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1 Electromagnets

A beam passes through the aperture of a magnet, a region under vacuum containing no
material. The magnetic field that results from powering the coils is present whether the
beam is there or not. We are interested in finding the field in this aperture, and also in
knowing how to build a magnet to get the desired field. Typically accelerators and
beamlines have magnets that serve individual functions. Dipole magnets bend the entire
beam, quadrupole magnets focus a beam, and sextupole magnets are used to control
chromaticity. A picture of these three types of magnets is shown in Fig. 1.

Figure 1: The electromagnets from left to right are a quadrupole magnet, a dipole magnet,
and a sextupole magnet. Courtesy Fermilab visual media services.

The following table gives the magnetic fields of some of typically used magnets.

Magnet type field ~B

Horizontally bending dipole B0 ŷ

Focusing quadrupole B
′

y x̂+ B
′

x ŷ

Focusing sextupole B
′′

xy x̂+ B
′′

2
(x2 − y2) ŷ

Skew quadrupole B
′

x x̂+B
′

y ŷ

Skew sextupole B
′′

2
(x2 − y2) x̂−B

′′

xy ŷ

It is desirable to calculate how the strength of the magnetic field depends on the current
in the coils. The shape of the magnetic field depends on the number and location and of
the coils, and the shape of the pole tips around which they are wound.
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Dipole electromagnets are constructed with a pair of current loops. There is a reasonably
uniform magnetic field in the region between the loops. The field can be made stronger in
this region if the current loops are wound around blocks of iron or steel. It can be shown
that the field is related to the current in the coils as B0 =

2µ0NI
h

, where N is the number
of turns per coil, I is the current in each turn, and h is the gap height of the magnet.

Quadrupole magnets have four coils. The pole tips around which the coils are wrapped
around are alternating north and south poles. Figure 2 shows a quadrupole magnet.

Figure 2: Quadrupole electromagnet. Courtesy Fermilab visual media services.

Ampere’s law can be used to calculate the magnetic field, ~B, in the gap of an
electromagnetic quadrupole constructed in this fashion. Ampere’s law relates the
magnetic field integrated around a closed loop to the current passing through the plane
enclosed by the loop;

∮

~H · ~dl =
∫

~j · ~da

where j is the current density (current/area), integrated over the area of the loop, and H

is related to the magnetic field, B, by the permeability of the material, ~H =
~B
µ
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Figure 3: Sketch of an Amperian loop for a quadrupole magnet.
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A convenient loop of integration crosses the gap from pole tip to pole tip in the ŷ

direction, the remainder of the loop going through the iron of the magnet, as shown in
Fig. 3. The distance from the center of the magnet to any pole tip is R. The current
carrying coils shown in the figure are penetrating perpendicular to the plane of the loop.
The loop shown has current from two coils penetrating the loop, each coil has N turns
carrying current I. The total enclosed current is then,

∫

~j · d~a =
∫

jda = 2NI

The length of the path through the gap is
√
2R. In the gap

~H =
1

µ0

~B

where µ0 is the permeability of free space. The permeability of the iron is much larger
than the permeability of vacuum (µ0 << µiron), which results in the contribution of the
portion of the loop in the iron to be negligible compared to the contribution from the
portion of the loop in the gap.

∮

~H · d~l =
∫

~Hgap · d~lgap +
∫

~Hiron · d~liron

=
1

µ0

∫

√
2R

0

~B · ŷdy + 1

µiron

∫

~Biron · d~liron

=
1

µ0

∫

√
2R

0

(B
′

yx̂+B
′

xŷ) · ŷdy

The magnetic field in the quadrupole is B
′

yx̂+ B
′

xŷ, where B
′

is a constant
characteristic of the particular quadrupole magnet. Derivation of this field will follow
later in the notes. The x position is constant along the path of integration in the magnet
gap, x = R√

2
by geometry. Then,

B
′

(

R√
2

)

(
√
2R) = B

′

R2 = 2µ0NI

This can be solved for B
′

, the constant magnetic field gradient of the quadrupole.

B′ =
2µ0NI

R2
T/m

2 Calculating magnetic fields

The two Maxwell’s equations for the magnetic field are
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∇ · ~B = 0 (1)

∇× ~B = µ0
~J + µ0ε0

∂ ~E

∂t
(2)

Electromagnets are made to produce a field inside the beam chamber, but the coils of
electromagnets are outside the beam chamber region. If the coils carry a steady current
that doesn’t change with time, the problem of finding the field in the chamber reduces to
a magnetostatics problem. So, both of the source terms on the right side of Eq. 2 for this
problem are zero. Since the curl of a gradient is zero, then ~B can be written as the
gradient of a scalar function (say, Φm). Putting ~B = −~∇Φm into Eq. 1 results in
Laplace’s equation,

∇2Φm = 0

Laplace’s equation may be solved using the separation of variables technique, resulting in
solutions that are sums of harmonics appropriate to the geometry of the problem. In the
lecture on accelerating structures, it was mentioned that expansions in a Cartesian
coordinate system were sine and cosine functions, while in cylindrical coordinates the
radial harmonics were Bessel functions. Here, it is assumed that the magnetic fields in the
dipoles, quadrupoles, etc. are uniform in the longitudinal direction. Then, the field varies
only in the transverse cross-section, and Laplace’s equation is two dimensional. Circular
coordinates are appropriate, so the general solution to Laplace’s equation is given as

Φm = A0 + B0 ln (r) +
∞
∑

k=1

(

Akr
k +Bkr

−k
)

(Ck cos (kθ) +Dk sin (kθ)) (3)

Since there is no current inside the vacuum chamber, B0 and Bk in Eq. 3 must be zero, or
else Φm would become infinite as r → 0, which is not physical. Further, A0 may also be
set to zero since the derivative of a constant is zero and will not change ~B.

Then,

Φm =
∞
∑

k=1

rk (ak cos (kθ) + bk sin (kθ)) (4)

where the as yet undetermined coefficient Ak has been absorbed into the new (still
undetermined) coefficients ak and bk. In addition, only one of the two terms in the
expansion (ak cos (kθ) or bk sin (kθ)) should be non-zero, the choice depending on whether
even or odd symmetry is required. Normally oriented magnets are associated with the
sine terms, while skew elements (rotated 90◦ with respect to a normal element) are
associated with the cosine terms. Separated function magnets ideally are described by
only one term in the harmonic expansion for the magnetic potential.
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Figure 4: Cross-sectional sketch of a dipole magnet. A beam would go into or out of the
plane of the paper. The force on the beam from the field would be ~F = q~v × ~B, so for a
positively charged particle going into the paper, the force would be to the right.

The only term desired for a horizontally bending dipole (with a vertically oriented
magnetic field) is the k = 1 sine term, b1r sin (θ). Note that in Cartesian coordinates
Φm = b1r sin (θ) = b1y. The magnetic field of the dipole is given by

~B = −~∇Φm =

(

−x̂
∂

∂x
− ŷ

∂

∂y

)

b1y

= −b1ŷ

The magnetic field is constant in the y direction. Also note that an equipotential will be
a line at some constant value of y. Figure 4 shows a sketch of a dipole magnet
cross-section. The magnetic field lines are in the ŷ direction, and some equipotentials are
shown as dashed lines at constant y.

Now consider a quadrupole magnet. The k = 2 term in the expansion for Φm is the
quadrupole term,

Φquad = b2r
2 sin (2θ)

Using the following trigonometric identity,

sin (2θ) = 2 sin (θ) cos (θ)

gives the following

Φquad = 2b2(r sin (θ))(r cos (θ))

= 2b2xy

The resulting magnetic field is then,

~B = −~∇Φquad = −x̂ 2b2
∂(xy)

∂x
− ŷ 2b2

∂(xy)

∂y

= −2b2y x̂− 2b2x ŷ

= B
′

y x̂+ B
′

x ŷ
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where the constant −2b2 has been renamed B
′

. It must have units of T/m, to have the
field end up in units of Tesla. Lets check out the force this field would exert on a particle
of charge q traveling with speed v in the ẑ direction. The force is given by ~F = q~v × ~B.

~F = q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ

0 0 v

B
′

y B
′

x 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= qx̂(−vB
′

x) + qŷ(vB
′

y)

Notice that there is focusing in the x̂ direction; the force is negative (restoring) and
proportional to the offset x of the particle from the design orbit. In the ŷ direction, there
is a defocusing force, also linearly proportional to the particle offset y from the design
orbit. A ’focusing’ quadrupole focuses the beam horizontally but defocuses the beam in
the vertical direction. A ’defocusing’ quadrupole focuses vertically and defocuses
horizontally. Net focusing in both planes in achievable, it requires the proper pattern of
focusing and defocusing quadrupoles.

Figure 5: A loop across a boundary between vacuum and a ferromagnet.

How can a magnet be made to produce a field that is represented be a single term in the
expansion of Φm? Shaping the pole faces correctly can achieve this goal. Ferromagnetic
materials used for electromagnets have a very large permeability, µ. The curl equation
~∇× ~H = 0 requires that the tangential component of ~H be continuous across a boundary.
Place a rectangular loop straddling the boundary of two materials, in this case, the
vacuum in the beam chamber and the ferromagnetic material the coil is wrapped around.
This is depicted in Fig. 5. Since ~∇× ~H = 0, the integral of the curl over the area of the
loop must be zero;

∫

~∇× ~H · d~a = 0 (5)

∮

~H · d~l = 0 (6)

∫

top

~H · d~l +
∫

bottom

~H · d~l = 0

H
||
topl +H

||
bottoml = 0

1

µ
B

||
top +

1

µ0

B
||
bottom = 0 (7)
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Applying the curl theorem to Eq. 5 results in Eq. 6. The sides of the loop perpendicular
to the interface can be made arbitrarily short and contribute nothing to the loop integral.
Evaluating the contributions from the top and bottom sides of the loop results in Eq. 7.
Since the top side of the boundary has a very large permeability, 1

µ
B

||
top ≈ 0. Then, Eq. 7,

implies that there can be no component of ~B parallel to the magnetic surface. All
magnetic field lines must be perpendicular to the ferromagnetic surface. Ferromagnetic
surfaces are equipotential surfaces, just as the surfaces of perfect conductors are
equipotential surfaces for electrostatic fields. (Perfect conductors cannot support a
tangential component of the electrostatic field, or else current would flow along the
surface.)

Then, to build a dipole, the pole faces should be flat at constant y with respect to the
center plane of the magnet, just as depicted in Fig. 4. The expression for constant
potential for a quadrupole is Constant = Φm = B

′

xy. This is the equation for a rotated
hyperbola (such as the rough sketch of the pole faces in Fig. 3).

3 Magnetic field expansion

The magnetic fields present in particle accelerators, storage rings and transport lines can
be represented with a multipole expansion, an expression where all the lower harmonics of
Eq. 4 are kept, rather than a single term. In Cartesian coordinates the normal and skew
components of the magnetic field takes the form:

By + iBx = B0

∞
∑

n=0

(bn + ian)(x+ iy)n (8)

where n gives the order of the pole. For example, the n = 0 term corresponds to a dipole
field, the n = 1 term to a quadrupole field, the n = 2 term to a sextupole field, and so on.
The bn coefficients go with the normal magnetic fields and the an coefficients with the
skew magnetic fields.

Examining the dipole term, we have: By + iBx = B0(b0 + ia0), or By = B0b0 and
Bx = B0a0. If the dipole is an ideal horizontal dipole, with a constant field By = B0, then
b0 = 1 and a0 = 0.

Now check out the quadrupole term (n = 1) in Eq. 8. Equating the real part of the left
side of the equation to the real part of the right side of the equation (and similarly for the
imaginary part):

Bx = B0(b1y + a1x) (9)
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By = B0(b1x− a1y) (10)

To solve Eq. 10 for b1, take the derivative of both sides with respect to x:

b1 =
1

B0

∂By

∂x

This tells us that By in a quadrupole magnet is By =
∂By

∂x
x = B

′

x, and that the field
gradient in a quadrupole is a constant (since b1 is a constant).

The general magnetic field expansion may also be expressed in polar coordinates, the
radial component of the field in polar coordinates has the form

Br = B0

∞
∑

n=0

rn[bn sin ((n+ 1)θ) + an cos ((n+ 1)θ)]

The angular component of the field in polar coordinates has the form

Bθ = B0

∞
∑

n=0

rn[bn cos ((n+ 1)θ)− an sin ((n+ 1)θ)]
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