Iliii

Lecture 5 RF-accelerators: Synchronism conditions

William A. Barletta
Director, US Particle Accelerator School
Dept. of Physics, MIT
Economics Faculty, University of Ljubljana

|l|e The synchrotron introduces two new ideas: change $B_{\text {dipole }} \&$ change $\omega_{\text {rf }}$

* For low energy ions, $f_{\text {rev }}$ increases as $E_{i o n}$ increases
* ==> Increase $\omega_{r f}$ to maintain synchronism
* For any $E_{i o n}$ circumference must be an integral number of rf wavelengths

$$
L=h \lambda_{r f}
$$

$$
\begin{gathered}
L=2 \pi R \\
f_{r e v}=1 / \tau=v / L
\end{gathered}
$$

Iliit
 Ideal closed orbit in the synchrotron

* Beam particles will not have identical orbital positions \& velocities
* In practice, they will have transverse oscillatory motion (betatron oscillations) set by radial restoring forces
* An ideal particle has zero amplitude motion on a closed orbit along the axis of the synchrotron

|||| Ideal closed orbit \& synchronous particle

* The ideal synchronous particle always passes through the rf-cavity when the field is at the same phase

|||| Synchrotron acceleration

* The rf cavity maintains an electric field at $\omega_{r f}=h \omega_{r e v}=h 2 \pi v / L$
* Around the ring, describe the field as $E(z, t)=E_{1}(z) E_{2}(t)$
* $\mathrm{E}_{1}(\mathrm{z})$ is periodic with a period of L

$$
E_{2}(t)=E_{o} \sin \left(\int_{t_{o}}^{t} \omega_{r f} d t+\varphi_{o}\right)
$$

* The particle position is

$$
z(t)=z_{o}+\int_{t_{o}}^{t} v d t
$$

|l| Phasing in a linac

* In the linac we must control the rf-phase so that the particle enters each section at the same phase.

||| Energy gain

* The energy gain for a particle that moves from 0 to L is given by:

$$
W=q \int_{0}^{L} E(z, t) \cdot d z=q \int_{-g / 2}^{+g / 2} E_{1}(z) E_{2}(t) d z=
$$

* $\quad V$ is the voltage gain for the particle. $q E_{t_{o}}(t)=q E_{\cos }^{\sin }\left(\int_{t_{o}}^{t} \omega_{r f} d t+\varphi_{o}\right)=q V$
> depends only on the particle trajectory
> includes contributions from all electric fields present
- (RF, space charge, interaction with the vacuum chamber, ...)
* Particles can experience energy variations $U(E)$ that depend on energy
$>$ synchrotron radiation emitted by a particle under acceleration

$$
\Delta E_{\text {Total }}=q V+U(E)
$$

||||| Energy gain -II

* The synchronism conditions for the synchronous particle
$>$ condition on rf- frequency,
$>$ relation between rf voltage \& field ramp rate
* The rate of energy gain for the synchronous particle is

$$
\frac{d E_{s}}{d t}=\frac{\beta_{s} c}{L} e V \sin \varphi_{s}=\frac{c}{h \lambda_{r f}} e V \sin \varphi_{s}
$$

* Its rate of change of momentum is

$$
\frac{d p_{s}}{d t}=e E_{o} \sin \varphi_{s}=\frac{e V}{L} \sin \varphi_{s}
$$

|||| Beam rigidity links B, p and ρ

* Recall that $\mathrm{p}_{\mathrm{s}}=\mathrm{e} \rho \mathrm{B}_{\mathrm{o}}$
* Therefore,

$$
\frac{d B_{o}}{d t}=\frac{V \sin \varphi_{s}}{\rho L}
$$

* If the ramp rate is uniform then $V \sin \phi_{s}=$ constant
* In rapid cycling machines like the Tevatron booster

$$
B_{o}(t)=B_{\min }+\frac{B_{\max }-B_{\min }}{2}\left(1-\cos 2 \pi f_{c y c l e} t\right)
$$

* Therefore $V \sin \phi_{s}$ varies sinusoidally

Phase stability \& Longitudinal phase space

IIT Phase stability: Will bunch of finite length stay together \& be accelerated?

Let's say that the synchronous particle makes the $i^{\text {th }}$ revolution in time: T_{i}

Will particles close to the synchronous particle in phase stay close in phase?

Discovered by MacMillan \& by Veksler

|
 Let's consider non-relativistic ions

How does the ellipse change as B lags further behind A ?

Iliit
 How does the ellipse change as

 B lags further behind A ?

How does the size of the bucket change with ϕ_{s} ?

phase or longitudinal focusing

* Stationary bucket: A special case obtains when $\phi_{\mathrm{s}}=0$
$>$ The synchronous particle does not change energy
> All phases are trapped

* We can expect an equation of motion in ϕ of the form

$$
\frac{d^{2} \varphi}{d s^{2}}+\Omega^{2} \sin \varphi=0 \quad \text { Pendulum equation }
$$

$\|\|$ Length of orbits in a bending magnet

$$
\rho=\frac{p}{q B_{z}}=\frac{\beta \gamma m_{0} c}{q B_{z}}
$$

$L_{0}=$ Trajectory length between A and B $L=$ Trajectory length between A and C

$$
\frac{L-L_{0}}{L_{0}} \propto \frac{p-p_{0}}{p_{0}} \quad \frac{\Delta L}{L_{0}}=\alpha \frac{\Delta p}{p_{0}} \quad \text { where } \boldsymbol{\alpha} \text { is constant }
$$

$$
\text { For } \gamma \gg 1 \Rightarrow \frac{\Delta L}{L_{0}}=\alpha \frac{\Delta p}{p_{0}} \cong \alpha \frac{\Delta E}{E_{0}}
$$

In the sector bending magnet $L>L_{0}$ so that $a>0$ Higher energy particles will leave the magnet later.

|||| Definition: Momentum compaction

$$
\begin{gathered}
\frac{\Delta L}{L}=\alpha \frac{\Delta p}{p} \\
\alpha=\int_{0}^{L_{0}} \frac{D_{x}}{\rho} d s
\end{gathered}
$$

where dispersion, D_{x}, is the change in the closed orbit as a function of energy

Momentum compaction, α, is the change in the closed orbit length as a function of momentum.

|||| Phase stability: Basics

* Distance along the particle orbit between rf-stations is L
* Time between stations for a particle with velocity v is

$$
\tau=L / v
$$

* Then

$$
\frac{\Delta \tau}{\tau}=\frac{\Delta L}{L}-\frac{\Delta v}{v}
$$

* Note that

$$
\frac{\Delta v}{v}=\frac{1}{\gamma^{2}} \frac{\Delta p}{p}
$$

(Exercise)

* For circular machines, L can vary with p
* For linacs L is independent of p

||| Phase stability: Slip factor \& transition

* Introduce γ_{t} such that

$$
\frac{\Delta L}{L}=\frac{1}{\gamma_{t}^{2}} \frac{\Delta p}{p}
$$

* Define a slip factor

$$
\eta \equiv \frac{1}{\gamma_{t}^{2}}-\frac{1}{\gamma^{2}}
$$

* At some transition energy η changes sign
* Now consider a particle with energy E_{n} and phase ψ_{n} w.r.t. the rf that enters station n at time T_{n}

|||| Equation of motion for particle phase

* The phase at station $n+1$ is

$$
\begin{aligned}
\psi_{n+1} & =\psi_{n}+\omega_{r f}(\tau+\Delta \tau)_{n+1} \\
& =\psi_{n}+\omega_{r f} \tau_{n+1}+\omega_{r f} \tau_{n+1}\left(\frac{\Delta \tau}{\tau}\right)_{n+1}
\end{aligned}
$$

* By definition the synchronous particle stays in phase $(\bmod 2 \pi)$
* Refine the phase $\bmod 2 \pi$

$$
\phi_{n}=\psi_{n}-\omega_{r f} T_{n}
$$

$$
\phi_{n+1}=\phi_{n}+\omega_{r f} \tau_{n+1}\left(\frac{\Delta \tau}{\tau}\right)_{n+1}=\phi_{n}+\eta \underbrace{\omega_{r f} \tau_{n+1}}\left(\frac{\Delta p}{p}\right)_{n+1}
$$

harmonic number $=2 \pi \mathrm{~N}$

|||| Equation of motion in energy

$\left(E_{s}\right)_{n+1}=\left(E_{s}\right)_{n}+e V \sin \phi_{s} \quad$ and in general $\quad E_{n+1}=E_{n}+e V \sin \phi_{n}$

Define $\Delta \mathrm{E}=\mathrm{E}-\mathrm{E}_{\mathrm{s}}$

$$
\Delta E_{n+1}=\Delta E_{n}+e V\left(\sin \phi_{n}-\sin \phi_{s}\right)
$$

Exercise: Show that $\frac{\Delta p}{p}=\frac{c^{2}}{v^{2}} \frac{\Delta E}{E}$
Then

$$
\phi_{n+1}=\phi_{n}+\frac{\omega_{r f} \tau \eta c^{2}}{E_{s} v^{2}} \Delta E_{n+1}
$$

IIIIT Longitudinal phase space of beam

Solving the difference equations will show if there are areas of stability in the $(\Delta E / E, \phi)$ longitudinal phase space of the beam

Iliī
 Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 0 3}, \phi_{n}=\phi_{s}$

Phi

$\left|\left|\left|\left|\mid\right.\right.\right.\right.$ Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 1}, \phi_{n}=\phi_{s}$

$\left|\left|\left|\left|\mid\right.\right.\right.\right.$ Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 2}, \phi_{n}=\phi_{s}$

$\left|\left|\left|\left|\mid\right.\right.\right.\right.$ Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 3}, \boldsymbol{\phi}_{n}=\phi_{s}$

$\left|\left|\left|\left|\mid\right.\right.\right.\right.$ Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 4}, \phi_{n}=\phi_{s}$

$\left\|\left\|\|^{-\mid}\right.\right.$Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 4 0 5}, \phi_{n}=\phi_{s}$

Regions of stability and instability are sharply divided

|l|| Phase stability, $\Delta \mathrm{E} / \mathrm{E}=0.5, \phi_{n}=\phi_{s}$

Phi

$\left\|\|\right.$ Phase stability, $\Delta \mathrm{E} / \mathrm{E}=\mathbf{0 . 5 5}, \phi_{n}=\phi_{s}$

$\left\|\|\right.$ Phase stability, $\Delta \mathrm{E} / \mathrm{E}=0.6, \phi_{n}=\phi_{s}$

|||| Physical picture of phase stability

Here we've picked the case in which we are above the transition energy
(typically the case for electrons)

Illiī
 Consider this case for a proton accelerator

\|He Case of favorable transition crossing in an electron ring

* Phase-energy oscillations mix particles longitudinally within the beam
* What is the time scale over which this mixing takes place?
* If $\Delta \mathrm{E}$ and ϕ change slowly, approximate difference equations by differential equations with n as independent variable

|||e Two first order equations ==> one second order equation

$$
\frac{d \varphi}{d n}=\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} \Delta E
$$

and

$$
\frac{\mathrm{d} \Delta \mathrm{E}}{d n}=e V\left(\sin \varphi-\sin \varphi_{s}\right)
$$

yield

$$
\frac{d^{2} \varphi}{d n^{2}}=\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\sin \varphi-\sin \varphi_{s}\right)
$$

if

$$
V=\text { constant and } \frac{\mathrm{dE}_{\mathrm{s}}}{\mathrm{dn}} \text { is sufficiently small }
$$

||||| Multiply by d ϕ / dn \& integrate

$$
\begin{aligned}
& \quad \int \frac{d^{2} \varphi}{d n^{2}} \frac{d \varphi}{d n} d n=\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V \int \frac{d \varphi}{d n}\left(\sin \varphi-\sin \varphi_{s}\right) d n \\
& =\Rightarrow \quad \frac{1}{2}\left(\frac{d \varphi}{d n}\right)^{2}=-\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\cos \varphi-\sin \varphi_{s}\right)+\operatorname{const} \\
& \\
& \text { Rearranging }
\end{aligned}
$$

$$
\underbrace{\frac{1}{2}\left(\frac{d \varphi}{d n}\right)^{2}}_{\text {"K.E." }}+\underbrace{\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\cos \varphi-\sin \varphi_{s}\right)}_{\text {"P.E" }}=\underbrace{\text { const }}_{=\text {Total }}
$$

Iliit
 "Energy" diagram for $\cos \phi+\phi \sin \phi_{\mathrm{s}}$

||||| Stable contours in phase space

$$
\begin{gathered}
\text { Insert } \frac{d \varphi}{d n}=\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} \Delta E \\
\text { into } \frac{1}{2}\left(\frac{d \varphi}{d n}\right)^{2}+\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\cos \varphi-\sin \varphi_{s}\right)=\mathrm{const} \\
(\Delta E)^{2}+2 e V \frac{\beta^{2} E_{s}}{\eta \omega_{r f} \tau}\left(\cos \varphi-\sin \varphi_{s}\right)=\mathrm{const}
\end{gathered}
$$

for all parameters held constant

For $\phi_{\sigma}=0$ we have

We've seen this behavior for the pendulum

Now let's return to the question of frequency

\||- For small phase differences, $\Delta \phi=\phi-\phi_{s}$, we can linearize our equations

$$
\begin{aligned}
\begin{aligned}
& \frac{d^{2} \varphi}{d n^{2}}=\frac{d^{2} \Delta \varphi}{d n^{2}}=\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\sin \varphi-\sin \varphi_{s}\right) \\
&=\frac{\eta \omega_{r f} \tau}{\beta^{2} E_{s}} e V\left(\sin \left(\varphi_{s}+\Delta \varphi\right)-\sin \varphi_{s}\right) \\
& \approx 4 \pi^{2}(\underbrace{\frac{\eta \omega_{r \tau} \tau}{4 \pi^{2} \beta^{2} E_{s}} e V \cos \varphi_{s}}_{-\mathbf{v}_{\mathbf{s}}{ }^{2}}) \Delta \varphi \\
&\text { oscillatar in } \Delta \varphi)
\end{aligned}
\end{aligned}
$$

$$
\Omega_{s}=\frac{2 \pi v_{s}}{\tau}=\sqrt{-\frac{\eta \omega_{r f}}{\tau \beta^{2} E_{s}} e V \cos \varphi_{s}}=\text { synchrotron angular frequency }
$$

$|1||\mid$ Choice of stable phase depends on η

$$
\Omega_{s}=\sqrt{-\frac{\eta \omega_{r f}}{\tau \beta^{2} E_{s}} e V \cos \varphi_{s}}
$$

* Below transition $\left(\gamma<\gamma_{t}\right)$,
$>\eta<0$, therefore $\cos \phi_{\mathrm{s}}$ must be >0
* Above transition $\left(\gamma>\gamma_{\mathrm{t}}\right)$,
$>\eta>0$, therefore $\cos \phi_{\mathrm{s}}$ must be <0
* At transition $\Omega_{\mathrm{s}}=0$; there is no phase stability
* Circular accelerators that must cross transition shift the synchronous phase at $\gamma>\gamma_{t}$
* Linacs have no path length difference, $\eta=1 / \gamma^{2}$; particles stay locked in phase and $\Omega_{\mathrm{s}}=0$

||PE Two synchronous phases: one stable, one unstable

$$
\sin \varphi_{S}=\frac{U_{0}}{q \hat{V}} \quad \text { where } \mathrm{U}_{\mathrm{o}} \text { is the desired }
$$

But

$$
\frac{\Delta \tau}{\tau}=\frac{\Delta s}{L}=\alpha \frac{\Delta p}{p}
$$

For particles with positive charge:

$$
\begin{aligned}
& \text { For } \alpha>0 \Rightarrow \varphi_{S}^{1} \text { stable, } \quad \varphi_{S}^{2} \text { unstable } \\
& \text { For } \alpha<0 \Rightarrow \varphi_{S}^{1} \text { unstable, } \quad \varphi_{S}^{2} \text { stable }
\end{aligned}
$$

Transition $=$ energy at which α changes sign

Crossing transition during energy ramping $==>$ phase jump of $\sim \pi$

Illiī
 Consider this case for a proton accelerator

||||i Longitudinal phase space

* Absent a (synchro-betatron) coupling between the transverse \& longitudinal motion, longitudinal phase area of a beam is conserved
* If the longitudinal coordinates are canonical conjugates, the area is invariant even under acceleration
> Example: E \& t
$\%$ For $\Delta \phi$ and E , the product of amplitudes (\wedge) varies as $1 / \tau$
* The area of a phase space ellipse will be

$$
\pi \Delta \hat{\phi} \Delta \hat{E}=\pi \frac{A B}{\tau}
$$

IIlī
 Using the canonical pair, $E \& \Delta t$, we have

Using $\quad \Delta \hat{\phi}=\omega_{r f} \Delta t$

$$
\Rightarrow \pi \hat{t} \Delta \hat{E}=\frac{\pi A B}{\omega_{r f} \tau}=\text { constant }
$$

* The area in phase space that contains the particles is called the longitudinal emittance
> Should be smaller than the bucket area, \mathcal{A}
- Maximum for $\phi=0^{\circ}$ or 180°

$$
\mathcal{A}_{\max }=\frac{16(v / c)}{\omega_{r f}} \sqrt{\frac{e V \cdot E_{s}}{2 \pi h \eta}}
$$

|||F This equation for small phase oscillations represents an harmonic oscillator

* Therefore the phase varies as

$$
\varphi=\hat{\varphi} \cos (\Omega t+\psi)
$$

* As we saw in the simulations the energy variation, $\delta=\Delta \mathrm{E} / \mathrm{E}$ also varies

$$
\delta=\frac{\hat{\varphi} \Omega}{h \omega_{0} \eta_{C}} \sin (\Omega t+\psi)
$$

* ==> particle trace an ellipse in longitudinal phase space

||| Acceleration damps the (δ, ϕ) phase motion

* With adiabatic damping:

$$
\varphi=\phi L e^{-\alpha_{D} t} \cos (\Omega t+\psi) \quad \delta=\frac{\phi \Omega \Omega}{h \omega_{0} \eta_{C}} e^{-\alpha_{D} t} \sin (\Omega t+\psi)
$$

In rings with negligible synchrotron radiation (or with negligible nonHamiltonian forces, the invariant longitudinal emittance is conserved.

Iliī
 Example of adiabatic phase damping

Iliit

Momentum acceptance: maximum
 momentum of any particle on a stable orbit

$$
\left(\frac{\Delta p}{p_{0}}\right)_{A C C}^{2}=\frac{2|q| \hat{V}}{\pi h\left|\eta_{C}\right| \beta c p_{0}}
$$

$$
\left(\frac{\Delta p}{p_{0}}\right)_{A C C}^{2}=\frac{F(Q)}{2 Q} \frac{2|q| \hat{V}}{\pi h\left|\eta_{C}\right| \beta c p_{0}}
$$

$$
F(Q)=2\left(\sqrt{Q^{2}-1}-\arccos \frac{1}{Q}\right)
$$

$$
\begin{gathered}
Q=\frac{1}{\sin \varphi_{s}}=\frac{q \hat{V}}{U_{0}} \\
\text { Over voltage factor }
\end{gathered}
$$

|I||| Bunch length

* In electron storage rings, statistical emission of synchrotron radiation photons generates gaussian bunches
* The over voltage Q is usually large
$>$ Bunch "lives" in the small oscillation region of the bucket.
> Motion in the phase space is elliptical

$$
\frac{\varphi^{2}}{\hat{\varphi}^{2}}+\delta^{2}\left(\frac{h \omega_{0} \eta_{C}}{\hat{\varphi} \Omega}\right)^{2}=1 \quad \hat{\varphi}=\frac{h \omega_{0} \eta_{C}}{\Omega} \hat{\delta} \Rightarrow \Delta s=\frac{c \eta_{C}}{\Omega} \frac{\Delta p}{p_{0}}
$$

* For $\sigma_{p} / p_{0}=r m s$ relative momentum spread, the rms bunch length is

$$
\sigma_{\Delta S}=\frac{c \eta_{C}}{\Omega} \frac{\sigma_{p}}{p_{0}}=\sqrt{\frac{c^{3}}{2 \pi q} \frac{p_{0} \beta_{0} \eta_{C}}{h f_{0}^{2} \hat{V} \cos \left(\varphi_{S}\right)}} \frac{\sigma_{p}}{p_{0}}
$$

||| How can particles be lost

\star Scattering out of the rf-bucket
$>$ Particles scatter off the collective field of the beam
$>$ Large angle particle-particle scattering
\star RF-voltage too low for radiation losses

$$
\Delta E_{\text {Total }}=q V+U(E)
$$

|||| Matching the beam on injection

* Beam injection from another rf-accelerator is typically "bucket-to-bucket"
$>$ rf systems of machines are phase-locked
$>$ bunches are transferred directly from the buckets of one machine into the buckets of the other
* This process is efficient for matched beams
> Injected beam hits the middle of the receiving rf-bucket
$>$ Two machines are longitudinally matched.
- They have the same aspect ratio of the longitudinal phase ellipse

|||| Dugan simulations of CESR injection

Example: a matched transfer, first hundred turns

|||E Example of mismatched CESR transfer: phase error 60°

From Dugan: USPAS lectures - Lecture 11

General Envelope Equation for Cylindrically Symmetric Beams

Can be generalized for sheet beams and beams with quadrupole focusing

||l|ie Assumptions for the derivation

Divide beam into disks

* Rays are paraxial ($\mathrm{v}_{\perp} / \mathrm{c} \ll 1$)
* Axisymmetry
* No mass spread with a disk
* Small angle scattering
* Uniform B_{z}
* Disks do not overtake disks

||| Particle equations

$$
\begin{gather*}
\dot{\mathbf{p}}=q(\mathbf{E}+\mathbf{v} \times \mathbf{B})+\delta \mathbf{F}_{\text {scat }} \\
\mathbf{p}=\gamma m \mathbf{v} \\
\text { So, } \frac{\mathrm{d}}{\mathrm{dt}}(\gamma m \mathbf{v})-q(\mathbf{E}+\mathbf{v} \times \mathbf{B})=\delta \mathbf{F}_{s c a t} \tag{EoM}
\end{gather*}
$$

$$
\text { Define } \mathrm{w}=\gamma m c^{2}
$$

* Paraxial implies

$$
\mathrm{v}_{\perp} / \mathrm{c} \ll 1
$$

and

$$
I_{\text {beam }} \ll I_{\text {Alfien }}=\gamma \beta \frac{e c}{r_{e}}=17,000 \gamma \beta \mathrm{Amps}
$$

\|| Next write the particle equation of motion

* Define the cyclotron frequency \& the betatron frequency

$$
\omega_{c}=\frac{q B_{z}}{\gamma m} \quad \text { and } \quad \omega_{\beta}=\frac{\beta c B_{\vartheta}-E_{r}}{r}
$$

* By Maxwell's equations

$$
\begin{aligned}
& B_{r}=-\frac{r}{2} \frac{\partial B_{z}}{\partial z} \\
& E_{\vartheta}=-\frac{r}{2} \frac{\partial B_{z}}{\partial t} \\
& \frac{d B_{z}}{d t} \equiv \dot{B}=\frac{\partial B_{z}}{\partial t}+\beta c \frac{\partial B_{z}}{\partial z}
\end{aligned}
$$

* The EoM for a beam particle is

$$
\frac{\dot{\gamma}}{\gamma} \mathbf{v}+\dot{\mathbf{v}}+\omega_{\beta}^{2} \mathbf{r}+\omega_{\mathbf{c}} \hat{\mathbf{z}} \times \mathbf{v}+\frac{1}{2 \gamma} \frac{d}{d t}\left(\gamma \omega_{c}\right) \overline{\mathbf{z}} \times \mathbf{r}=\frac{1}{\gamma m} \delta \mathbf{F}_{s c a t}
$$

Iliī
 Take moments of the EoM

* Three moment equations:

1. $\mathbf{v} \cdot E o M=$ Energy equation
2. $\mathbf{r} \cdot E \mathrm{EM}=$ Virial equation
3. $\mathbf{r} \times E \mathrm{EM}=$ Angular momentum equation

* Next take rms averages of the moment equations
> Yields equations in $\mathrm{R}, \mathrm{V}, \mathrm{L}$ and their derivatives
* Ansatz: The radial motions of the beam are self similar
$>$ The functional shape of $\mathrm{J}(\mathrm{r})$ stays fixes as R changes

Iliii Lasteseps

* Angular momentum conservation implies

$$
P_{\vartheta}=\gamma L+\gamma \omega_{c} \frac{R^{2}}{c}=\text { constant }
$$

* The energy \& virial equations combine to yield

$$
\ddot{R}+\frac{\dot{\gamma}}{\gamma} \dot{R}+\frac{U}{R}+\frac{\omega_{c}^{2} R}{4}-\frac{\mathcal{E}^{2}}{\gamma^{2} R^{3}}=\frac{1}{\gamma^{2} R^{3}} \int_{t_{o}}^{t} d t^{\prime}\left(\frac{2 \gamma R^{2}}{m} \varepsilon^{\prime}\right)
$$

where

$$
U=\left\langle\omega_{\beta, \text { self }}^{2} r^{2}\right\rangle=I / I_{\text {Alven }} \quad \text { What is } I_{\text {alven }} ?
$$

and

$$
\mathcal{E}^{2}=\gamma^{2} R^{2}\left(V^{2}-(\dot{R})^{2}\right)+P_{\vartheta}^{2}
$$

||| Without scattering \& in equilibrium

$$
\begin{gathered}
\ddot{R}+\frac{\dot{\gamma}}{\gamma} \nless+\frac{U}{R}+\frac{\omega_{c}^{2} R}{4}-\frac{\mathcal{E}^{2}}{\gamma^{2} R^{3}}=\frac{1}{\gamma^{2} R^{3}} \int_{t_{o}}^{t} d t^{\prime}\left(\frac{2 \gamma R^{2}}{m} \varepsilon^{\prime}\right) \\
\therefore \quad \frac{U}{R}+\frac{1 / 4 \omega_{c}^{2} R^{2}}{R}-\frac{\mathcal{E}^{2}}{\gamma^{2} R^{3}}=0 \\
\text { Self-forces Focusing Emittance }
\end{gathered}
$$

More generally, $\quad \frac{U}{R}+\frac{\left\langle\omega_{\beta}^{2} R^{2}\right\rangle}{R}-\frac{\mathcal{E}^{2}}{\gamma^{2} R^{3}}=0$

