

Effects of Errors

- dipole errors
- quadrupole errors
- resonance

Closed orbit distortion

 Dipole kicks can cause particle's trajectory deviate away from the designed orbit

 S_0

BPM

- Dipole error
- Quadrupole misalignment
- Assuming a circular ring with a single dipole error, closed orbit then becomes:

$$\binom{x(s)}{x'(s)} = M(s,s_0)[M(s_0,s)\binom{x(s)}{x'(s)} + \binom{0}{\theta}]$$

Closed orbit: single dipole error

Let's first solve the closed orbit at the location where the dipole error is

$$\binom{x(s_0)}{x'(s_0)} = M(s_0 + C, s_0) \binom{x(s_0)}{x'(s_0)} + \binom{0}{\theta}$$

$$x(s_0) = \beta_x(s_0) \frac{\theta}{2\sin \pi Q_x} \cos \pi Q_x$$

$$x(s) = \sqrt{\beta_x(s_0)\beta_x(s)} \frac{\theta}{2\sin\pi Q_x} \cos[\psi(s,s_0) - \pi Q_x]$$

The closed orbit distortion reaches its maximum at the opposite side of the dipole error location

Closed orbit distortion

In the case of multiple dipole errors distributed around the ring. The closed orbit is

$$x(s) = \sqrt{\beta_x(s)} \sum_i \sqrt{\beta_x(s_i)} \frac{\theta_i}{2\sin\pi Q_x} \cos[\psi(s_i, s_0) - \pi Q_x]$$

• Amplitude of the closed orbit distortion is inversely proportion to $sin \pi Q_{x,y}$

- No stable orbit if tune is integer!

Measure closed orbit

Distribute beam position monitors around ring. X orbit 10 5 orbit [mm] 0 s [n] -5 -10Lattice: Yellow Beam <== Ring οποταφαιαταια ο οπορτιφατικατού ο αποτφατιτρού ο σαταταφαιατού ο αποταφαία το μ 1000 2000 3000 0 hbpms magnets hsteen vsteer vbpms Y orbit 10 5 orbit [mm] 0 1000 -10

Control closed orbit

minimized the closed orbit distortion.

- Large closed orbit distortions cause limitation on the physical aperture
- Need dipole correctors and beam position monitors distributed around the ring
 - Assuming we have m beam position monitors and n dipole correctors, the response at each beam position monitor from the n correctors is:

$$x_k = \sqrt{\beta_{x,k}} \sum_{k=1}^n \sqrt{\beta_{x,i}} \frac{\theta_i}{2\sin \pi Q_x} \cos[\psi(s_i, s_0) - \pi Q_x]$$

Control closed orbit

• Or,

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = (M) \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{pmatrix}$$

To cancel the closed orbit measured at all the bpms, the correctors are then

$$\begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{pmatrix} = \left(M^{-1} \right) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$

Quadrupole errors

- Misalignment of quadrupoles
 - dipole-like error: kx
 - results in closed orbit distortion
- Gradient error:
 - Cause betatron tune shift
 - induce beta function deviation: beta beat

Tune change due to a single gradient error

• Suppose a quadrupole has an error in its gradient, i.e.

$$M = \begin{pmatrix} 1 & 0 \\ -kl & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ -(kl + \Delta kl) & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -kl & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\Delta kl & 1 \end{pmatrix}$$
$$M(s+C,s) = \begin{pmatrix} (\cos 2\pi Q_{x0} + \alpha_{x,s_0} \sin 2\pi Q_{x0}) & \beta_{x,s0} \sin 2\pi Q_{x0} \\ -\frac{1 + \alpha_{x,s_0}^2}{\beta_{x,s_0}} \sin 2\pi Q_{x0} & (\cos 2\pi Q_{x0} - \alpha_{x,s_0} \sin 2\pi Q_{x0}) \\ -\Delta kl & 1 \end{pmatrix}$$

$$\cos 2\pi (Q_{x0} + \delta Q_x) = \frac{1}{2} Tr(M(s+C,s)) \qquad \delta Q_x = \frac{1}{4\pi} \beta_{x,s_0} \Delta kl$$

Tune shift due to multiple gradient errors

 In a circular ring with a multipole gradient errors, the tune shift is

$$\delta Q_x = \frac{1}{4\pi} \sum_i \beta_{x,s_i} \Delta k_i l$$

Beta beat

• In a circular ring with a gradient error at s0, the tune shift is

$$M(s+C,s) = M(s,s_0) \begin{pmatrix} 1 & 0 \\ -\Delta kl & 1 \end{pmatrix} M(s_0,s)$$

$$\beta_{x}(s)\sin 2\pi Q_{x} = \beta_{x0}(s)\sin 2\pi Q_{x0} + \Delta kl \frac{\beta_{x0}(s)\beta_{x0}(s_{0})}{2} [\cos(2\pi Q_{x0} + 2|\Delta \psi_{s,s0}|)]$$

$$\frac{\Delta\beta}{\beta} = \Delta k l \frac{\beta_{x0}(s_0)}{2\sin 2\pi Q_{x0}} \cos(2\pi Q_{x0} + 2|\Delta\psi_{s,s0}|)$$

Unstable betatron motion if tune is half integer!

Beta beat

• In a circular ring with multiple gradient errors,

$$\frac{\Delta\beta}{\beta}(s) = \frac{\sqrt{\beta_{x0}(s)}}{2\sin 2\pi Q_{x0}} \sum_{i} \sqrt{\beta_{x0}(s_i)} \Delta k_i l \cos(2\pi Q_{x0} + 2|\Delta\psi_{s,si}|)$$

Unstable betatron motion if tune is half integer!

Beta beat wave varies twice of betatron tune around the ring

Resonance condition

• Tune change due to a single quadrupole error

$$\cos[2\pi(Q_{x0} + \delta Q_x)] = \cos 2\pi Q_{x0} - \frac{1}{2}\beta_{x,s_0}\Delta kl\sin 2\pi Q_{x0}$$

If $Q_{x0} = (2k+1)\frac{1}{2} + \varepsilon$, the above equation becomes

$$\cos[2\pi(Q_{x0} + \delta Q_x)] \approx 1 + \frac{1}{2}\beta_{x,s_0}\Delta kl\varepsilon$$

and Qx can become a complex number which means the betatron motion can become unstable

Resonance

Integer resonance

Half Integer resonance

Transverse Resonances

- Linear coupling
- resonances mechanisms
- Resonance conditions
- 3rd order resonances

Source of linear coupling

• Skew quadrupole

$$B_x = -qx; \quad B_y = qy$$

$$x'' + K_x(s)^2 x = -\frac{B_y l}{B\rho} = -qy$$

$$y'' + K_y(s)^2 y = \frac{B_x \iota}{B\rho} = -qx$$

Coupled harmonic oscillator

Equation of motion

$$x'' + \omega_x^2 x = q^2 y$$
 $y'' + \omega_y^2 y = q^2 x$

Assume solutions are:

$$x = Ae^{i\omega t} \quad y = Be^{i\omega t}$$

$$-\omega^{2}A + \omega_{x}^{2}A = q^{2}B \quad -\omega^{2}B + \omega_{y}^{2}B = q^{2}A$$

$$(\omega_{x}^{2} - \omega^{2})(\omega_{y}^{2} - \omega^{2}) = q^{4}$$

$$\omega^{2} = \frac{\omega_{x}^{2} + \omega_{y}^{2} \pm \sqrt{(\omega_{x}^{2} - \omega_{y}^{2})^{2} + 4q^{4}}}{2}$$

Coupled harmonic oscillator

$$\omega^{2} = \frac{\omega_{x}^{2} + \omega_{y}^{2} \pm \sqrt{(\omega_{x}^{2} - \omega_{y}^{2})^{2} + 4q^{4}}}{2}$$

- The two frequencies of the harmonic oscillator are functions of the two wy unperturbed frequencies
- When the unperturbed frequencies are the same, a minimum frequency difference

$$\Delta \omega \approx \frac{q^2}{\omega}$$

Example of a Coupled harmonic oscillator

Resonance mechanism

- Errors in the accelerators perturbs beam motions
- Coherent buildup of perturbations

Driven harmonic oscillator

Equation of motion

$$\frac{d^2 x(t)}{dt^2} + \omega^2 x(t) = f(t) = \sum_{m=0}^{\infty} C_m e^{i\omega_m t}$$

For
$$f(t) = C_m e^{i\omega_m t}$$

$$\frac{d^2 x(t)}{dt^2} + \omega^2 x(t) = C_m e^{i\omega_m t}$$

• Assume solution is like $x(t) = Ae^{i\omega t} + A_m e^{i\omega_m t}$

$$A_m = \frac{C_m}{\omega^2 - \omega_m^2}$$

Resonance response

Response of the harmonic oscillator to a periodic force is

Betatron oscillation

Equation of motion

$$x''+K(s)x = 0 K(s+L_p) = K(s)$$
$$x = A\sqrt{\beta_x}\cos(\psi + \chi)$$

 In the presence of field errors including mis-aglinments, the equation of motion then becomes

$$x'' + K(s)x = -\frac{\Delta B_y}{B\rho}$$

where

$$\Delta B_{y} = B_{0}(b_{0} + b_{1}x + b_{2}x^{2} + \dots)$$

Dipole error quadrupole error sextu

sextupole error

Floquet Transformation

• Re-define () as:

 $x''+K(s)x = 0 \quad K(s+L_p) = K(s)$ $\zeta(s) = x(s)/\sqrt{\beta_x(s)} \quad \phi(s) = \psi(s)/Q_x \quad or \ \phi' = 1/(Q_x\beta_x)$

 In the presence of field errors including mis-aglinments, the equation of motion then becomes

$$\frac{d^2\zeta}{d\phi^2} + Q_x^2\zeta = -Q_x^2\beta_x^{3/2}\frac{\Delta B_y}{B\rho}$$

where

$$\frac{d^{2}\zeta}{d\phi^{2}} + Q_{x}^{2}\zeta = -\frac{Q_{x}^{2}B_{0}}{B\rho} \Big[b_{0} + \beta_{x}b_{1}\zeta + \beta_{x}^{2}b_{2}\zeta^{2} + \dots \Big]$$

Resonance contd

• For each n:

$$\frac{d^2\zeta}{d\phi^2} + Q_x^2\zeta = -\frac{Q_x^2\beta_x^{3/2}}{B\rho}\beta_x^n b_n\zeta^n$$

The solution of the homogenous differential equation

$$\frac{d^2\zeta}{d\phi^2} + Q_x^2\zeta = 0$$

is $\zeta = e^{-iQ_x\phi}$. Let's put this back to the right side of the inhomogeneous equation of motion, one then gets

$$\frac{d^2\zeta}{d\phi^2} + Q_x^2\zeta = -\frac{Q_x^2\beta_x^{3/2}}{B\rho}\beta_x^n b_n e^{-inQ_x\phi}$$

Resonance contd

for a circular machine, beta functions and lattices are periodic.
 One can then expand

$$\beta_x^{(n+3)/2} b_n = \sum_k c_k e^{ik\phi}$$

Now, the inhomogeneous equation of motion then becomes

$$\frac{d^2\zeta}{d\phi^2} + Q_x^2\zeta = -\frac{Q_x^2}{B\rho}\sum_k e^{i(k-nQ_x)\phi}$$

Compare this with the driven harmonic oscillator

$$\frac{d^2 x(t)}{dt^2} + \omega^2 x(t) = f(t) = \sum_{m=0}^{\infty} C_m e^{i\omega_m t}$$

Resonance contd

$$\frac{d^2\zeta}{d\phi^2} + Q_x^2\zeta = -\frac{Q_x^2}{B\rho}\sum_k e^{i(k-nQ_x)\phi}$$

• This means the motion becomes unstable(on resonance) when

$$Q_x = \pm (k - nQ_x)$$

- i.e. resonance location at, here k and n both are integers $(n+1)Q_x = k$ and $(n-1)Q_x = k$
- If k=0, no resonance condition
- Any error of x^n can drive a (n+1)th order of resonance
- Driving term is then given

$$C_{k,n} = \frac{1}{(B\rho)} \frac{1}{2\pi Q_X} \oint \beta^{(n+1)/2}(s) b_n(s) e^{-ik\phi} \, ds$$

Resonance condition

In the absence of coupling between horizontal and vertical

$$k = (n \pm 1)Q_{x,y}$$

error	n	
dipole	0	Qx,y=integer
quadrupole	I	2Qx,y=integer
Sextupole	2	3Qx,y=integer
Octupole	3	4Qx,y=integer

In the presence of coupling between horizontal and vertical

$$MQ_x + NQ_y = k$$

Tune diagram

- the resonance strength decreases as the order goes higher
- the working point should be located in an area between resonances there are enough tune space to accommodate tune spread of the beam

Phase space: 3rd order resonance

Phase space: 4th order resonance

Phase space: 5th order resonance

