Errors \& Deviations from the design orbit

William A. Barletta
Director, US Particle Accelerator School
Dept. of Physics, MIT
Economics Faculty, University of Ljubljana

* Harmonic oscillator with a position dependent spring constant

$$
x^{\prime \prime}+K(s) x=0 \quad \text { where } K(s)=\frac{e c}{E_{o}} \frac{d B}{d y}=K(s+L)
$$

* Guess a solution of the general form

$$
x=A(s) \cos \left(\varphi(s)+\varphi_{o}\right)
$$

where $A(s) \& \phi(\mathrm{~s})$ are non-linear functions of s with the same periodicity as the lattice

* Rewrite $A(s)$ as in terms of a function β and a constant ε

$$
x=\sqrt{\beta(s) \varepsilon} \cos \left(\varphi(s)+\varphi_{o}\right)
$$

Rewrite $A(s)$ as in terms of a function β and a constant ε

$$
x=\sqrt{\beta(s) \varepsilon} \cos \left(\varphi(s)+\varphi_{o}\right)
$$

then insert into Hill's equation
Solving we get,

$$
\left(\frac{\beta^{\prime \prime}(s)}{2}\right)+K(s) \beta(s)=0 \Rightarrow \frac{\beta^{\prime \prime} \beta}{2}-\frac{\beta^{\prime 2}}{4}+K \beta^{2}=1
$$

|l|e The solutions of the envelope equation ==> Phase space ellipse

* Where $\beta^{\prime}(s)=0$

$$
x^{\prime}=\sqrt{\frac{\varepsilon}{\beta(s)}} \sin \left[\varphi(s)+\varphi_{o}\right]+\left(\frac{\beta^{\prime}(s)}{2}\right) \sqrt{\frac{\varepsilon}{\beta(s) \varepsilon}} \cos \left[\varphi(s)+\varphi_{o}\right]
$$

* The area $\pi \varepsilon$ is a an invariant of the motion

\|PE Particles with different ε have different ellipses

We return to our original picture of the phase space ellipse \& the emittance of a set of (quasi-) harmonic oscillators

We see that ε characterizes the beam while $\beta(\mathrm{s})$ characterizes the machine optics

* $\beta(\mathrm{s})$ sets the physical aperture of the accelerator because the beam size scales as $\sigma_{x}(s)=\sqrt{\varepsilon_{x} \beta_{x}(s)}$

|||| Average description of the motion

* Define an average betatron number for the ring by

$$
\frac{1}{\beta_{n}} \equiv \frac{1}{L} \oint \frac{d s}{\beta(s)}=\frac{2 \pi Q}{L} \quad \text { and } \quad \beta_{n}=2 \pi \circ \lambda_{\beta}
$$

* The "gross radius" R of the ring is defined by

$$
2 \pi \mathrm{R}=\mathrm{L}
$$

* "Good" values for β_{n}
$>$ Small $\beta_{\mathrm{n}}==>$ small vacuum pipe but large tune
$>$ In interaction regions Small β_{n} raises luminosity, \mathcal{L}
$>$ For undulators choose $\beta_{\mathrm{n}} \approx 2 \mathrm{~L}_{\mathrm{u}}$
$>$ Field errors $==>$ displacements $\sim \beta_{\mathrm{n}}$

||||| Beam emittance \& physical aperture

* In electron \& most proton storage rings, the transverse distribution of particles is Gaussian

$$
n(r) r d r d \theta=\frac{1}{2 \pi \sigma^{2}} e^{-r^{2} / 2 \sigma^{2}} d r d \theta \text { for a round beam }
$$

* For a beam in equilibrium, $\mathrm{n}(\mathrm{x})$ is stationary in t at fixed s
* The fraction of particles \mathcal{F} within a radius a is

$$
\begin{gathered}
\mathcal{F}=\int_{0}^{2 \pi} \int_{0}^{a} n r d r d \theta=\int_{0}^{a} \frac{1}{\sigma^{2}} e^{-r^{2} / 2 \sigma^{2}} r d r \Longrightarrow a^{2}=-2 \sigma^{2} \ln (1-\mathcal{F}) \\
\varepsilon=-\frac{2 \pi \sigma^{2}}{\beta} \ln (1-\mathcal{F})
\end{gathered}
$$

Illiī
 Values of \mathcal{F} associated with $\boldsymbol{\varepsilon}$ definitions

$\boldsymbol{\varepsilon}$	$\mathcal{F}(\%)$
σ^{2} / β	Electron community
$\pi \sigma^{2} / \beta$	39
$4 \pi \sigma^{2} / \beta$	87
$6 \pi \sigma^{2} / \beta$	95

Not surprisingly, 12σ is typically chosen as a vacuum pipe radius

* Off-momentum particles undergo betatron oscillations about a new class of closed orbits in circular accelerators
* Orbit displacement arises from dipole fields that establish the ideal trajectory + less effective quadrupole focusing

||F Start with the equation of motion: Define $D(x, s)$ such that $x=D(x, s)\left(\Delta p / p_{o}\right)$

* We have derived

$$
\frac{d^{2} x}{d s^{2}}-\frac{\rho+x}{\rho^{2}}=-\frac{B_{y}}{(B \rho)}\left(1+\frac{x}{\rho}\right)^{2}
$$

* Using $\mathrm{p}=(\mathrm{B} \rho)$

$$
\frac{d^{2} x}{d s^{2}}-\frac{\rho+x}{\rho^{2}}=-\frac{B_{y}}{(B \rho)_{\text {design }}}\left(1+\frac{x}{\rho}\right)^{2} \frac{p_{o}}{p}
$$

* Consider fields that vary linearly with transverse position

$$
B_{y}=B_{o}+B^{\prime} x
$$

* Then neglecting higher order terms in x / ρ we have

$$
\frac{d^{2} x}{d s^{2}}+\left[\frac{1}{\rho^{2}} \frac{2 p_{o}-p}{p}+\frac{B^{\prime}}{(B \rho)_{\text {design }}} \frac{p_{o}}{p}\right] x=\frac{1}{\rho} \frac{p-p_{o}}{p} \equiv \frac{1}{\rho} \frac{\Delta p}{p}
$$

||| Equation for the dispersion function

* Look for a closed periodic solution; $D(x, s+L)=D(x, s)$ of the inhomogeneous Hill's equation

$$
\frac{d^{2} D}{d s^{2}}[\underbrace{\frac{1}{\rho^{2}} \frac{2 p_{o}-p}{p}+\frac{B^{\prime}}{(B \rho)_{\text {decisg }}} \frac{p_{o}}{p}}_{\mathcal{K}(\mathrm{s})}] D=\frac{1}{\rho} \frac{p_{o}}{p}
$$

* For a piecewise linear lattice the general solution is

$$
\binom{D}{D^{\prime}}_{\text {out }}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{D}{D^{\prime}}+\binom{e}{\text { in }} \quad \text { or } \quad\left(\begin{array}{c}
D \\
D^{\prime} \\
1
\end{array}\right)_{\text {out }}=\left(\begin{array}{ccc}
a & b & e \\
c & d & f \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
D \\
D^{\prime} \\
1
\end{array}\right)_{\text {in }}
$$

Illiit

* The solution for the homogeneous portion is the same as that for x and x,
* The values of M_{13} and M_{23} for ranges of K are

\boldsymbol{K}	\boldsymbol{e}	\boldsymbol{f}
$\boldsymbol{<}$	$\frac{e}{p\|K\|} B_{o}[\cosh (\sqrt{K \mid} l)-1]$	$\frac{e}{p \sqrt{\mid K}} B_{o}[\sinh (\sqrt{\|K\|} l)]$
$\mathbf{0}$	$\frac{1}{2} \frac{e B_{o} l}{p} l$	$\frac{e B_{o} l}{p}$
$\mathbf{> 0}$	$\frac{e}{p K} B_{o}[1-\cos (\sqrt{K} l)]$	$\frac{e}{p \sqrt{K}} B_{o}[\sin (\sqrt{K} l)]$

|l|| What is the shape of D ?

* In the drifts $\mathrm{D}^{\prime \prime}=0$
$>$ D has a constant slope
* For focusing quads, $\mathrm{K}>0$
$>\mathrm{D}$ is sinusoidal
* For defocusing quads, $\mathrm{K}<0$
$>$ D grows (decays) exponentially
* In dipoles, $\mathrm{K}_{\mathrm{x}}(\mathrm{s})=\mathrm{G}^{2}$
$>D$ is sinusoidal section "attracted to" $D=1 / \mathrm{G}=\rho$

|l||| SPEAR-I dispersion

Illī

* We want to start with zero dispersion and end with zero dispersion
* This requires

$$
\begin{aligned}
& I_{a}=\int_{0}^{s} a(s) \frac{d s}{\rho(s)}=0 \\
& \text { and } \\
& I_{b}=\int_{0}^{s} b(s) \frac{d s}{\rho(s)}=0
\end{aligned}
$$

* In the DBA this requires adjusting the center quad so that the phase advance through the dipoles is π

|||| Momentum compaction

* Consider bending by sector magnets
* The change in the circumference is

$$
\Delta C=\oint\left(\rho+D \frac{\Delta p}{p_{o}}\right) d \theta-\oint \rho d \theta
$$

* Therefore

$$
\frac{\Delta C}{C}=\frac{\oint(D / \rho) d s}{\oint d s} \frac{\Delta p}{p_{o}}=\left\langle\frac{D}{\rho}\right\rangle \frac{\Delta p}{p_{o}} \quad \text { or } \quad \alpha \equiv\left\langle\frac{D}{\rho}\right\rangle=\frac{1}{\gamma_{t}}
$$

* For simple lattices $\gamma_{t} \sim Q \sim$ number of cells of an alternating gradient lattice

Iliition
 Total beam size due to betatron oscillations plus momentum spread

* Displacement from the ideal trajectory of a particle
$>$ First term $=$ increment to closed orbit from off-momentum particles
$>$ Second term $=$ free oscillation about the closed orbit

$$
x_{\text {total }}=D \frac{\Delta p}{p_{o}}+x_{\beta}
$$

* Average the square of $x_{\text {total }}$ to obtain the rms displacement

$$
\sigma_{x}^{2}(s)=\frac{\varepsilon \beta(s)}{\pi}+D^{2}(s)\left\langle\left(\frac{\Delta p}{p_{o}}\right)^{2}\right\rangle
$$

* \therefore in a collider, design for $D=0$ in the interaction region

||||| Chromatic aberrations

* The focusing strength of a quadrupole depends on the momentum of the particle

$$
1 / f \propto 1 / p
$$

* ==> Off-momentum particles oscillate around a chromatic closed orbit NOT the design orbit
* Deviation from the design orbit varies linearly as

$$
x_{D}=D(s) \frac{\Delta p}{p}
$$

* The tune depends on the momentum deviation
$>$ Expressed as the chromaticity ξ

$$
Q_{x}^{\prime}=\frac{\Delta Q}{\Delta p / p_{o}} \text { or } \xi_{\mathrm{x}}=\frac{\Delta Q_{\mathrm{x}} / Q_{x}}{\Delta p / p_{o}} \quad Q_{y}^{\prime}=\frac{\Delta Q}{\Delta p / p_{o}} \text { or } \xi_{\mathrm{x}}=\frac{\Delta Q_{y} / Q_{y}}{\Delta p / p_{o}}
$$

Illiī
 Example of chromatic aberation

Illī
 Chromatic aberration in muon collider ring

1 turn uncorrected

1 turn: S1=0.1 S2=-0.1

From: Alex Bogacz and Hisham Sayed presentation urticle Accelerator school

|l||| Chromatic closed orbit

* The uncorrected, "natural" chromaticity is negative \& can lead to a large tune spread and consequent instabilities
> Correction with sextupole magnets

$$
\xi_{\text {natural }}=-\frac{1}{4 \pi} \oint \beta(s) K(s) d s \approx-1.3 Q
$$

IIITiT

* Steer the beam to a different mean radius \& different momentum by changing rf frequency, f_{a}, \& measure Q

$$
\Delta f_{a}=f_{a} \eta \frac{\Delta p}{p} \quad \text { and } \quad \Delta r=D_{a r} \frac{\Delta p}{p}
$$

* Since

$$
\begin{aligned}
& \Delta Q=\xi \frac{\Delta p}{p} \\
& \therefore \xi=f_{a} \eta \frac{d Q}{d f_{a}}
\end{aligned}
$$

|||| Chromaticity correction with sextupoles

|||| Sextupole correctors

* Placing sextupoles where the betatron function is large, allows weak sextupoles to have a large effect
* Sextupoles near F quadrupoles where β_{x} is large affect mainly horizontal chromaticity
* Sextupoles near D quadrupoles where β_{y} is large affect mainly horizontal chromaticity

|||| Coupling

* Rotated quadrupoles \& misalignments can couple the motion in the horizontal \& vertical planes
* A small rotation can be regarded a normal quadrupole followed by a weaker quad rotated by 45°

$$
B_{s, x}=\frac{\partial B_{x}}{\partial y} x \quad \text { and } \quad B_{s, y}=\frac{\partial B_{y}}{\partial x} y
$$

$>$ This leads to a vertical deflection due to a horizontal displacement
$*$ Without such effects $D_{y}=0$

* In electron rings vertical emittance is caused mainly by coupling or vertical dispersion

Field errors \& Resonances

Illī
 Integer Resonances

* Imperfections in dipole guide fields perturb the particle orbits
$>$ Can be caused by off-axis quadrupoles
: ==> Unbounded displacement if the perturbation is periodic
* The motion is periodic when

$$
m Q_{x}+n Q_{y}=r
$$

$M, n, \& r$ are small integers

|||| Effect of steering errors

* The design orbit $(\mathrm{x}=0)$ is no longer a possible trajectory
* Small errors => a new closed orbit for particles of the nominal energy
* Say that a single magnet at $s=0$ causes an orbit error θ

$$
\theta=\Delta B l /(B \rho)
$$

* Determine the new closed orbit

US Particle Accelerator School

\|RE After the steering impulse, the particle oscillates about the design orbit

* At $\mathrm{s}=0^{+}$, the orbit is specified by $\left(\mathrm{x}_{\mathrm{o}}, \mathrm{x}_{\mathrm{o}}^{\prime}\right)$
* Propagate this around the ring to $\mathrm{s}=0^{-}$using the transport matrix \& close the orbit using ($0, \theta$)

$$
\mathbf{M}\binom{x_{o}}{x_{o}^{\prime}}+\binom{0}{\theta}=\binom{x_{o}}{x_{o}^{\prime}}
$$

specifies the new closed orbit

$$
\binom{x_{o}}{x_{o}^{\prime}}=(\mathbf{I}-\mathbf{M})^{-1}\binom{0}{\theta}
$$

|l|| Recast this equation

$*$ As $(\Delta \phi)_{\text {ring }}=Q, \mathbf{M}$ can be written as

$$
\mathbf{M}_{\text {ring }}=\left(\begin{array}{cc}
\cos (2 \pi Q)+\alpha \sin (2 \pi Q), & \beta \sin (2 \pi Q) \\
-\gamma \sin (2 \pi Q), & \cos (2 \pi Q)-\alpha \sin (2 \pi Q)
\end{array}\right)
$$

* After some manipulation (see Syphers or Sands)

$$
x(s)=\frac{\theta \beta^{1 / 2}(s) \beta^{1 / 2}(0)}{2 \sin \pi Q} \cos (\phi(s)-\pi Q)
$$

* As Q approaches an integer value, the orbit will grow without bound

Illii

* The operating point of the lattice in the horizontal and vertical planes is displayed on the tune diagram
* The lines satisfy

$$
m Q_{x}+n Q_{y}=r
$$

$M, n, \& r$ are small integers

* Operating on such a line leads to resonant perturbation of the beam
* Smaller $m, n, \& r=>$ stronger resonances

Example:
 Quadrupole displacement in the Tevatron

* Say a quad is horizontally displaced by an amount δ
$>$ Steering error, $\Delta \mathrm{x}^{\prime}=\delta / F$ where F is the focal length of the quad
* For Tevatron quads $F \approx 25 \mathrm{~m} \& Q=19.4$. Say we can align the quads to the center line by an rms value 0.5 mm
> For $\delta=0.5 \mathrm{~mm}==>\theta=20 \mu \mathrm{rad}$
$>$ If $\beta=100 \mathrm{~m}$ at the quad, the maximum closed orbit distortion is

$$
\Delta \hat{x}_{\text {quad }}=\frac{20 \mu \mathrm{rad} \cdot 100 \mathrm{~m}}{2 \sin (19.4 \pi)}=1 \mathrm{~mm}
$$

* The Tevatron has ~ 100 quadrupoles. By superposition

$$
\langle\Delta \hat{x}\rangle=N_{\text {quad }}^{1 / 2} \Delta \hat{x}_{\text {quad }}=10 \mathrm{~mm} \text { for our example }
$$

Steering correctors are essential!

Illiī

* Let $\quad K_{\text {actual }}(s)=K_{\text {design }}(s)+k(s)$
where $\mathrm{k}(\mathrm{s})$ is a small imperfection

$$
k(s)=>\text { change in } \beta(s)=>\Delta Q
$$

* Consider k to be non-zero in a small region Δ at $s=0$ $==>$ angular kick $\Delta y^{\prime} \sim y$

$$
\frac{\Delta y^{\prime}}{\Delta s}=k y
$$

|le Sinusoidal approximation of betatron motion

* Before $\mathrm{s}=0^{-}$

$$
\begin{equation*}
y=b \cos \frac{s}{\beta_{n}} \tag{2}
\end{equation*}
$$

* At $\mathrm{s}=0^{+}$the new (perturbed) trajectory will be

$$
y=(b+\Delta b) \cos \left(\frac{s}{\beta_{n}}+\Delta \phi\right)
$$

where

$$
\frac{b+\Delta b}{\beta_{n}} \sin \phi=\Delta y^{\prime}
$$

|||| Sinusoidal approximation cont'd

* If Δy^{\prime} is small, then Δb and $\Delta \phi$ will also be small

$$
==>\quad \Delta \phi \approx \frac{\beta_{n} \Delta y^{\prime}}{b}
$$

* Total phase shift is $2 \pi \mathrm{Q}$; the tune shift is

$$
\text { (1) \& (2) } \quad \Rightarrow \quad \Delta \phi \approx \beta_{n} k \Delta s \propto \text { phase shift }
$$

* Principle effect of the gradient error is to shift the phase by $\Delta \phi$

$$
\Delta Q \approx-\frac{\Delta \phi}{2 \pi}=-\beta_{n} \frac{k \Delta s}{2 \pi}
$$

The total phase advanced has been reduced

* The calculation assumes a special case: $\phi_{o}=0$
$>$ The particle arrives at $\mathrm{s}=0$ at the maximum of its oscillation
* More generally for $\phi_{o} \neq 0$
$>$ The shift is reduced by a factor $\cos ^{2} \phi_{o}$
$>$ The shift depends on the local value of β
* On successive turns the value of ϕ will change
$\star \therefore$ the cumulative tune shift is reduced by $<\cos ^{2} \phi_{o}>=1 / 2$
* = $=>$

$$
\Delta Q=-\frac{1}{4 \pi} \beta(s)(k \Delta s)
$$

IIITiTis

* For distributed errors

$$
\Delta Q=-\frac{1}{4 \pi} \oint \beta(s) k(s) d s
$$

* Note that $\beta \sim K^{-1 / 2}=\Rightarrow Q \propto 1 / \beta \propto K^{1 / 2}$
$\therefore \Delta Q \propto k \beta==>\Delta Q / Q \propto k \beta^{2} \propto k / K$ (relative gradient error)
* Or $\Delta Q \sim Q\left(\Delta B^{\prime} / B^{\prime}\right)$
* Machines will large Q are more susceptible to resonant beam loss

Therefore, prefer lower tune

|||] Tune shifts \& spreads

* Causes of tune shifts
$>$ Field errors
> Intensity dependent forces
- Space charge
- Beam-beam effects
* Causes of tune spread
$>$ Dispersion
> Non-linear fields
- Sextupoles
> Intensity dependent forces
- Space charge
- Beam-beam effects

IIIIT
 Example for the RHIC collider

|l| Stopbands in the tune diagram

Think of the resonance lines as having a width that depends on the strength of the effective field error

Also the operation point has a finite extent

Resonances drive the beam into the machine aperture

Illiī In real rings, aperture may not be limited by the vacuum chamber size

* Resonances can capture particles with large amplitude orbits \& bring them in collision with the vacuum chamber
==> "virtual" or dynamic aperture for the machine
* Strongly non-linearity ==> numerical evaluation
* Momentum acceptance is limited by the size of the RF bucket or by the dynamic aperture for the offmomentum particles.
> In dispersive regions off-energy particles can hit the dynamic aperture of the ring even if Δp is still within the limits of the
 RF acceptance

