Effects of Errors

- dipole errors
- quadrupole errors
- resonance

Closed orbit distortion

- Dipole kicks can cause particle's trajectory deviate away from the designed orbit
- Dipole error
- Quadrupole misalignment
- Assuming a circular ring with a single dipole error, closed orbit then becomes:

$$
\binom{x(s)}{x^{\prime}(s)}=M\left(s, s_{0}\right)\left[M\left(s_{0}, s\right)\binom{x(s)}{x^{\prime}(s)}+\binom{0}{\theta}\right]
$$

Closed orbit: single dipole error

- Let's first solve the closed orbit at the location where the dipole error is

$$
\begin{aligned}
\binom{x\left(s_{0}\right)}{x^{\prime}\left(s_{0}\right)} & =M\left(s_{0}+C, s_{0}\right)\binom{x\left(s_{0}\right)}{x^{\prime}\left(s_{0}\right)}+\binom{0}{\theta} \\
x\left(s_{0}\right) & =\beta_{x}\left(s_{0}\right) \frac{\theta}{2 \sin \pi Q_{x}} \cos \pi Q_{x}
\end{aligned}
$$

$$
x(s)=\sqrt{\beta_{x}\left(s_{0}\right) \beta_{x}(s)} \frac{\theta}{2 \sin \pi Q_{x}} \cos \left[\psi\left(s, s_{0}\right)-\pi Q_{x}\right]
$$

The closed orbit distortion reaches its maximum at the opposite side of the dipole error location

Closed orbit distortion

- In the case of multiple dipole errors distributed around the ring. The closed orbit is

$$
x(s)=\sqrt{\beta_{x}(s)} \sum_{i} \sqrt{\beta_{x}\left(s_{i}\right)} \frac{\theta_{i}}{2 \sin \pi Q_{x}} \cos \left[\psi\left(s_{i}, s_{0}\right)-\pi Q_{x}\right]
$$

- Amplitude of the closed orbit distortion is inversely proportion to $\sin \pi Q_{x, y}$
- No stable orbit if tune is integer!

Measure closed orbit

- Distribute beam position monitors around ring.
x orbit

Bean $<==$ Latticez Yellos
Y orbit

Control closed orbit

- minimized the closed orbit distortion.
- Large closed orbit distortions cause limitation on the physical aperture
- Need dipole correctors and beam position monitors distributed around the ring
- Assuming we have m beam position monitors and n dipole correctors, the response at each beam position monitor from the n correctors is:

$$
x_{k}=\sqrt{\beta_{x, k}} \sum_{k=1}^{n} \sqrt{\beta_{x, i}} \frac{\theta_{i}}{2 \sin \pi Q_{x}} \cos \left[\psi\left(s_{i}, s_{0}\right)-\pi Q_{x}\right]
$$

Control closed orbit

- Or,

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)=(M)\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{n}
\end{array}\right)
$$

To cancel the closed orbit measured at all the bpms, the correctors are then

$$
\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{n}
\end{array}\right)=\left(M^{-1}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)
$$

Quadrupole errors

- Misalignment of quadrupoles
- dipole-like error: kx
- results in closed orbit distortion
- Gradient error:
- Cause betatron tune shift
- induce beta function deviation: beta beat

Tune change due to a single gradient error

- Suppose a quadrupole has an error in its gradient, i.e.

$$
\begin{gathered}
M=\left(\begin{array}{cc}
1 & 0 \\
-k l & 1
\end{array}\right) \approx\left(\begin{array}{cc}
1 & 0 \\
-(k l+\Delta k l) & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-k l & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\Delta k l & 1
\end{array}\right) \\
M(s+C, s)=\left(\begin{array}{cc}
\left(\cos 2 \pi Q_{x 0}+\alpha_{x, s_{0}} \sin 2 \pi Q_{x 0}\right) & \beta_{x, s 0} \sin 2 \pi Q_{x 0} \\
-\frac{1+\alpha_{x, s_{0}}^{2}}{\beta_{x, s_{0}}} \sin 2 \pi Q_{x 0} & \left(\cos 2 \pi Q_{x 0}-\alpha_{x, s_{0}} \sin 2 \pi Q_{x 0}\right)
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\Delta k l & 1
\end{array}\right) \\
\cos 2 \pi\left(Q_{x 0}+\delta Q_{x}\right)=\frac{1}{2} \operatorname{Tr}(M(s+C, s)) \quad \delta Q_{x}=\frac{1}{4 \pi} \beta_{x, s_{0}} \Delta k l
\end{gathered}
$$

Tune shift due to multiple gradient errors

- In a circular ring with a multipole gradient errors, the tune shift is

$$
\delta Q_{x}=\frac{1}{4 \pi} \sum_{i} \beta_{x, s_{i}} \Delta k_{i} l
$$

Beta beat

- In a circular ring with a gradient error at s 0 , the tune shift is

$$
\begin{gathered}
M(s+C, s)=M\left(s, s_{0}\right)\left(\begin{array}{cc}
1 & 0 \\
-\Delta k l & 1
\end{array}\right) M\left(s_{0}, s\right) \\
\beta_{x}(s) \sin 2 \pi Q_{x}=\beta_{x 0}(s) \sin 2 \pi Q_{x 0}+ \\
\Delta k l \frac{\beta_{x 0}(s) \beta_{x 0}\left(s_{0}\right)}{2}\left[\cos \left(2 \pi Q_{x 0}+2\left|\Delta \psi_{s, s 0}\right|\right)\right]
\end{gathered}
$$

$$
\frac{\Delta \beta}{\beta}=\Delta k l \frac{\beta_{x 0}\left(s_{0}\right)}{2 \sin 2 \pi Q_{x 0}} \cos \left(2 \pi Q_{x 0}+2 \mathrm{I} \Delta \psi_{s, s 0} \mathrm{I}\right)
$$

Unstable betatron motion if tune is half integer!

Beta beat

- In a circular ring with multiple gradient errors,

$$
\frac{\Delta \beta}{\beta}(s)=\frac{\sqrt{\beta_{x 0}(s)}}{2 \sin 2 \pi Q_{x 0}} \sum_{i} \sqrt{\beta_{x 0}\left(s_{i}\right)} \Delta k_{i} l \cos \left(2 \pi Q_{x 0}+2 \mid \Delta \psi_{s, s i} \mathrm{I}\right)
$$

Unstable betatron motion if tune is half integer!

Beta beat wave varies twice of betatron tune around the ring

Resonance condition

- Tune change due to a single quadrupole error

$$
\cos \left[2 \pi\left(Q_{x 0}+\delta Q_{x}\right)\right]=\cos 2 \pi Q_{x 0}-\frac{1}{2} \beta_{x, s_{0}} \Delta k l \sin 2 \pi Q_{x 0}
$$

- If $Q_{x 0}=(2 k+1) \frac{1}{2}+\varepsilon$, the above equation becomes

$$
\cos \left[2 \pi\left(Q_{x 0}+\delta Q_{x}\right)\right] \approx 1+\frac{1}{2} \beta_{x, s_{0}} \Delta k l \varepsilon
$$

and Qx can become a complex number which means the betatron motion can become unstable

Resonance

Integer resonance

Half Integer resonance

Transverse Resonances

- Linear coupling
- resonances mechanisms
- Resonance conditions
- $3^{\text {rd }}$ order resonances

Source of linear coupling

- Skew quadrupole

$$
\begin{aligned}
& B_{x}=-q x ; \quad B_{y}=q y \\
& x^{\prime \prime}+K_{x}(s)^{2} x=-\frac{B_{y} l}{B \rho}=-q y \\
& y^{\prime \prime}+K_{y}(s)^{2} y=\frac{B_{x} l}{B \rho}=-q x
\end{aligned}
$$

Coupled harmonic oscillator

- Equation of motion

$$
x^{\prime \prime}+\omega_{x}^{2} x=q^{2} y \quad y^{\prime \prime}+\omega_{y}^{2} y=q^{2} x
$$

- Assume solutions are:

$$
\begin{gathered}
x=A e^{i \omega t} \quad y=B e^{i \omega t} \\
-\omega^{2} A+\omega_{x}^{2} A=q^{2} B \quad-\omega^{2} B+\omega_{y}^{2} B=q^{2} A \\
\left(\omega_{x}^{2}-\omega^{2}\right)\left(\omega_{y}^{2}-\omega^{2}\right)=q^{4}
\end{gathered}
$$

$$
\omega^{2}=\frac{\omega_{x}^{2}+\omega_{y}^{2} \pm \sqrt{\left(\omega_{x}^{2}-\omega_{y}^{2}\right)^{2}+4 q^{4}}}{2}
$$

Coupled harmonic oscillator

$$
\omega^{2}=\frac{\omega_{x}^{2}+\omega_{y}^{2} \pm \sqrt{\left(\omega_{x}^{2}-\omega_{y}^{2}\right)^{2}+4 q^{4}}}{2}
$$

- The two frequencies of the harmonic oscillator are functions of the two unperturbed frequencies
- When the unperturbed frequencies are the same, a minimum frequency difference

$$
\Delta \omega \approx \frac{q^{2}}{\omega}
$$

Example of a Coupled harmonic oscillator

Resonance mechanism

- Errors in the accelerators perturbs beam motions
- Coherent buildup of perturbations

Driven harmonic oscillator

- Equation of motion

$$
\frac{d^{2} x(t)}{d t^{2}}+\omega^{2} x(t)=f(t)=\sum_{m=0} C_{m} e^{i \omega_{m} t}
$$

- for $f(t)=C_{m} e^{i \omega_{m} t}$

$$
\frac{d^{2} x(t)}{d t^{2}}+\omega^{2} x(t)=C_{m} e^{i \omega_{m} t}
$$

- Assume solution is like $x(t)=A e^{i \omega t}+A_{m} e^{i \omega_{m} t}$

$$
A_{m}=\frac{C_{m}}{\omega^{2}-\omega_{m}^{2}}
$$

Resonance response

- Response of the harmonic oscillator to a periodic force is

Betatron oscillation

- Equation of motion

$$
\begin{aligned}
& x^{\prime \prime}+K(s) x=0 \quad K\left(s+L_{p}\right)=K(s) \\
& x=A \sqrt{\beta_{x}} \cos (\psi+\chi)
\end{aligned}
$$

- In the presence of field errors including mis-aglinments, the equation of motion then becomes
where

$$
x^{\prime \prime}+K(s) x=-\frac{\Delta B_{y}}{B \rho}
$$

$$
\Delta B_{y}=B_{0}\left(b_{0}+b_{1} x+b_{2} x^{2}+\ldots\right)
$$

Dipole error quadrupole error sextupole error

Floquet Transformation

- Re-define () as:

$$
\begin{aligned}
& x^{\prime \prime}+K(s) x=0 \quad K\left(s+L_{p}\right)=K(s) \\
& \zeta(s)=x(s) / \sqrt{\beta_{x}(s)} \quad \phi(s)=\psi(s) / Q_{x} \quad \text { or } \phi^{\prime}=1 /\left(Q_{x} \beta_{x}\right)
\end{aligned}
$$

- In the presence of field errors including mis-aglinments, the equation of motion then becomes
where

$$
\frac{d^{2} \zeta}{d \phi^{2}}+Q_{x}^{2} \zeta=-Q_{x}^{2} \beta_{x}^{3 / 2} \frac{\Delta B_{y}}{B \rho}
$$

$$
\frac{d^{2} \zeta}{d \phi^{2}}+Q_{x}^{2} \zeta=-\frac{Q_{x}^{2} B_{0}}{B \rho}\left[b_{0}+\beta_{x} b_{1} \zeta+\beta_{x}^{2} b_{2} \zeta^{2}+\ldots\right]
$$

Resonance contd

- For each n :

$$
\frac{d^{2} \zeta}{d \phi^{2}}+Q_{x}^{2} \zeta=-\frac{Q_{x}^{2} \beta_{x}^{3 / 2}}{B \rho} \beta_{x}^{n} b_{n} \zeta^{n}
$$

The solution of the homogenous differential equation

$$
\frac{d^{2} \zeta}{d \phi^{2}}+Q_{x}^{2} \zeta=0
$$

is $\zeta=e^{-i Q_{x} \phi}$. Let's put this back to the right side of the inhomogeneous equation of motion, one then gets

$$
\frac{d^{2} \zeta}{d \phi^{2}}+Q_{x}^{2} \zeta=-\frac{Q_{x}^{2} \beta_{x}^{3 / 2}}{B \rho} \beta_{x}^{n} b_{n} e^{-i n Q_{x} \phi}
$$

Resonance contd

- for a circular machine, beta functions and lattices are periodic. One can then expand

$$
\beta_{x}^{(n+3) / 2} b_{n}=\sum_{k} c_{k} e^{i k \phi}
$$

- Now, the inhomogeneous equation of motion then becomes

$$
\frac{d^{2} \zeta}{d \phi^{2}}+Q_{x}^{2} \zeta=-\frac{Q_{x}^{2}}{B \rho} \sum_{k} e^{i\left(k-n Q_{x}\right) \phi}
$$

- Compare this with the driven harmonic oscillator

$$
\frac{d^{2} x(t)}{d t^{2}}+\omega^{2} x(t)=f(t)=\sum_{m=0} C_{m} e^{i \omega_{m} t}
$$

Resonance contd

$$
\frac{d^{2} \zeta}{d \phi^{2}}+Q_{x}^{2} \zeta=-\frac{Q_{x}^{2}}{B \rho} \sum_{k} e^{i\left(k-n Q_{x}\right) \phi}
$$

- This means the motion becomes unstable(on resonance) when

$$
Q_{x}= \pm\left(k-n Q_{x}\right)
$$

- i.e. resonance location at, here k and n both are integers

$$
(n+1) Q_{x}=k \quad \text { and } \quad(n-1) Q_{x}=k
$$

- If $k=0$, no resonance condition
- Any error of x^{n} can drive a $(n+1)$ th order of resonance
- Driving term is then given

$$
C_{k, n}=\frac{1}{(B \rho)} \frac{1}{2 \pi Q_{X}} \oint \beta^{(n+1) / 2}(s) b_{n}(s) e^{-i k \phi} d s
$$

Resonance condition

- In the absence of coupling between horizontal and vertical

$$
k=(n \pm 1) Q_{x, y}
$$

error	n	
dipole	0	$\mathrm{Qx}, \mathrm{y}=$ integer
quadrupole	1	$2 \mathrm{Qx}, \mathrm{y}=$ integer
Sextupole	2	$3 \mathrm{Qx}, \mathrm{y}=$ integer
Octupole	3	$4 \mathrm{Qx}, \mathrm{y}=$ integer

- In the presence of coupling between horizontal and vertical

$$
M Q_{x}+N Q_{y}=k
$$

Tune diagram

- the resonance strength decreases as the order goes higher
- the working point should be located in an area between resonances there are enough tune space to accommodate tune spread of the beam

Phase space: $3^{\text {rd }}$ order resonance

In the phase space of $x, P x$

$$
x=A \sqrt{\beta_{x}} \cos \psi
$$

$P_{x}=\beta_{x} x^{\prime}+\alpha_{x} x=-A \sqrt{\beta_{x}} \sin \psi$

- separatrix: boundery between stable region and unstable region
- Fixed points: where

$$
\frac{d x}{d n}=\frac{d P_{x}}{d n}=0
$$

Phase space: $4^{\text {th }}$ order resonance

Phase space: $5^{\text {th }}$ order resonance

