USPAS June 2013

Design of Electron Storage and Damping Rings

Homework Problems 2

Lecture 3 Problem

- 1. Consider a simple FODO storage ring.
 - a. Show that, neglecting the focusing effects of the dipoles, the phase advance μ per cell is related to the quadrupole focal length *f* and the distance *L* between quadrupoles by:

$$\cos(\mu)=1-\frac{L^2}{2f^2}.$$

Hint: multiply the matrices for thin quads and drift spaces to construct the transfer matrix for a single cell; then use the fact that the trace of the transfer matrix is $2\cos(\mu)$.

- b. Using the result from part (a), find an expression for the natural chromaticity of the lattice in terms of the phase advance μ .
- c. Sketch a plot showing the natural chromaticity as a function of phase advance per cell.

Lecture 4 Problem

2. A damping ring for a linear collider is designed with 3 km circumference, and for 5 GeV beam energy. The required transverse damping time is 25 ms. The natural (rms) energy spread should be below 1.5×10^{-3} , and the natural normalised emittance should be below 0.8 μ m.

Given that the average beta function in the wiggler is approximately 10 m, find appropriate values for:

- a. the peak field in the wiggler;
- b. the wiggler period;
- c. the total length of the wiggler.

Discuss the possible advantages and disadvantages for the wiggler of using a higher beam energy in the damping ring.