
US Particle Accelerator School

 Errors & Deviations from the design orbit

William A. Barletta
Director, US Particle Accelerator School

Dept. of Physics, MIT
Economics Faculty, University of Ljubljana



US Particle Accelerator School

Equations of motion has the general form:

 Harmonic oscillator with a position dependent spring
constant

 Guess a solution of the general form

where A(s) & φ(s) are non-linear functions of s with the
same periodicity as the lattice

 Rewrite A(s) as in terms of a function ß and a constant ε
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" " x + K(s)x = 0
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Solving Hill’s equation ==>
Envelope equation for the beam
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Rewrite A(s) as in terms of a function ß and a constant ε

then insert into Hill’s equation

Solving we get,! 

x = "(s)# cos $(s) +$o( )
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The solutions of the envelope equation ==>
Phase space ellipse

 Where βʹ′(s) = 0

 The area πε is a an invariant of the motion
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Particles with different ε
have different ellipses

We return to our original picture of the phase space ellipse &
the emittance of a set of (quasi-) harmonic oscillators
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We see that ε characterizes the beam
while β(s) characterizes the machine optics

 β(s) sets the physical aperture of the accelerator because
the beam size scales as

! 

" x (s) = #x$x (s)
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Average description of the motion

 Define an average betatron number for the ring by

 The “gross radius” R of the ring is defined by

2π R = L

 “Good” values for βn
  Small βn ==> small vacuum pipe but large tune
 In interaction regions Small βn raises luminosity, L
  For undulators choose βn ≈ 2 Lu

 Field errors ==> displacements ~ βn
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Beam emittance & physical aperture

 In electron & most proton storage rings, the transverse
distribution of particles is Gaussian

 For a beam in equilibrium, n(x) is stationary in t at fixed s

 The fraction of particles F within a radius a is! 
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Values of F associated with ε definitions

956πσ2/β

874πσ2/β

39πσ2/β

15σ2/β

F(%)ε

Electron community

Proton community

Proton community

Not surprisingly, 12 σ is typically chosen as a vacuum pipe radius
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Momentum dispersion function of the lattice

 Off-momentum particles undergo betatron oscillations
about a new class of closed orbits in circular accelerators

 Orbit displacement arises from dipole fields that establish
the ideal trajectory + less effective quadrupole focusing
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Start with the equation of motion:
Define D(x,s) such that  x = D(x,s) (Δp/po)

 We have derived

 Using p = (Bρ)

 Consider fields that vary linearly with transverse position

 Then neglecting higher order terms in x/ρ we have
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Equation for the dispersion function

 Look for a closed periodic solution; D(x,s+L) = D(x,s) of
the inhomogeneous Hill’s equation

 For a piecewise linear lattice the general solution is
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General forms of the dispersion function

 The solution for the homogeneous portion is the same as
that for x and x’

 The values of M13 and M23 for ranges of K are
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What is the shape of D?

 In the drifts  D'' = 0
 D has a constant slope

 For focusing quads, K > 0
 D is sinusoidal

 For defocusing quads, K < 0
 D grows (decays) exponentially

 In dipoles, Kx(s) = G2

 D is sinusoidal section “attracted to” D = 1/G = ρ
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SPEAR-I dispersion

From: Sands SLAC - pub 121
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The condition for the achromatic cell

  We want to start with zero dispersion and end with zero
dispersion

 This requires

 In the DBA this requires adjusting the center quad so that
the phase advance through the dipoles is π
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Momentum compaction

 Consider bending by sector magnets

 The change in the circumference is

 Therefore

 For simple lattices γt ~ Q ~ number of cells of an
alternating gradient lattice
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Total beam size due to betatron oscillations
plus momentum spread

 Displacement from the ideal trajectory of a particle
 First term = increment to closed orbit from off-momentum particles
 Second term =  free oscillation about the closed orbit

 Average the square of xtotal to obtain the rms displacement

 ∴ in a collider, design for D = 0 in the interaction region
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 The focusing strength of a quadrupole depends on the momentum of the
particle

 ==> Off-momentum particles oscillate around a chromatic closed orbit NOT
the design orbit

 Deviation from the design orbit varies linearly as

 The tune depends on the momentum deviation
 Expressed as the chromaticity ξ

Chromatic aberrations
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Example of chromatic aberation
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Chromatic aberration in muon collider ring
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y y’

From: Alex Bogacz and Hisham Sayed presentation
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Chromatic closed orbit

 The uncorrected, “natural” chromaticity is negative & can lead to
a large tune spread and consequent instabilities
 Correction with sextupole magnets

Design
orbit

Design
orbit

On-momentum
particle trajectory Off-momentum particle

trajectory

Chromatic closed
orbit

! 

"natural = #
1
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%(s)K(s)ds & #1.3 Q'
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Measurement of chromaticity

 Steer the beam to a different mean radius & different
momentum by changing rf frequency, fa, & measure Q

 Since
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Chromaticity correction with sextupoles

From: Wiedemann, Ch. 7, v.1
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Sextupole correctors

 Placing sextupoles where the betatron function is large,
allows weak sextupoles to have a large effect

 Sextupoles near F quadrupoles where ßx is large affect
mainly horizontal chromaticity

 Sextupoles near D quadrupoles where ßy is large affect
mainly horizontal chromaticity



US Particle Accelerator School

Coupling

 Rotated quadrupoles & misalignments can couple the
motion in the horizontal & vertical planes

 A small rotation can be regarded a normal quadrupole
followed by a weaker quad rotated by 45°

 This leads to a vertical deflection due to a horizontal displacement

 Without such effects Dy = 0

 In electron rings vertical emittance is caused mainly by
coupling or vertical dispersion
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"Bx
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Field errors & Resonances
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Integer Resonances

 Imperfections in dipole guide
fields perturb the particle orbits
 Can be caused by off-axis

quadrupoles

 ==> Unbounded displacement if
the perturbation is periodic

 The motion is periodic when
mQx + nQy = r

M, n, & r are small integers
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Effect of steering errors

 The design orbit (x = 0) is no longer a possible trajectory

 Small errors => a new closed orbit for particles of the
nominal energy

 Say that a single magnet at s = 0 causes an orbit error θ

 Determine the new closed orbit

! 

" = #Bl (B$)
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After the steering impulse,
the particle oscillates about the design orbit

 At s = 0+, the orbit is specified by (xo, x'o)

 Propagate this around the ring to s = 0- using the transport
matrix & close the orbit using ( 0, θ )

specifies the new closed orbit
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Recast this equation

 As (Δφ)ring = Q, M can be written as

 After some manipulation (see Syphers or Sands)

 As Q approaches an integer value,  the orbit will grow
without bound
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The tune diagram

 The operating point of the lattice in the horizontal and
vertical planes is displayed on the tune diagram

 The lines satisfy

      mQx + nQy = r

M, n, & r are small integers

 Operating on such a line
leads to resonant perturbation
of the beam

 Smaller m, n, & r =>
stronger resonances
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Example:
Quadrupole displacement in the Tevatron

 Say a quad is horizontally displaced by an amount δ
 Steering error,  Δx' = δ/F where F is the focal length of the quad

 For Tevatron quads F ≈ 25 m & Q = 19.4. Say we can
align the quads to the center line by an rms value 0.5 mm
 For δ = 0.5 mm ==> θ = 20 µrad
 If β = 100 m at the quad, the maximum closed orbit distortion is

 The Tevatron has ~ 100 quadrupoles.  By superposition

! 

"ˆ x quad =
20 µrad #100 m
2 sin (19.4 $)

=  1 mm

! 

"ˆ x = Nquad
1/ 2 "ˆ x quad  =  10 mm for our example

Steering correctors are essential!
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Effect of field gradient errors

 Let  Kactual(s) = Kdesign(s) +k(s)

where k(s) is a small imperfection

k(s) => change in β(s) => ΔQ

 Consider k to be non-zero in a small region Δ at s = 0

==> angular kick Δy' ~ y

! 

" # y 
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= ky        (1)
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Sinusoidal approximation of
betatron motion

 Before s = 0 
-

 At s = 0 
+  the new (perturbed) trajectory will be

where
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Sinusoidal approximation cont’d

 If Δy' is small, then Δb and Δφ  will also be small

==>

 Total phase shift is 2πQ; the tune shift is

 Principle effect of the gradient error is to shift the phase by
Δφ

! 

"# $
%n" & y 
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! 

(1) & (2)   "    #$ % &nk#s  '   phase shift
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The total phase advanced has been reduced
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This result overestimates the shift

 The calculation assumes a special case: φο = 0
 The particle arrives at s = 0 at the maximum of its oscillation

 More generally for φο ≠  0
 The shift is reduced by a factor cos2φο
 The shift depends on the local value of β

 On successive turns the value of φ will change

 ∴ the cumulative tune shift is reduced by < cos2φο > = 1/2

 ==>

! 

"Q = #
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Gradient errors => half-integer resonances

 For distributed errors

 Note that β ~ K-1/2 ==> Q ∝ 1/β ∝ K1/2

 ∴ ΔQ ∝ kβ  ==> ΔQ/Q ∝ k β2 ∝ k/K  (relative gradient error)

 Or  ΔQ ~ Q (ΔB'/ B')

 Machines will large Q are more susceptible to resonant
beam loss

Therefore, prefer lower tune

! 

"Q = #
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Tune shifts & spreads

 Causes of tune shifts
 Field errors
 Intensity dependent forces

• Space charge
• Beam-beam effects

 Causes of tune spread
 Dispersion
 Non-linear fields

• Sextupoles
 Intensity dependent forces

• Space charge
• Beam-beam effects

Spread & 
shifted tune
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Example for the RHIC collider
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Stopbands in the tune diagram

Think of the resonance
lines as having a width
that depends on the
strength of the effective
field error

Also the operation point
has a finite extent

Resonances drive the
beam into the machine
aperture
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In real rings, aperture may not be limited
by the vacuum chamber size

 Resonances can capture particles with large amplitude
orbits & bring them in collision with the vacuum chamber

==> “virtual” or dynamic aperture for the machine

Cornell
ILC-DR

 Strongly non-linearity  ==>
numerical evaluation

 Momentum acceptance is limited
by the size of the RF bucket or by
the dynamic aperture for the off-
momentum particles.
 In dispersive regions off-energy

particles can hit the dynamic
aperture of the ring even if Δp
is still within the limits of the
RF acceptance


