Outline – If Time Permits

- Lecture V
 - Collider Detectors Vertex and Tracking
 - Electromagnetic Calorimetry
 - Hadronic Calorimetry
 - Radiation Field, Neutrons

Particle ID

Particle type	Tracking	ECAL	HCAL	Muon
γ				
е				
μ				
Jet				
Et miss				

Use subsystems – tracking, calorimetry (ECAL, HCAL) and muon detectors to identify the SM particles.

Electromagnetic Calorimeter

Physics driver: Z width

$$\begin{split} \Gamma_{z} &= 2.5 \; GeV, M_{z} = 91.2 \; GeV \\ (dE \,/\, E)_{ECAL} < \Gamma_{z} \,/\, (2.36M_{z}) = 1.2\% \end{split}$$

EM Shower

 $t = L/X_o$

$$dE / dt = E_o b(bt)^{a-1} e^{-bt} / \Gamma(a)$$

$$t_{\text{max}} = (a-1) / b, b \sim 0.5$$

$$a \sim 1 + (\ln)y))/2$$

$$N_s \sim (E / E_c) \sim 2^{t_{\text{max}}}$$

$$t_{\text{max}} \sim \ln(E / E_c)$$

Photons, Electrons and ECAL

The CMS ECAL has a transverse segmentation ~ 1 Moliere radius. Use that fine granularity for photon ID and for track matching in the case of electrons. ECAL energy resolution is very good for E/p matching of the e track. Tracker is best below $\sim 20 \text{ GeV}$, ECAL above.

Photon Commissioning

10⁻²

0

50

100

150

Clean photon + J events ("Compton scattering with initial state gluons in the p). Photon spectrum quite clean for high Pt photons, > 100 GeV. Data /Monte Carlo agreement is good.

200 25 Photon E_T (GeV)

Electrons – Track + ECAL

ECAL endcap

$$b \rightarrow c + \mu + \nu$$

$$\sigma_{\mu} \sim 60 \qquad \mu b$$

$$R_{\mu} = \sigma_{\mu}L_{\sim}$$
 ~ 0.6 MHz

At low muon Pt the rate is dominated by HF decays

The muon trigger must have a sufficient resolution to reject these low momentum muons.

$$d\sigma / dP_{T\mu} = ae^{-P_{T\mu}/P_o}$$
$$e^{(\Delta P/P_o)/2}$$

With a steeply falling spectrum, resolution is crucial in control of trigger rates.

Muon Commissioning

CMS – DT/CSC in Fe return yoke => multiple scattering limited.

Experience from ~ 10⁹ muons recorded before beam in the LHC. Muons up to 1 TeV in cosmics – gives experience with showering muons (critical energy). LHC "halo" also used for alignment of large y muon and tracking detectors break alignment degeneracies.

EW Physics – W and Z, Electrons

Luminosity error at ~ 4%. Use W/Z calculations and van der Meer methods as a cross check.

Dilepton "Standard Candles"

Use known resonances for mass scale, mass resolution and trigger/reco efficiency – "tag and probe"

Mass Scale and Resolution

Ψ

The several "standard candles" will light our way to new discoveries. Used to cross check the momentum resolution of the tracker and the energy resolution of the ECAL.

Hadron Calorimeter - HCAL

Figure 16: Depth needed for a shower energy containment of 95 % and 99 % as a function of hadron energy. Note the logarithmic dependence of depth on incident energy [8]

E Resolution, Segmentation

 $E_{\scriptscriptstyle th} \sim 2m_{\!\pi}$ $\,$ = 0.28 GeV

As with ECAL, there is a limit due to stochastic number of cascade particles. Analogue to critical energy is the threshold for pion production. This means that hadronic calorimetry will have worse resolution than ECAL – estimate 53% stochastic coefficient.

 $\delta\eta = \delta\phi = 0.094 \sim \lambda_o / r_H$ - 13,4 $(D_c = 6)(N_I = 25)(\delta\eta)^2 / 2\pi = 0.21$ in bar

3 depth segments – 13,470 channels in barrel

Transverse size is also large, ~ inelastic interaction length. HCAL towers are coarser than ECAL -- ~ 25 ECAL towers = 1 HCAL tower. The probability to have a PU hit in a tower per bx is that factor higher.

Searches in Jet Events

Having commissioned SM, go out from under the lamp post..... First event above the Tevatron kinematic limit.....

Jet Angular Distributions

Look for more central, S wave, BSM effects. SM is t channel dominated -> flat chi distribution.

MET – "Tail" and Noise Filtering

MB events : The MET noise filtering greatly reduces the tail. An irreducible floor is set by the EW processes, which are ~ 10^7 times smaller in cross section than the inclusive MB events.

MET commissioned to ~ EW scale $-v_e$, v_{μ} , v_{τ}

Pileup/Fragmentation and Jets

As the LHC luminosity increases the pileup of events becomes more difficult. Jet fragmentation favors low energy particles. These become hard to distinguish from the particles from minimum bias events – use PF and vertex sorting for the charged particles. A jet (R = 0.5) has $N_I D < P_T > /2\pi \sim 28.6$ GeV of pileup pions which need to be removed.

 $D(z) \sim (1-z)^a / z$

$$F \sim 1 - (1 - z_{\min})^{a+1}, z_{\min} = (p_{had})_{\min} / P_{jet}$$

A 50 GeV jet has ~ 45% of its energy carried by hadrons with momenta less than 5 GeV and ~ 12% carried by hadrons with momenta less than 1 GeV. Thus the soft hadrons from the jet are easily confused with the soft pions from the pileup which then limits the achievable jet energy resolution.

FSR – Jet Spectroscopy.

fract ~ $(\alpha_s / \pi)[3\log(R) + 4\log(R)\log(2\varepsilon) + \pi^2 / 3 - 7 / 4]$

A 10 % radiation of the total jet energy outside a cone of R = 0.5 occurs ~ 12.5 % of the time. Gluon ISR and FSR is a limitation.

Demo - Calorimetry - I

This is a "classical" ECAL+HCAL. Test beam data where each sampling layer is read out.

Demo - Calorimetry - II

Pions incident on a homogeneous Pb calorimeter. This array has a large Xo to interaction length ratio so that the neutral pions from the sequential hadronic interactions are quite visible.

Particle Flow and Calorimetry

Particle-Flow in a Nut-Shell

E(jet) = E(charged) + E(photons) + E(neutral hadrons)

Basics

- Outsource 65% of the event-energy measurement responsibility from the calorimeter to the tracker
 - Emphasize particle separability and tracking
 - Leading to better jet energy precision
- Reduce importance of hadronic leakage
 - Now only 10% instead of 75% of the average jet energy is susceptible
 - Detector designs suited to wide energy range
- Maximize event information
 - Aim for full reconstruction of each particle including V0s, kinks, π⁰ etc.
 - Facilitates software compensation and application of multi-variate techniques

10% 25% 65% Entral badrons

Particle AVERAGEs

Tracking has a fractional momentum resolution that is ~ p, while calorimetry has a a resolution that goes as a constant or as the inverse sqrt of the energy. Therefore, combine the measurements so that the best resolution obtains.

To match tracks to energy deposits very fine grained , dx ~ Xo ~ dy~dz, calorimetry is needed. ILC prototypes are exploring these concepts.

Radiation Dose - CMS

The radiation dose in hadron colliders requires radiation resistant detectors and front end electronics. This is a major problem at the SLHC.

Neutrons

$$\sigma_I LTD_c (1/2\pi r_F^2) = 9.5 \times 10^{11} \ \pi^{\pm} \ / \ cm^2 \ yr$$

At r = 1 m.

Figure 20: Charged particle flux, right, and neutron flux, left, as a function of radius for calorimetry at z = 10 m [4].

Interactions in HCAL disrupt the nucleus – which de-excites and recoils – emitting neutrons. As a crude rule of thumb there are about 5 neutrons with a few MeV kinetic energy produced per GeV of absorbed hadrons.

$$3.82x10^{13} n/(cm^2 yr)$$

The intense n "sea" is ~ specific to hadronic detectors and is a serious rad issue.