Controlling Risks Safety System Models

Module B

Level of Detail

- The level of detail to be included in a safety and reliability model depends on the objective of the modeling.
- The level of detail affects
 - Effort
 - Cost

Key Issues

- Degree of redundancy
- Common cause failures in redundant systems
- Availability of on-line diagnostics
- Imperfect inspection and repair
- Failure of on-line diagnostics
- Probability of initial equipment failure

Simplification of Method

- Account for the important things
- Ignore the rest

Probability Approximation

- 1002 system
- The failure rate is based on the dangerous failure mode
 PFD = (λ₁ * TI) * (λ₂ * TI)
- If the units have identical failure rates then $PFD = (\lambda * TI)^2$

Example 21-1

- Page 257
 - Constant failure rate for short circuit failures are not manufacturer provided data!
- Historical data about the device or system under consideration should be maintained by the system expert.
- Many organizations maintain internal databases of failure information on the devices or systems that they produce, which can be used to calculate failure rates for those devices or systems.
- For new devices or systems, the historical data for similar devices or systems can serve as a useful estimate.
- Handbooks of failure rate data for various components are available from government and commercial sources.
 - MIL-HDBK-217F, Reliability Prediction of Electronic Equipment

PFD Average

- The approximation is not accurate for the use of safety design verification
- The PFD average is calculated by averaging the integrated failure rate over the time interval

$$PFDavg(t) = \frac{1}{t} \int_0^t (\lambda^D t')^2 dt'$$

Solve the Integration

• Substitute t = TI

$$PFDavg(TI) = \frac{1}{TI} \int_0^{TI} (\lambda^D t')^2 dt'$$

Integrate

$$PFDavg(TI) = \frac{1}{TI} \left[(\lambda^D)^2 \frac{t^3}{3} \right] \text{ from 0 to TI}$$

$$PFDavg(TI) = \frac{1}{TI} [(\lambda^D)^2 \frac{TI^3}{3}]$$

$$PFDavg(TI) = (\lambda^D)^2 \ \frac{TI^2}{3}$$

Markov Model

- The Markov model for the 1002 system shows 3 states
 - The initial state
 - One component failure
 - Both components failed
- The edges represent the probability of state changes

Markov Matrix

$$P = \begin{bmatrix} 1 - 2\lambda^D & 2\lambda^D & 0\\ 0 & 1 - \lambda^D & \lambda^D\\ 0 & 0 & 1 \end{bmatrix}$$

- The system of equations is the state change probability for the model
- Each row adds to 1 (or 100% probability)

Solve the Matrix

$$P = \begin{bmatrix} 1 - 2\lambda^D & 2\lambda^D & 0\\ 0 & 1 - \lambda^D & \lambda^D\\ 0 & 0 & 1 \end{bmatrix}$$

 $S = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

$$\lambda^D = 5 * 10^{-6}$$

- Put the data into a spreadsheet and solve the P*S matrix
- Pull the data down 4380 cells then average column 3 of the P*S matrix.

Comparison of PFDavg

$$PFDavg(TI) = (\lambda^{D})^{2} \frac{TI^{2}}{3}$$
$$PFDavg(4380) = (.000005)^{2} \frac{4380^{2}}{3}$$
$$PFDavg(4380) = 0.00015987$$

Matrix solution = 0.00015716

Mechanical Lifetime

- MTBF is an attempt to predict the life expectancy of a device in hours.
- Reliability for electromechanical devices are rated in Mean Cycles Between Failures.
- MCBF may be calculated using the predetermined number of unit cycles called out on a data sheet and dividing that by the number of cycles/hour.

Typical Data Sheet

Contact specification			
Contact configuration	2 CO (DPDT)	3 CO (3PDT)	4 CO (4PDT)
Rated current/Maximum peak current A	10/20	10/20	7/15
Rated voltage/Maximum switching voltage V AC	250/400	250/400	250/250
Rated load AC1 VA	2,500	2,500	1,750
Rated load AC15 (230 V AC) VA	500	500	350
Single phase motor rating (230 V AC) kW	0.37	0.37	0.125
Breaking capacity DC1: 30/110/220 VA	10/0.25/0.12	10/0.25/0.12	7/0.25/0.12
Minimum switching load mW (V/mA)	300 (5/5)	300 (5/5)	300 (5/5)
Standard contact material	AgNi	AgNi	AgNi
Coil specification			
Nominal voltage (U _N) V AC (50/60 Hz	6 • 12 • 24 • 48 • 60 • 110 • 120 • 230 • 240 6 • 12 • 24 • 48 • 60 • 110 • 125 • 220		
V DC			
Rated power AC/DC VA (50 Hz)/W	1.5/1	1.5/1	1.5/1
Operating range AC	(0.81.1)U _N	(0.81.1)U _N	(0.81.1)U _N
DC	(0.81.1)U _N	(0.81.1)U _N	(0.81.1)U _N
Holding voltage AC/DC	0.8 U _N /0.5 U _N	0.8 U _N /0.5 U _N	0.8 U _N /0.5 U _N
Must drop-out voltage AC/DC	0.2 U _N /0.1 U _N	0.2 U _N /0.1 U _N	0.2 U _N /0.1 U _N
Technical data			
Mechanical life AC/DC cycles	20 · 10 ⁶ /50 · 10 ⁶	20 · 10 ⁶ /50 · 10 ⁶	20 · 10 ⁶ /50 · 10 ⁶
Electrical life at rated load AC1 cycles	s 200 · 10 ³	200 · 10 ³	150 · 10 ³
Operate/release time ms	9/3	9/3	9/3
Insulation between coil and contacts (1.2/50 $\mu s)$ kV	3.6	3.6	3.6
Dielectric strength between open contacts VAC	1,000	1,000	1,000
Ambient temperature range °C	-40+85	-40+85	-40+85
Environmental protection	RTI	RTI	RTI
Approvals (according to type)	RAM		

Example

- Rated mechanical lifetime
 - 1,000,000 operations
- Estimated number of accesses to enclosure
 - 100
- Number of days enclosure is open for access
 - 30
- Hours in a year
 - 8760

 $\frac{cycles}{h} = 2 * access * \frac{days \ per \ year}{hours \ per \ year}$

$$MTBF = \frac{rated operations}{cycles \ per \ hour}$$

Result

$$\frac{cycles}{h} = 2 * 100 * \frac{30}{8760} = 0.684931507$$

$MTBF = \frac{1 * 10^6}{0.684931507} = 1460000$

$$\lambda = \frac{1}{MTBF} = \frac{1}{1460000} = 685 * 10^{-9}$$

PFDavg

- 685 E-9 is the failure rate for all failures/hour.
- Using this failure rate may result in a erroneous estimate of dangerous failures.
- The dangerous failure estimate of mechanical devices working within rated tolerances should be calculated using known failure data from your facility.
- Using 10%

 $\lambda^{D} = 0.1 * 685 * 10^{-9} = 68.5 * 10^{-9}$

- Calculating PFDavg over 1 to 19 percent of dangerous failures shows how PFDavg diverges
- The limit occurs at 100% dangerous failures

Common Cause

- Failures are divided into normal failures and common cause failures
- A beta factor is used to calculate failures due to common cause
- A typical beta factor for this calculation is 10%

$$\lambda^{DN} = (1 - \beta)\lambda^{D}$$
$$\lambda^{DC} = \beta\lambda^{D}$$

Common Cause Calculation

 $PFD = (\lambda^{DN})^2 * TI^2 + \lambda^{DC} * TI$

$$PFDavg(TI) = \frac{1}{TI} \int_{0}^{TI} PDF(t')dt'$$

Eq. 12-7 in the text

Example 12-10, page 273

- The data may be calculated using a spreadsheet
- When using =MMULT
 - Lock the cells using \$a\$n
 - Locks an alpha numerical cell
 - Note that =MMULT contains an error that selects a sliding array1
 - =MMULT(array1,array2)
 - =MMULT(B34:G34,\$B\$26:\$B\$31)

Calculation Errors

- An incorrect result occurs if you average only the data from state 5 in the S*P matrix.
- You must account for all the fail states
 - Column 3, 4 and 5

1002 Fault Tree w/ Proof Test

Controlling Risks: Safety Systems

Risk is Increasing

PFD with 80% test coverage

Always Integrate

- The solution for the 1002 Fault Tree w/ Diagnostics, Common Cause and Proof Test is the PFD
- The PFDavg is the result needed for safety system evaluation
- The PFD must be integrated over time to find the solution
- A spread sheet may also be used, then average the PFD as a function of operating intervals

Story Time

Here's your chance to discuss the topic
– Safety System Models

