
USPAS notes Barletta,Spentzouris,Harms

1 Credit

These notes are for teaching purposes, and draw shamelessly on available reference material.
The main references are listed at the end of these notes.

2 Defining emittance

Emittance is the property of a particle beam that characterizes its size. Roughly, emittance
is an area or volume in the phase space of the particles. There are two phase space variables
for each spatial direction. The phase space variables for a particle are x, px, y, py, z, and pz

with time as the independent variable. These coordinates correspond to the position and
momentum components of the particle. Often the coordinates are taken to be the errors in
position and momentum with respect to an ideal particle. For example, an ideal particle
would have no transverse momentum component, px = 0. Its position would lie along the
ideal trajectory through the machine and be defined as x = 0. Longitudinally, the energy or
momentum of a particle is defined to be the difference from the ideal (non-zero) momentum
or energy.

Emittance is used to describe a beam because unlike the physical dimensions of the beam,
which vary with location in an accelerator, emittance is invariant in the absence of dissipative
or cooling forces. Sometimes motion in each plane (2 transverse, 1 longitudinal) is very
weakly coupled; in this case it may be possible to treat the motion in each plane
independently. As this case is the simplest, it will be used for examples and discussion here.

2.1 Particle distributions

The distribution function of a beam, f6(x, y, z, px, py, pz; t), describes the coordinate
distribution of particles in a beam. Integrating the distribution function over a region of
phase space gives the number of particles found in that region of phase space [2]:

dN = f(~q, ~p, t)d3qd3p

A commonly used distribution function to represent a particle beam is the Gaussian
distribution. In transverse phase space of horizontal motion (for example), the functional

1



form of a bi-Gaussian is given by the following:

f(x, px) =
1

2πσxσpx

exp

(

− x2

2σ2
x

)

exp

(

− p2
x

2σ2
px

)

(1)

The peaks of the distribution hopefully correspond to those particles having no error
(x = 0, px = 0). The distribution is symmetric, so there are as many particles with positive
errors as with negative errors. The standard deviation, σ, for the case when the mean value
of the distribution is zero (< x >= 0), is as follows:

σ ≡
√
σ2 =< x2 >

1
2 = lim

N→∞

(

1

N

N
∑

i=1

x2
i

)

1
2

The summation is over all particles, and xi is the position of the ith particle.

The bi-gaussian integrated over all horizontal phase space is one, representing 100% of the
particles. Integrating the distribution over some smaller phase space area yields a fraction
that represents the fraction of the particles enclosed.

1

2πσxσpx

∫ ∞

−∞
e
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2σ2
x dx

∫ ∞
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e
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x

2σ2
px dpx =

1
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[√
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] [√
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]

= 1

2.2 Phase space

A phase space plot has a point plotted for each particle in the beam at the phase space
coordinates corresponding to the particles. A phase space plot is for a specific location (time)
in the machine, since the particle positions and momenta evolve as a beam propagates. If
motion in each plane is independent of the others, then there is a horizontal phase space (x
vs. px), and a 2D horizontal emittance can be extracted from the area of phase space covered
by the beam. Similarly, there is a vertical and longitudinal emittance. A single experimental
measurement of the beam dimension (number of particles versus position) cannot by itself
yield phase space information, since only the particle positions, not the momenta, are known
from a single measurement. Typically transverse experimental apparatus must be present in
at least two locations, so that the needed angle (momentum) information can be obtained
from the particle trajectories. High energy machines with well understood optics can be an
exception to this rule. The positions of the particles can be measured, while the needed angle
information is based on the machine optics constraining the particle motion.
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2.3 High energy beams

When the transverse momentum components are small compared to the longitudinal,
pz >> px, py, and pz can be considered to be the same for all particles, then the paraxial
approximation can be applied to the beam motion. In this case, x

′

, y
′

can be taken to be the
transverse angles with respect to the ideal trajectory, x

′

= tan(αx) ∼ αx and similarly for y
′

.
Then, for the horizontal coordinates, px is related to x

′

in the following way:

px = mvx + qAx = m0cβγx
′

+ qAx

where m0 is the rest mass of the particle, x
′

= dx
dz

, q is the charge of the particle, and Ax is
the x-component of the magnetic vector potential. A similar relation holds for py. The
magnetic vector potential is oriented perpendicularly to the associated magnetic field. If the
magnetic fields through which the beam travels are entirely transverse (no solenoids),
~B = Bxî+By ĵ, and Ax = Ay = 0. Then, px may be written:

px = m0cβγx
′

(2)

’Trace space’ (a term used to make a distinction with phase space) is a coordinate space
using (x, x

′

, y, y
′

) to describe the transverse motion instead of (x, px, y, py).

2.4 Transverse emittance from Hill’s equation

The formalism used in this section to derive an expression for the transverse beam emittance
(assuming uncoupled motion) is typically used for high energy synchrotrons.

Consider the case of uncoupled motion where in each transverse dimension the beam
dynamics may be described by the 1D Hill’s equation. The solution of the equation for the
single particle transverse position (as a function of s, the longitudinal location) is the
following:

x(s) = A
√

β(s) cos (ψ(s)) (3)

where A describes the amplitude dependence on initial conditions, and
√

β(s) describes the

amplitude dependence on the machine lattice. In other words, β(s) cos (ψ(s)) varies around
the machine, but is the same for every particle in the beam. On the other hand, A is the same
everywhere in the machine, but every particle has a different amplitude of motion, A. The
optical parameter, β(s), is called a Twiss parameter. The other two Twiss parameters, α(s)
and γ(s), are functions of β and are defined below. An equation governing the phase space
trajectory of a particle can be found using the solution (Eq.( 3)) to construct a constant of
the motion (do this in Exercise 4 of the transverse emittance tutorial). The result can be cast
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in the form of an equation for a circle in the x− (βx
′

+ αx) plane, with radius r = A
√

β(s):

(βx
′

+ αx)2 + x2 = A2β (4)

Where x
′

is the angle coordinate of the particle, and α is defined by the following,

α(s) ≡ −1

2

dβ(s)

ds

x

β(s) x’+ α (s) x

r = A β(s)

Figure 1: A circular trajectory in horizontal phase space of a particle at location s.

A circular phase space trajectory, such as that shown in Fig. 1 represents the evolution of the
phase space coordinates of a particle with time, although at a specific location, s, in the
machine. (If a beam makes a single pass through a machine, then there will only be one
point for a given particle, no trajectory that evolves with time.) Since β(s) is a function of s,
the radius of the circular phase space trajectory for a given particle varies according to its
location in the machine. There is a different phase space diagram for each machine location.

One use of circular phase space is that the distribution function is in a convenient form for
integration to find a fractional beam emittance. See, for example, the calculation of 95%
emittance at the end of this subsection ( 2.4). More typically the variables x, x′ or x, px are
used as phase space coordinates, since these are variables (closely related to the canonical
variables) directly describing the motion. To find the form of the phase space trajectories in
x, x’ space, multiply Eq. 4 through and collect terms. This gives an equation for an ellipse in
the x-x’ plane:

γx2 + 2αxx
′

+ β(x
′

)2 = A2 (5)

where γ is defined as,

γ(s) ≡ (1 + α(s)2)

β(s)
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An elliptical phase space trajectory is shown in Fig. 2. The general equation for an ellipse in
the x-y plane is ax2 + 2bxy + cy2 = d. The area of this ellipse is Area= πd√

ac−b2
. Using the

expression for area (see Exercise 4 of the the transverse emittance tutorial) we find that the
area enclosed by the particle trajectory of Eq.( 5) is Area= πA2, a constant.

x’

x

(γε)
1/2

x’    =max

x    = (βε)max
1/2

x’    =

x    =int

int

(ε/γ)

(ε/β)
1/2

1/2

Figure 2: An elliptical trajectory in horizontal phase space of a particle at location s.

We have not yet obtained a beam emittance, since the area we have found is that enclosed by
the motion of a single particle of amplitude r = A

√
β. Each particle in the beam follows its

own phase space trajectory. In a particle accelerator, the particles comprising the beam have
trajectories that do not cross each other; but still, a suitable trajectory must be chosen to
define the emittance, ε. One typical choice is r = σ, where σ is the standard deviation of
particle position in the beam. The area of the phase space ellipse enclosed by a particle
trajectory was found to be πA2. Sometimes, the emittance is defined to be this area,
ε = πA2, whereas other times it is defined excluding the π, in other words, ε = A2. Choosing
the latter, and considering the area enclosed at r = σ, we have σ = A

√
β =

√
εβ, or:

ε =
σ2

β
(6)

The substitution of ε ≡ A2 in Eq. 5 is made to get the intercepts and maximum values of
Fig. 2. To find the x

′

-intercept, set x = 0 in Eq. 5 and solve for x
′

(similarly for the
x-intercept). Finding the maximum values for x and x

′

is a little more work. For example, to

find x
′

max, first solve Eq. 4 for x
′

in terms of x (with A2 = ε) to get x
′

(x) =

√
εβ−x2−αx

β
. Put

the resulting expression for x
′

(x) into dx
′

dx
= 0 and solve for x; this is the value of x at x

′

max.

This value, x =
−α

√
εβ√

1+α2 , can then be substituted into Eq. 4, and solving the equation for x
′

max

yields the solution x
′

max =
√
γε.

5



If instead, the former choice for ε including the π is made, the expression for emittance is the
following:

ε =
πσ2

β
(7)

When using the expression for emittance given by Eq. 7, people often quote ’π mm-mrad’ as
the units of emittance, leaving the π explicitly stated rather than multiplying through by its
numerical value. The mm-mrad specifies that the emittance is on the order of 10−6. For
example, 30 π mm-mrad would be an emittance of [30(3.141)] × 10−6 meter-radians. The
expression for emittance is not the only thing that has no uniform convention; the units can
also be differently specified under different circumstances. As for example, emittances of
electron beams upon emission are often given as µm, say 0.1 µm, indicating 0.1 × 10−6

meter-radians.

Beware: even if the x and y motion is not coupled, so that the simple expression of Eq. 6 can
be used, make sure to put the appropriate β and σ in for each:

εx =
σ2

x

βx(s)
εy =

σ2
y

βy(s)

Notice that in these expressions for emittance, there is no explicit presence of the x′

coordinate. In a well-behaved high energy machine, the motion of particles is governed by
the β function. Knowledge of the β function at a detector location allows the emittance to be
determined from measurement of the beam sigma there. At locations where β is large, the
beam size (σ) goes up accordingly. In the horizontal plane, there is an additional
complication due to magnet dispersion. A spread in the momentum of the particles of the
beam will spread out the particle positions. A correction to the expression for horizontal
emittance is needed to take this into account. Then:

εx =
σ2

x

βx(s)
− D(s)2

βx

(

σp

p0

)2

where D(s) is the dispersion at location s, p0 is the ideal particle momentum, and σp is the
root-mean-square of the momentum difference of the particles in the beam from the ideal
momentum.

Now, suppose instead of defining the emittance to be the area enclosed by the contour at
r = σ, we want to define it to be the contour enclosing 95% of the phase space area [1].

We can find the appropriate expression for the emittance directly by integrating over an
appropriate distribution function, as in Eq. 1, but here using the circular phase space
variables.

dN = f(x, y) dx dy
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= f(x, βx
′

+ αx) d(βx
′

+ αx) dx

=
1√

2πσx

e
− x2

2σ2
x





1√
2πσβx

′
+αx

e
− (βx′+αx)2

2(σ
βx′+αx

)2 d(βx
′

+ αx)



 dx

(8)

As at the end of subsection 2.1, dN represents the fraction of the total number of particles.
To take advantage of the geometry of the circular phase space trajectories, r′, θ coordinates
will be used, with the radial variable of integration defined as (r′)2 ≡ [(βx

′

+ αx)2 + x2].
Since there is circular symmetry, σx = σβx

′
+αx Then:

.95 =

(

dN

N

)

95

=
∫ 2π

0

∫ r95

0
f(r′, θ)r′dr′dθ

=
1

2πσ2

∫ 2π

0
dθ

∫ r95

0
e−

(r′)2

2σ2 r′dr′

=
1

σ2

1

2
(−2σ2)

[

e−
r2
95

2σ2 − 1

]

Solving for r2
95:

r2
95 = −2σ2 ln (.05)

Substituting r2 = A2β = εβ

π
:

ε95 =
6πσ2

β

2.5 Normalized emittance

When a beam accelerates, the transverse beam size shrinks. The idea of invariant emittance
can still be used if the emittance is scaled according to the beam energy, εN = ε(βγ). Here β
and γ are the relativistic parameters defined by the beam energy. The ’normalized
emittance’, εN , is then constant as a beam changes energy. A qualitative idea of the source of
the shrinking beam can be seen in figure 3.

The transverse angles before and after are given by the following:
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Accelerating 
  Cavity

Po|| Po|| + e/c Vrf

Pt

Xo’ X’

Pt

Figure 3: Cartoon of x
′

shrink due to acceleration.

X
′

0 =
Pt

P0||

X
′

=
Pt

P0||
+
e

c
Vrf =

Pt

P||

Since P0|| < P0|| +
e
c
Vrf then X

′

< X
′

0, demonstrating heuristically that the size of the beam
in transverse phase space shrinks with acceleration. Another way to understand the same
thing is to solve Eq. 2 for X

′

, that is,

X
′

=
Pt

m0cβγ
=

Pt

Ptotal

For the case of a high energy beam, Ptotal ≈ P||, where P|| in this example is the longitudinal
momentum after the acceleration. Since X

′

scales as 1
βγ

simply from acceleration, to recover
an invariant emittance it is necessary to multiply by a factor of βγ

2.6 Statistical definition of emittance

There are circumstances when an emittance expression derived from Hill’s equation, such as
Eq. 6, may either not be accurate or else not easy to apply. An expression for emittance
based purely on the distribution of particles in phase space is often more practical. Particle
simulations, which have knowledge of the phase space coordinates of all particles in the
beam, usually employ such a statistical definition for emittance. In addition, beam
measurements made near a beam source are frequently set up to yield both position and
angle information for emittance reconstruction.

The derivation of statistical emittance in this section follows the one given by Buon [2, 3].
Let the coordinates of a 2D phase space be position, w, and angle, w

′

. In general, the
second-order moments of a distribution of N points on the w-w

′

plane are given by:
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σw =

√

√

√

√

1

N

N
∑

i=1

(wi− < w >)2 σw
′ =

√

√

√

√

1

N

N
∑

i=1

(w
′

i− < w
′

>)2

Choose the coordinate axes w, w
′

so that the origin is at the barycenter of the phase space
points. Then, the average position and angle of the particles in the distribution are zero
(< w >=< w

′

>= 0). This simplifies the expressions for the second order moments:

σw =

√

√

√

√

1

N

N
∑

i=1

w2
i σw

′ =

√

√

√

√

1

N

N
∑

i=1

(w
′

i)
2

Orient the w-w
′

axes so that the sum of the squared distances of the phase space points to
the w axis, σw, is minimized; while σw

′ is maximized. The ’area’, or emittance, of the w-w
′

distribution of points might then be defined as the characteristic width in w multiplied by
the characteristic width in w

′

:

ε = 2σw2σw
′ = 4

√

σ2
wσ

2
w

′ (9)

The 4 in Eq. 9 is optional. The reference coordinate axes of a measured or simulated particle
distribution will not necessarily have the above convenient position and orientation. The
distribution may be rotated so that there is a correlation between the position and angle
coordinates of the points, or translated so that the mean values of the coordinates are not
zero. It is desirable to write the expression for emittance (Eq. 9) in terms of the actual
available coordinates. Suppose the measured or simulated 2D particle coordinates are called
x and x

′

. The ideal w-w
′

axes are rotated by an angle, θ, with respect to the x-x
′

axes.
Assume for now that there is no translation, so that the origins of the coordinate axes are the
same. The two sets of coordinates are related through the angle of rotation. The angle, θ,
minimizes (maximizes) the mean square distance (σ

′

w)2 (σ2
w) of the particle distribution (by

the definition of the w-w
′

axes):

∂(σ
′

w)2

∂θ
= 0 (10)

where,

(σ
′

w)2 =
1

N

N
∑

i=1

(d
′

i)
2 (11)
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x

X

W

X’
W’

θ

θ

θ

xsin(  )

d

θ

Figure 4: Rotation of phase space axes by angle θ. There is correlation of the x and x′ variables
of the particle distribution, but no correlation of the w and w′ variables.

and di is the w
′

coordinate of the ith particle. This is also the distance of the ith phase space
point from the w axis.

The distance, di of phase space point i to the w
′

axis, may be related to the phase space
coordinates xi, x

′

i through the rotation angle θ. This relationship is illustrated in Fig. 4, and
described by Eq. 12.

d
′

i = |x′

i cos (θ) − xi sin (θ)| =
√

(x
′

i cos (θ) − xi sin (θ))2 (12)

The distance of phase space point i to the w axis may also be related to the phase space
coordinates xi, x

′

i through the rotation angle θ. This relationship can be seen in Fig. 4, and is
described by Eq. 13.

di = |x′

i sin (θ) + xi cos (θ)| =
√

(x
′

i sin (θ) + xi cos (θ))2 (13)

Then, (σ
′

w)2 in terms of xi and x
′

i is the following:
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(σ
′

w)2 =
1

N

N
∑

i=1

(d
′

i)
2

=
1

N

N
∑

i=1

(x
′

i cos (θ) − xi sin (θ))2

=
1

N

N
∑

i=1

(x
′

i)
2 cos2 (θ) +

1

N

N
∑

i=1

x2
i sin2 (θ) − 1

N

N
∑

i=1

2xix
′

i sin (θ) cos (θ)

= < (x
′

)2 > cos2 (θ)+ < x2 > sin2 (θ) − 2 < xx
′

> sin (θ) cos (θ)

=
1

2

[

< (x
′

)2 > (1 + cos (2θ))+ < x2 > (1 − cos (2θ)) − 2 < xx
′

> sin (2θ)
]

(14)

Similarly,

(σw)2 =
1

N

N
∑

i=1

d2
i

=
1

2

[

< (x
′

)2 > (1 − cos (2θ))+ < x2 > (1 + cos (2θ)) + 2 < xx
′

> sin (2θ)
]

(15)

The emittance ε = 4
√

σ2
wσ

2
w

′ may now be written in terms of < x2 >, < (x
′

)2 >, < xx
′

> and

angle θ. The minimization condition, Eq. 10 may be used to get rid of the explicit θ
dependence, leaving an equation for the emittance that depends only on the phase space
variables x and x

′

. Plugging Eq. 14 into Eq. 10:

∂(σw
′ )2

∂θ
=

1

2

∂

∂θ

[

< (x
′

)2 > (1 + cos (2θ))+ < x2 > (1 − cos (2θ)) − 2 < xx
′

> sin (2θ)
]

= − < (x
′

)2 > (sin (2θ))+ < x2 > (sin (2θ)) − 2 < xx
′

> cos (2θ)

= 0 (16)
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Using Eq. 16, x and x
′

are related to the angle, θ, as follows:

tan 2θ =
2 < xx

′

>

< x2 > − < (x′)2 >
(17)

Expressions for the sine and cosine are obtained directly from Eq. 17:

sin 2θ =
2 < xx

′

>
√

(< x2 > − < (x′)2 >)2 + (2 < xx
′

>)2
(18)

cos 2θ =
< x2 > − < (x

′

)2 >
√

(< x2 > − < (x′)2 >)2 + (2 < xx
′

>)2
(19)

Next, Eq. 18 and Eq. 19 can be plugged into Eq. 14 and Eq. 15 to get rid of the angle
dependence. This results in the following equations, Eq. 20 and Eq. 21:

σ2
w

′ =
1

2

(

< x2 > + < (x
′

)2 > −2 < xx
′

>

sin(2θ)

)

=
1

2

(

< x2 > + < (x
′

)2 > −
√

(< x2 > − < (x′)2 >)2 + (2 < xx
′

>)2

)

(20)

σ2
w =

1

2

(

< x2 > + < (x
′

)2 > +
2 < xx

′

>

sin(2θ)

)

=
1

2

(

< x2 > + < (x
′

)2 > +
√

(< x2 > − < (x′)2 >)2 + (2 < xx
′

>)2

)

(21)

So that the emittance can be written (leaving off the 4 in Eq. 9):

ε =
√

σ2
wσ

2
w′

=

√

1

4
[(< x2 > + < (x′)2 >)2 − (< x2 > − < (x′)2 >)2 − (2 < xx

′

>)2]
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=
√

< x2 >< (x′)2 > − < xx
′

>2 (22)

In the case where the mean values of the distribution of points in the x− x
′

phase space are
not zero, < x > 6= 0 and < x

′

> 6= 0, then:

σ2
x = < x2 >=

1

N

N
∑

i=1

(xi− < x >)2

σ2
x′ = < (x′)2 >=

1

N

N
∑

i=1

(x′i− < x′ >)2

σxσx′ = < xx′ >=
1

N

N
∑

i=1

(xi− < x >)(x′i− < x′ >)

Equation 22 may be written using a determinant:

ε =

√

√

√

√

∣

∣

∣

∣

∣

σ2
x σxσx′

σx′σx σ2
x′

∣

∣

∣

∣

∣

Or, making the abbreviation σxσx = σxx, σxσx′ = σxx′ and so forth, we have:

ε =

√

√

√

√

∣

∣

∣

∣

∣

σxx σxx′

σx′x σx′x′

∣

∣

∣

∣

∣

= σxσx′

√
1 − r2

where r is defined to be the correlation coefficient, r = σxσx′√
σ2

x(σx′ )2
, whose absolute value is less

than or equal to one. The correlation coefficient will be zero in the absence of correlation of
the phase space variables, x and x’.

The full expression for emittance in 6D phase space is the following:
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ε2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σxx σxx′ σxy σxy′ σxz σxz′

σx′x σx′x′ σx′y σx′y′ σx′z σx′z′

σyx σyx′ σyy σyy′ σyz σyz′

σy′x σy′x′ σy′y σy′y′ σy′z σy′z′

σzx σzx′ σzy σzy′ σzz σzz′

σz′x σz′x′ σz′y σz′y′ σz′z σz′z′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

In the absence of correlation between the phase planes, the horizontal, vertical, and
longitudinal motion may be treated independently. Many of the off-diagonal terms are zero,
reducing the 6X6 determinant to three 2X2 determinants, one for each plane.

ε2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σxx σxx′ 0 0 0 0
σx′x σx′x′ 0 0 0 0
0 0 σyy σyy′ 0 0
0 0 σy′y σy′y′ 0 0
0 0 0 0 σzz σzz′

0 0 0 0 σz′z σz′z′

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

It is possible to write the statistically measurable parameters, σx and σx′ in terms of the
Twiss parameters and the emittance. Thereby an effective β, α, and γ may be defined. This
is done by comparing the elliptical trajectory from the Hill’s equation analysis to an ellipse
defined by semi-major and semi-minor axes σw and σw′ (it doesn’t matter which is which).

The Hill’s ellipse was found to be:

γx2 + 2αxx′ + β(x′)2 = ε

While the ellipse in w-w’ space is given by:

w2

σ2
w

+
(w′)2

σ2
w′

= 1

The equation for the ellipse in w-w’ space must be transformed to x-x’ space by an inverse
rotation. Once that is done, the two equations may be directly compared to find the desired
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relationships that relate σx and σx
′ to the Twiss parameters. These are;

σx =
√

εβ

σx
′ =

√
εγ

rσxσx
′ = −αε
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