

=
c 2

v 2
"E
E

Then

! 

"n+1 = "n +
#rf$%c

2

Esv
2 &En+1
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Longitudinal phase space of beam

ΔE/E

φ

Solving the difference equations will show if there are areas of
stability in the (ΔE/E, φ) longitudinal phase space of the beam
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Phase stability, ΔE/E = 0.03, φn=φs

Phase space tracking through 1000 turns in the accelerator
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Phase stability, ΔE/E = 0.05, φn=φs
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Phase stability, ΔE/E = 0.1, φn=φs
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Phase stability, ΔE/E = 0.2, φn=φs

~----------------------~8. BI~----------------------------------------~ 

w 
........ 
W 

RI 
~ -100 
CU 
Q 

1. 0 

Phi 

Lni\l'f!ill} t{LJllbijilllll 



US Particle Accelerator School

Phase stability, ΔE/E = 0.3, φn=φs
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Phase stability, ΔE/E = 0.4, φn=φs
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Phase stability, ΔE/E = 0.405, φn=φs

Regions of stability and instability are sharply divided
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Phase stability, ΔE/E = 0.45, φn=φs
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Phase stability, ΔE/E = 0.5, φn=φs
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Phase stability, ΔE/E = 0.55, φn=φs
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Phase stability, ΔE/E = 0.6, φn=φs
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Physical picture of phase stability

E

φ

E

φ

E

φ

Here we’ve picked the case in which
we are above the transition energy

(typically the case for electrons)
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Consider this case for a proton accelerator

Transition crossing
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Case of favorable transition crossing
in an electron ring

Transition

Synchrotron 
oscillations

φs

Injection
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Frequency of synchrotron oscillations

 Phase-energy oscillations mix particles longitudinally within
the beam

 What is the time scale over which this mixing takes place?
 If ΔE and φ change slowly, approximate difference equations

by differential equations with n as independent variable

E

φ

E

φ

E

φ
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Two first order equations ==>
one second order equation

! 

d"
dn

 =  
#$rf%

& 2Es

 'E

      
d'E
dn

= eV (sin" ( sin"s)

     
d2"
dn2 =

#$rf%

& 2Es

 eV (sin" ( sin"s)

        

V = constant and dEs

dn
 is sufficiently small

and 

yield

if

(Pendulum equation)
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Multiply by dφ/dn & integrate

! 

d2"
dn2# d"

dn
dn =

$%rf&

' 2Es

eV d"
dn# (sin" ( sin"s)dn

1
2
d"
dn
) 

* 
+ 

, 

- 
. 

2

= (
$%rf&

' 2Es

eV (cos" ( sin"s) + const

  

1
2
d"
dn
) 

* 
+ 

, 

- 
. 

2

+
$%rf&

' 2Es

eV (cos" ( sin"s) = const

==>

Rearranging

“K.E.”     +                  “P.E”                      = Total
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“Energy” diagram for cos φ + φ sin φ s

φ

Stable
Unstable

Particle on separatrix
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Stable contours in phase space

! 

d"
dn

 =  
#$rf%

& 2Es

 'EInsert

into

! 

1
2
d"
dn
# 

$ 
% 

& 

' 
( 
2

+
)*rf+

, 2Es

eV (cos" - sin"s) = const

! 

"E( )2 + 2eV # 2Es

$%rf&
(cos' ( sin's) = const

for all parameters held constant
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Now let’s return to the question of frequency

We’ve seen this behavior for the pendulum 

For φσ = 0  we have
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For small phase differences, Δφ = φ−φs ,
we can linearize our equations

! 

! 

d2"
dn2  =  d

2#"
dn2  =  

$%rf&

' 2Es

 eV (sin" ( sin"s)

                         =  
$%rf&

' 2Es

 eV sin("s + #") ( sin"s( )

                         ) 4* 2 $%rf&

4* 2' 2Es

eV cos"s

+ 

, 
- 

. 

/ 
0 #"

- νs
2

(harmonic oscillator in Δφ)

Synchrotron tune

! 

"s =
2#$ s

%
=  &

'(rf

%) 2Es

eV cos*s   =  synchrotron angular frequency
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Choice of stable phase depends on η

 Below transition (γ < γt),
 η < 0, therefore cos φs must be > 0

 Above transition (γ > γt),
 η > 0, therefore cos φs must be < 0

 At transition Ωs = 0; there is no phase stability

 Circular accelerators that must cross transition shift the
synchronous phase at γ > γt

 Linacs have no path length difference, η = 1/γ2 ; particles
stay locked in phase and Ωs = 0

! 

"s = #
$%rf

&' 2Es

eV cos(s
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Two synchronous phases: 
one stable, one unstable

( ) ( )tVtV RFRF !sin!=

t

V
But

1 20 ,S SFor stable unstable! " "> #

1 20 ,S SFor unstable stable! " "< #

For particles with positive charge:
For negative charge particles
all the phases are shifted by π.

Crossing transition during energy
ramping ==> phase jump of ~ π

Transition = energy at
which α changes sign

! 

sin"S =
U0

q ˆ V 
  where Uo is the desired 

energy gain/turn

! 

"#
#

=
"s
L

=$
"p
p

From: D. Robin USPAS lectures
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Consider this case for a proton accelerator

Transition crossing
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Longitudinal phase space

 Absent a (synchro-betatron) coupling between the
transverse & longitudinal motion, longitudinal phase area
of a beam is conserved

 If the longitudinal coordinates are canonical conjugates,
the area is invariant even under acceleration
 Example: E & t

 For Δφ and E, the product of amplitudes (^) varies as 1/τ

  The area of a phase space ellipse will be

! 

"# ˆ $ # ˆ E = " AB
%
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Using the canonical pair, E & Δt, we have

 The area in phase space that contains the particles is called
the longitudinal emittance
 Should be smaller than the bucket area, A 

• Maximum for φ = 0° or 180°

! 

Using    " ˆ # =$rf"t

! 

"   #$ˆ t $ ˆ E = #AB
%rf&

=  constant

  

! 

Amax =
16(v /c)
"rf

eV # Es

2$h%
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This equation for small phase oscillations
represents an harmonic oscillator

 Therefore the phase varies as

 As we saw in the simulations the energy variation, δ = ΔE/E
also varies

 ==> particle trace an ellipse in longitudinal phase space

! 

" = ˆ " cos #t +$( )

! 

" =
ˆ # $

h%0&C
sin $t +'( )

!

!
0>C!

Ch !"
#

0

!$

!!
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Acceleration damps the (δ,φ) phase motion

 With adiabatic damping:

0>C!

!

!
0>D!

( )!"" # +$= % te tD cos! ( )!
"#

$
% & +'

'
= ( te
h

t

C

D sin
!

0

In rings with negligible synchrotron radiation (or with negligible non-
Hamiltonian forces, the invariant longitudinal emittance is conserved.
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Example of adiabatic phase damping

Transition

Synchrotron 
oscillations

φs

Injection
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Momentum acceptance: maximum
momentum of any particle on a stable orbit

ϕϕSS  ≠≠  00 or  or ππ

! 
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''=
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QQF 1
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1

sin"s

=
q ˆ V 
U0

Over voltage factor
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Bunch length

 In electron storage rings, statistical emission of synchrotron radiation photons
generates gaussian bunches

 The over voltage Q is usually large
 Bunch “lives” in the small oscillation region of the bucket.
 Motion in the phase space is elliptical

 For σp/p0 =  rms relative momentum spread, the rms bunch length is

! 

"#S =
c$C

%

" p

p0

=
c 3

2&q
p0'0$C

h f0
2 ˆ V cos (S( )

" p
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ˆ " =
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%
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%
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" 2
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ˆ " &
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2
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How can particles be lost

 Scattering out of the rf-bucket
 Particles scatter off the collective field of the beam
 Large angle particle-particle scattering

 RF-voltage too low for radiation losses

! 

"ETotal = qV +U E( )
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Matching the beam on injection

 Beam injection from another rf-accelerator is typically
“bucket-to-bucket”
 rf systems of machines are phase-locked
 bunches are transferred directly from the buckets of one machine

into the buckets of the other

 This process is efficient for matched beams
 Injected beam hits the middle of the receiving rf-bucket
 Two machines are longitudinally matched.

• They have the same aspect ratio of the longitudinal phase
ellipse

Adapted from Dugan: USPAS lectures - Lecture 11
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Dugan simulations of CESR injection

From Dugan: USPAS lectures - Lecture 11

Example: a matched transfer, first hundred turns 

2 

turns" \) tu r ns: SO 
del E U<lo:!VI 

turns: UHJ 

-1. -1.5 - 1. 5 

- 2 
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Example of mismatched CESR transfer:
phase error 60°

From Dugan: USPAS lectures - Lecture 11

- L 

tur-ns: 40 

• 

-1. 

, 

- 1. ') 

-, , 
del E: IMeV". 

loS 
•• 

t.urns: 100 

• ••• 

~. 5 
p 
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General Envelope Equation
for

Cylindrically Symmetric Beams

Can be generalized for sheet beams and beams
with quadrupole focusing
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Assumptions for the derivation

Divide beam into disks

 Rays are paraxial (v⊥/c << 1)

 Axisymmetry

 No mass spread with a disk

 Small angle scattering

 Uniform Bz

 Disks do not overtake disks
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Particle equations

 Paraxial implies
v⊥/c << 1

and! 

˙ p = q E + v "B( ) + #Fscat

p = $mv

So,   d
dt

($mv)% q E + v "B( ) = #Fscat

Define  w = $mc 2

! 

Ibeam <<  IAlfven =  "# ec
re

=17,000 "# Amps

(EoM)
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Next write the particle equation of motion

 Define the cyclotron frequency & the betatron frequency

 By Maxwell’s equations

 The EoM for a beam particle is

! 

"c =
qBz

#m
   and   "$ =

$cB% & Er

r

! 

Br = "
r
2
#Bz

#z

E$ = "
r
2
#Bz

#t
dBz

dt
% ˙ B = #Bz

#t
+ &c #Bz

#z

  

! 

˙ " 
"

v + ˙ v +#$
2r +#c

) z % v +
1
2"

d
dt

("#c )
) z % r =

1
"m

&Fscat
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Take moments of the EoM

 Three moment equations:
1. v • EoM = Energy equation
2. r • EoM = Virial equation
3. r × EoM = Angular momentum equation

 Next take rms averages of the moment equations
 Yields equations in R, V, L and their derivatives

 Ansatz:  The radial motions of the beam are self similar
 The functional shape of J(r) stays fixes as R changes
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Last steps

 Angular momentum conservation implies

 The energy & virial equations combine to yield

where

! 

P" = #L + #$c
R2

c
=  constant

  

! 

˙ ̇ R +
˙ " 
"

˙ R + U
R

+
#c

2R
4

$
E 2

" 2R3 =
1

" 2R3 d % t 2"R2

m
% & 

' 

( 
) 

* 

+ 
, 

to

t

-
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U = "# ,self
2 r2 = I

IAlfven

and

E 2 = $ 2R2 V 2 % ( ˙ R )2( ) + P&
2

What is Ialfven?



US Particle Accelerator School

Without scattering & in equilibrium

  

! 
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Self-forces Focusing Emittance
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