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1 Harmonic number

The accelerating structures in a circular accelerator may be either distributed around
the ring, or grouped together at a single location in the ring. One potential advantage
of having the RF systems in one place is that all the associated electronics to produce
the low level signals and amplified voltage can then be at a single location. In any
case, the frequency of the voltage waveform in the accelerating structures, fRF , must
be an integer multiple of the revolution frequency, frev (the number of times per
second a particle orbits the accelerator).

fRF = hfrev

where the integer multiple h is called the harmonic number. The harmonic number is
also the maximum number of beam bunches it is possible to load into the accelerator.
For example, if the harmonic number were one, then the RF frequency would be equal
to the revolution frequency. Suppose there were one accelerating cavity for simplicity.
Only once per revolution period, Trev, would the RF voltage be at the proper level to
accelerate an ideal particle. The beam bunch would drift around the accelerator while
the RF voltage was evolving, arriving at the accelerating gap just when the voltage at
the gap was once again at the design value. If the RF frequency were doubled, two
bunches could revolve around the machine, since twice per revolution the RF voltage
would be at the design value (and so on).

2 Difference equations for longitudinal motion

The longitudinal phase space coordinates for a given arbitrary particle may be specified
as the phase error and the energy error from an ideal particle. The ideal particle is
perfectly synchronous with the RF voltage wave, always arriving at the center of each
RF gap at the same phase with respect to the applied voltage. This constant phase is
called the synchronous phase, φs. The ideal particle arrives at the gap at the perfect
time (or phase) to receive the energy kick needed to maintain this same phase at the
next gap. The phase space errors of an arbitrary particle can be described by
difference equations, which evolve the phase space errors from one gap to the next.

φerror = ω∆τ
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Eerror = e∆V

Here ω is the RF angular frequency, τ is the error in transit time with respect to the
synchronous particle from the previous gap center to current gap center, e is the
elementary charge, and ∆V is the difference between the voltage kick given to the
particle and the synchronous particle at the previous gap. Or, putting it another way:

φn+1 = φn + ωrf (t− ts)

∆En+1 = ∆En + e(Vn − Vs)

The first equation describes the phase error at the (n+ 1)th accelerating gap compared
to the ideal particle. This is the same as the phase error at the previous gap, plus the
additional phase slip between gaps due to the difference in transit time of the particle
compared to an ideal particle. The second equation describes the energy error at the
(n+ 1)th gap compared to the ideal particle. This is the same as the energy error at
the previous gap, plus the additional energy difference from the error in kick strength
at the previous gap.

The form of the difference equations becomes ornamented with more symbols when
∆τ = t− ts is expressed in terms of the particle energy error. It is desirable to do this
so the equations are clearly seen as two coupled equations. Once put into differential
form, they can be combined into a single second-order differential equation. To convert
from an error in time to an error in energy, Eq. 3 is used to get difference equations in
the form found in Edwards and Syphers,

φn+1 = φn +
ωrfτηc
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∆En+1 (1)

∆En+1 = ∆En + eV (sinφn − sinφs) (2)

Let’s begin by discussing the energy difference equation. The energy kick experienced
by a particle in an accelerating gap is equal to the charge of the particle (denoted e)
multiplied by the voltage level at the gap. If variation of voltage across the
accelerating gap can be neglected, then this is just the voltage present at the phase of
the particle. The level of the voltage phaser at the time of particle crossing will be
V sinφ or V cosφ depending on the reference angle chosen. Here, V is the peak RF
voltage. If the reference phase is defined to be when the voltage level is zero, then the
correct voltage is V sinφ. If the reference phase is when the voltage is at the peak
level, then the correct voltage is V cosφ. So, the meaning of Eq. 2 is that the energy
difference of a particle from the synchronous particle at the entrance to gap n+ 1 is
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whatever the energy difference was at the entrance to gap n, plus the difference in
energy kick at gap n due to its error in phase at gap n.

In a circular machine, the time difference of arrival at successive RF gaps between an
arbitrary particle and a synchronous particle, ∆t, depends both on their velocity
difference and and on the difference in path length traveled between gaps. While in a
linac it is a straight shot from gap to gap, in a circular machine the dispersion of
particles by magnetic fields also plays a role. The kick experienced by a particle in a
magnetic field is inversely proportional to its momentum. In a ring made up mostly of
bending dipoles (for example) the net effect of dispersion is that higher momenta
particles will travel in a circular path with a larger circumference. So, a higher
momentum particle will have a larger velocity than a lower momentum particle, but it
will also have further to go. The relative importance of each of these factors depends
on the energy of the particles, velocity differences being less important at higher
energies as the particles approach the speed of light.

The revolution frequency of a particle is given by the machine circumference divided
by the particle velocity.

Trev =
C

v

The revolution frequency can change if either the pathlength around the machine or
the particle velocity changes.
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Particles of higher momentum have a longer path around the machine. This causes
those particles to have a positive error in revolution period (longer time). However,
higher momenta particles may also have a greater velocity, producing a negative error
in revolution period (shorter time). Ultra- relativistic particles have velocities close to
the speed of light, the dependence of velocity on momentum is not very strong in this
regime. Writing ∆C

C
and ∆v

v
in terms of momentum error will allow a direct comparison

of the magnitude of the terms. Begin with the velocity term,
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Dividing both sides of the equation by p = γmv, and multiplying by dv,

dv

v
=

1

γ2

dp

p

Now we have,
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If you change the particle momentum, the orbit changes by a proportionality factor
which depends on the lattice of the machine. The path length along the off-momentum
orbit changes due to the dispersion of the magnets. If a particle were otherwise on the
design orbit, it would have an error in position given by,

∆x = D
∆p

p

where the off-momentum particle has momentum error ∆p, the momentum of the ideal
particle is p, and D is the dispersion function. The path length of the off-momentum
particle is,
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The total change in the off-momentum particle is,
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Giving a path length error in the transit around the accelerator,
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For convenience, the proportionality factor scaling dp

p
is called 1
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, where γt is called the

transition gamma of the ring. Then,
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where η is defined by the above relation, and is called the ’slip factor’. Notice that
when γt = γ, then the slip factor goes to zero. When this happens, the travel time
from one accelerating gap to another does not depend on the particle momentum!
There is no phase stability at this particular energy. This dangerous energy is called
the ’transition energy’. Remember, this is a machine dependent parameter, linacs do
not have a transition energy, and for many circular accelerators the transition energy
lies outside its range of operation.

3 Differential forms for the difference equations

In order to examine the properties of longitudinal motion, it is worthwhile to write the
difference equations in differential form.

φn+1 − φn →

dφ

dn

∆En+1 −∆En →

d∆E

dn

Then the difference equations become,

dφ

dn
=

ηωrfτ

β2Es

∆E (4)

d∆E

dn
= eV (sinφ− sinφs) (5)

Differentiating eq. 4 with respect to n, and substituting eq. 5 into eq. 4, we get a
second-order differential equation.
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d2φ

dn2
−

2πhη

β2Es

eV (sinφ− sinφs) = 0 (6)

This is a nonlinear differential equation which looks similar to the nonlinear pendulum
equation. Some phase space trajectories for a pendulum are shown in Fig. 1. Small
oscillations of the pendulum are the nearly circular trajectories around the (0,0) point.
Some initial conditions result in trajectories that don’t close, moving from one side of
the figure to the other. The trajectories shown in Fig. 1 resemble the phase space
trajectories in an accelerator when the beam is bunched but not accelerating. The area
in longitudinal phase space where particle trajectories close and beam remains
captured in trajectories around the synchronous phase is referred to as a ’bucket’.

Figure 1: Phase space trajectories for a pendulum bob. This was made by Amichay
Perry using a Matlab code from John C. Polking at Rice University.

For small oscillations, Eq. 6 reduces to an equation of harmonic motion. In order to
have small oscillations, the phase error, ∆φ = φ− φs, must be small. The phase in
eq. 6 can be re-written in terms of the phase error, φ = φs +∆φ, the trigonometric
function expanded, and the small angle approximation applied.

sin (φs +∆φ) = sinφs cos∆φ+ sin∆φ cosφs ≈ sinφs +∆φ cosφs

Then,
sinφ− sinφs ≈ ∆φ cosφs

and the second-order differential equation becomes,
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d2∆φ

dn2
+

(

−

2πhηeV

β2Es

cosφs

)

∆φ = 0 (7)

Equation 7 has the form of a harmonic oscillator equation if η cosφs is less than zero.
Since in a circular machine η switches sign at the transition energy, the synchronous
phase angle, φs must be changed then as well in order to maintain the stability of
small oscillations. Since we have a harmonic oscillator equation for small oscillations,
but a pendulum-like equation in the general case, we expect that the phase space
trajectories for the longitudinal plane will look like circles or ellipses for small phase
space errors, but take on the characteristic shape of the separatrix for the phase space
trajectories of the pendulum at large errors.

Since Eq. 7 has the form of a harmonic oscillator equation, the characteristic frequency
of longitudinal oscillation, called the synchrotron frequency, can be identified.

Ωs =

√

−

2πhηeV

β2Es

cosφs (8)
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