
Tutorial/Barletta,Spentzouris,Harms

Introduction to transverse motion

Exercise 1

Let’s map a final state of an harmonic oscillator to the initial state. The position of an
harmonic oscillator is given by x = A cosωt+B sinωt where A and B are to be determined
from the initial conditions, which are that at time t = 0, x = x0 and v = v0.

a) Write expressions for x and v, using the initial conditions to determine the values of
A and B.

b) Now write the expressions for x and v as a matrix equation. The initial and final

states are 2-row 1-column matrices,
(

x0
v0

)

and
(

x

v

)

, respectively.

Exercise 2

The sketch above portrays the one dimensional motion of a particle through a drift where
there are no electromagnetic fields. The position error of the particle with respect to the
centerline is represented by x, and the angle of the particle with respect to the centerline
by x

′

. Use the sketch as guidance to help you find the matrix which maps the final phase
space coordinates

(

x

x
′

)

at location s to the initial phase space coordinates
(

x0
x
′

0

)

at location

s0. NOTE: Assume that the small angle approximation is valid.
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In the second sketch above, a particle passes through a focusing quadrupole magnet, which
acts like a thin lens in the focusing plane. The focal length of the quadrupole lens is given
by f . A particle coming into the lens parallel to the x-axis will cross the x-axis a distance f
from the lens as shown. Use the sketch as guidance to help you find the matrix which maps
the final phase space coordinates

(

x

x
′

)

at s directly after the quadrupole, to the initial

phase space coordinates
(

x0
x
′

0

)

at s0, the position directly before the quadrupole. Note that

x
′

0 does not have to be zero, and that positive angles x
′

, are in the counter-clockwise
direction from the x-axis. Also note that the small angle approximation may be used.

Exercise 3

Given
θ =

e

p

∫

Bds

and the matrix for a thin lens focusing quadrupole, find an expression for 1
f
in terms of the

magnetic field gradient B
′

.

Exercise 4

The transfer matrices for thick lens focusing and defocusing quadrupoles are given by:

FQ =

(

cos
√
kl 1√

k
sin

√
kl

−
√
k sin

√
kl cos

√
kl

)

DQ =

(

cosh
√
kl 1√

k
sinh

√
kl

√
k sinh

√
kl cosh

√
kl

)

where l is the length of the quadrupole magnets, and k ≡ B′

Bρ
= eB

′

p
.

a) Show that the matrix for a defocusing quadrupole is obtained by letting k → −k in
the focusing quadrupole matrix.

b) Derive an expression for the thin lens quadrupole matrices by letting the length of the
quadrupoles go to zero, l → 0, while keeping a constant quadrupole strength,

∫

B
′

· dl.

c) Using Exercise 1 as a guide, compare the harmonic oscillator matrix to the focusing
quadrupole matrix, and write an equation of motion for a particle going through a
focusing quadrupole. How will this change for the defocusing quadrupole?



Exercise 5

Under some conditions, a general expression for the transverse position error of a particle
around a storage ring or through a repeated period of magnets can be expressed as

x(s) = A
√

β(s)cos(ψ(s)) + B
√

β(s)sin(ψ(s)), where β(s), scales the amplitude of the

motion and is a function of the independent variable, s. The phase, ψ(s), is also a function
of s, and for this exercise, ψ(s) is the phase advance taken from ψ(0) = 0 at the beginning
of the repeated magnetic section. The first derivative of the position is x′ = dx

ds
, and the

first derivative of the phase obeys the relation dψ(s)
ds

= 1
β(s)

. For convenience in notation, let

α(s) = −1
2
dβ(s)
ds

. Take the initial conditions to be that when ψ(s) = ψ(0) = 0; x = x0 and
x′ = x′0. Let the value of β(s) at the beginning (and end) of the repeat period be a specific
value, β0. Following the procedure of Exercise 1, write a matrix equation which describes
the mapping of the initial to the final state of a particle traversing the ring or repeated
section. The following procedure can be used:

a) Write expressions for x and x′, using the initial conditions to determine the values of
A and B.

b) Now write the expressions for x and x′ as a matrix equation. The initial and final

states are 2-row 1-column matrices,
(

x0
x0

)

and
(

x

x′

)

, respectively. Reminder, β(s) = β0

at the initial (and final) longitudinal location, s.

c) What would have to be done differently to find the transport matrix between two
arbitrary locations, i.e. the matrix for a section of the ring or group of magnetic
elements which is not repeated?


