U.S. Particle Accelerator School

Fundamentals of Detector Physics
 and Measurements Lab - III

Carl Bromberg
Michigan State University

Dan Green

Fermilab

June 18-22, 2012

Outline

- Lecture I

변 Constants, atoms, cross sections
m Photoelectric, TOF
me PMT, SiPM Scint, Cerenkov

- Lecture II
${ }_{a}$ Collisions, cross sections
m Multiple scattering, radiation length
m dE/dx, MIP, Range
a Critical Energy

Outline II

* Lecture III

B B fields, trajectories
a ${ }^{0}$ Quadrupoles, focal length
Drift and Diffusion
Pulse formation in unity gain and gas gain

* Lecture IV

Radiation NR, Thompson, Compton
nelativistic radiation
연 Bremm, Pair Production

LHC Accelerator - Dipoles

wrt Tevatron (at design)
 Energy \quad x 7
 luminosity $\quad \times 20$
 Large increase -> discovery

- The LHC at 1.9 K is colder than the CMB at 2.3 K .
-The LHC is the highest energy collider in the world
-The LHC has the worlds largest cryogenic plant.
-The LHC is designed to have the highest reaction rate of any collider, design value is 1 GHz .
-The associated experiments are the largest and most complex scientific instruments ever built - a 20 year effort.

LHC by the Numbers - Beams

- 2808 r.f. bunches per beam, spaced by $25 \mathrm{nsec}=7.5 \mathrm{~m}$
- Bunch intensity $\sim 1.2 \times 10^{11}$ p per bunch
- Each bunch $\sim 5 \mathrm{~cm}$ long, ~ 16 microns wide
- Each beam carries 362 MJ - the 2 beams have sufficient energy to melt ~ 1 ton of cryogenic (2 K) copper.
- Quench detection, abort and collimation. Beam dump systems are critical for safe operation.
- "Store" beams for ~ 10 hours. Protons travel ~ 10 billion km around the LHC ring ~ $65 \mathrm{AU} \sim$ round trip to Pluto -> need a good vacuum, better than the vacuum found on the Moon -10^{-10} Torr ~ 3 million molecules $/ \mathrm{cm}^{3}$. Compare to No.

Solenoid Magent

Conductors of size 2 cm in z all stacked

$$
B=4 \pi n I / c
$$ by 4 in r for a total of $n=200$ turns $/ \mathrm{m}$. Then to achieve a field of $5 \mathrm{~T}, 20.8 \mathrm{kA}$ of current is required - 3 GJ @ 4T (CMS)

World's Largest Solenoid

Dipole Fields

$$
\begin{aligned}
& B(\text { centerline })=\frac{4 \pi n I}{c}\left[\frac{(L / 2)}{\sqrt{(L / 2)^{2}+a^{2}}}\right] \equiv B_{o} \\
& B_{o} \rightarrow 4 \pi n I / \operatorname{cas} L \rightarrow \infty, C G S \\
& B \rightarrow \mu_{o} n I, M K S \\
& \vec{\nabla} x \vec{B}=0 \\
& \partial_{y} B_{z}=\partial_{z} B_{y} \sim \pm B_{o} / \ell \\
& B_{z} \sim\left(\partial_{z} B_{y}\right) y \sim \pm B_{o} y / \ell \\
& \begin{array}{ll}
\text { The fields } \\
\text { cannot } \\
\text { abruptly go }
\end{array} \\
& \partial_{x} B_{x} \sim-\partial_{z} B_{z} \sim-y\left(\partial_{z}^{2} B_{y}\right) \\
& \\
& B_{x} \cong-x y\left(\partial_{z}^{2} B_{y}\right) \\
& \text { to zero. Any } \\
& \text { real dipole } \\
& \text { has "fringe } \\
& \text { fields" at }
\end{aligned} \quad \begin{aligned}
& \text { their } \\
& \text { boundaries }
\end{aligned}
$$

Forces and Trajectories

$$
\begin{gathered}
\vec{F}=m \vec{a}=q(\vec{v} x \vec{B})=d \vec{p} / d t \\
\vec{F} \cdot \vec{v}=0 \Rightarrow|\vec{p}|=c o n s t \\
F_{c e n t}=m v^{2} / r=q v B \\
p=m v, r=a \\
a=p / e B \\
\omega_{c}=e B / m \\
d \vec{p} / d t=\frac{q}{m}(\vec{p} \times \vec{B})
\end{gathered}
$$

NR force law

Energy does not change in a B field

Circular orbit, radius $\sim \mathrm{p}$ and 1/B.

Cyclotron frequency does not depend on particle energy

SR force law - important Kinematic quantity is momentum $\quad \vec{p}=\gamma \vec{\beta} m$

Demo - E and B (NR)

Electric field accelerates a charged particle. Magnetic field bends it into a circular path constant E and B fields in the demo.

Momentum Resolution

$$
\phi_{B}=\left(\Delta p_{T}\right)_{B} / p
$$

$$
\left(\Delta p_{T}\right)_{B}=e L B=0.03 B L\left(\frac{G e V}{k G m}\right)
$$

$$
\phi_{B} \sim L / a=e L B / p
$$

$$
1 / p=\phi_{B} /\left(\Delta p_{T}\right)_{B}
$$

$$
d(1 / p)=\frac{d \phi_{B}}{\left(\Delta p_{T}\right)_{B}} \sim \frac{\left(d x_{T} / L\right)}{\left(\Delta p_{T}\right)_{B}}
$$

$$
=d p / p^{2}
$$

$$
\left(\Delta p_{T}\right)_{M S}=\frac{E_{S}}{\sqrt{2}} \sqrt{L / X_{o}}
$$

$$
d p / p \sim\left(\Delta p_{T}\right)_{M S} /\left(\Delta p_{T}\right)_{B}
$$

Suppose tracking detectors measure the helical trajectory with accuracy dx over a region of field B of length L. Over that path the B field imparts a transverse momentum impulse, causing the momentum tranverse to the field to rotate by a "bend angle".

The measured angular error leads to a fractional momentum error which goes as $\sim \mathrm{p}$.

At low momentum, since no detector is massless, multiple scattering limits the measurement error of the bend angle, leading to a \sim constant fractional momentum error.

Sagitta and Track Momentum

The sagitta s is:

$$
\begin{aligned}
& s=a(1-\cos (\phi / 2)) \sim a \phi^{2} / 8 \\
& \phi=L / a \\
& s \sim L^{2} / 8 a=0.3 B(T) L^{2}(m) / 8 P_{T}
\end{aligned}
$$

Figure of merit is BL^2. A large B field is desired but a large field volume is most important.
e.g. $\mathrm{L}=1 \mathrm{~m}, \mathrm{~B}=5 \mathrm{~T}$, Impulse $=1.5 \mathrm{GeV}, \mathrm{P}_{\mathrm{T}}=1000 \mathrm{GeV}->\mathrm{s}=$ $0.3 \mathrm{~mm}=300 \mathrm{um}$. Si strip width $\mathrm{d} \sim \mathbf{4 0 0} \mathbf{u m}, \mathrm{dx} \sim \mathbf{1 1 5} \mathbf{u m} . \mathrm{dx} / \mathrm{L}$ ~ 0.000115, so $\mathrm{dp} / \mathrm{p} \sim 7.7 \%$ for $p=1 \mathrm{TeV}$.

Note that for a uniform distribution, binary readout:

$$
\sigma^{2}=\int_{-d / 2}^{d / 2} x^{2} d x / d=d^{2} / 12, \underset{\text { with charge sharing across }}{\text { strips one can do better }}
$$

ILC Si Tracking

Designs for ILC tracking detectors are all Si (typically) with pixels for vertex detection (discussed later) and strips for tracking in the B field. A major effort is made to keep the Xo in the designs to ~ 0.1 for accurate measurement of the momentum of "soft" particles of low momentum.

ILD - Tracking Resolution

The bending power is vxB - weaker in the forward direction

The resolution due to both measurement error (high momentum) and multiple scattering (low momentum) is seen, constant and $1 / \mathrm{p}$ for $\mathrm{d}(1 / \mathrm{p})$

P Resolution vs. P - CMS

$\left(\Delta P_{T}\right)_{B}=e r B=0.3 r B \quad \mathrm{~T}, \mathrm{~m}$ units
$d\left(1 / P_{T}\right)=d P_{T} / P_{T}^{2}=d\left(\Delta \phi_{B}\right) /\left(\Delta P_{T}\right)_{B} \sim d s / e r^{2} B \quad$ FOM $\sim r^{2} \mathrm{~B}$
1.5 mrad at $1 \mathrm{TeV}, 7.7 \%$
$d P_{T} / P_{T} \sim\left(\Delta P_{T}\right)_{M S} /\left(\Delta P_{T}\right)_{B}$
$\left(\Delta P_{T}\right)_{M S}=E_{s} \sqrt{\sum L_{i} / 2 X_{o}}$
0.1 Xo , $6.4 \mathrm{MeV}-\mathrm{MS}$, res $=$ 0.0042 MS. Crossover at 54 $\mathrm{GeV}, 0.6 \%$ total
$\left(\Delta P_{T}\right)_{B}=2\left(P_{T}\right)_{\text {loop }}=e r B / 2$
"loopers" <
0.75 GeV

Exact Solutions

$$
\begin{aligned}
& d s=v d t \\
& p d \vec{p} / d s=q(\vec{p} x \vec{B}) \\
& z=z_{o}+\alpha_{z} s, s=0 a t z=z_{o}, \alpha_{z}=\text { constant } \\
& \binom{\alpha_{x}}{\alpha_{y}}=\left(\begin{array}{cc}
\cos \phi_{B} & \sin \phi_{B} \\
-\sin \phi_{B} & \cos \phi_{B}
\end{array}\right)\binom{\alpha_{x o}}{\alpha_{y o}} \\
& \left(x-x_{o}\right)=-(a / p)\left(p_{y}-p_{y o}\right) \\
& \left(y-y_{o}\right)=(a / p)\left(p_{x}-p_{x o}\right) \\
& \left(x-x_{o}-a \alpha_{y o}\right)^{2}+\left(y-y_{o}+a \alpha_{x o}\right)^{2}= \\
& a^{2}\left(\alpha_{x}^{2}+\alpha_{y}^{2}\right) \equiv a_{T}^{2}
\end{aligned}
$$

Can use for numerical, stepping, results for any B field.

The exact path is helical. Circular in a plane perpendicular to the B field direction and a straight line in direction of the B field (constant direction cosign).
$s=$ path length
The (x, y) plane has a rotation matrix for the 2 direction cosigns with angle $=$ the bend angle.

The radius of curvature refers to the momentum transverse to the B direction.

Approximate Solutions

Fig.7.4: Definitions usedin constricting the pathof a particle in a purely axial solenoidal field emitted fromthe origin at angle ϕ_{0}. The particle at radius ris located at angle ϕ ' and its momentum vector at that point has an azimuthal angle $\phi^{\prime \prime}$.

At high momentum the
bend angles are small
and simple

$$
\begin{aligned}
& \phi_{o}=0 \\
& \phi^{\prime} \sim r / 2 a_{T} \\
& \phi^{\prime \prime} \sim-r / a_{T} \sim \phi_{B}
\end{aligned}
$$

approximations are
useful

Quadrupoles

$\vec{\nabla} \times \vec{B}=0=>\frac{\partial B_{x}}{\partial_{y}}=\frac{\partial B_{y}}{\partial_{x}}=B^{\prime}$
$B_{y}=B^{\prime} x$
$B_{x}=B^{\prime} y$

Fig. 7.8: Field orientation for a quadrupole.

$$
\begin{gathered}
\vec{F}=d \vec{p} / d t=\eta m v d \vec{v} / d s=q(\vec{v} \times \vec{B}) \\
=m v^{2} d^{2} \vec{x} / d s^{2}=p v d^{2} \vec{x} / d s^{2} \\
\mathrm{ds}=v d t, \mathrm{v} \text { is constant }
\end{gathered}
$$

$$
\begin{aligned}
& \frac{d^{2} x}{d s^{2}}=+k x \\
& \frac{d^{2} y}{d s^{2}}=-k y
\end{aligned}
$$

Simple harmonic motion. Spring constant goes as \sim B gradient and ~

$$
k=q B^{\prime} / p
$$ $1 / \mathrm{p}$. Dimension of $[\mathrm{k}]=1 / \mathrm{L}^{\wedge} 2$

For accelerators and beamlines besides bending and steering the particles they need to be focused in order to transport them a long distance

Demo - Thin/Thick Lense

Ray Tracing, Spherical Lense, Parallel Rays Incident

Ray Tracing, Spherical Lense, Parallel Rays Incident

In optics there are changes in focal length as the lens becomes thicker. There is a similar behavior in a magnetic lens. Obviously there is also a "chromatic aberration" because the lens strength $\sim 1 /$ p.

Quad Doublet

$$
\begin{aligned}
& 1 / f=k L \quad \text { Quad focal length } \\
& \begin{aligned}
&\binom{x}{x^{\prime}}=\left(\begin{array}{cc}
\cos \varphi_{Q} & \sin \varphi_{Q} / \sqrt{k} \\
-\sqrt{k} \sin \varphi_{Q} & \cos \varphi_{Q}
\end{array}\right)\binom{x_{o}}{x_{o}^{\prime}}, \\
&=M_{Q}\binom{x_{o}}{x_{o}^{\prime}} \\
& \varphi_{Q}=\sqrt{k} L
\end{aligned}
\end{aligned}
$$

$$
M_{\underline{O}} \rightarrow\left(\begin{array}{cc}
1 & L \\
-k L & 1
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & 0 \\
\pm 1 / f & 1
\end{array}\right)
$$

Thin

$M_{\underline{Q}} \rightarrow\left(\begin{array}{cc}1 & L \\ -k L & 1\end{array}\right) \rightarrow\left(\begin{array}{cc}1 & 0 \\ \pm 1 / f & 1\end{array}\right)$
$M_{\text {dobblet }}=M_{\underline{Q}}(F) M_{D}(L) M_{\underline{Q}}(D) M_{D}\left(L_{o}\right)$.
$f=L / 2+\sqrt{(L / 2)^{2}+L_{0} L}$
"point to parallel"

$$
\begin{aligned}
& x=x_{0}^{\prime}\left(L_{0}+L+L L_{0} / f\right) \\
& y=y_{o}^{\prime}\left(L_{0}+L-L L_{o} / f\right)
\end{aligned}
$$

Demo - Quad Doublet

Full thick lens quadrupole matrices. There are 3 options; point to parallel, parallel to point and point to point.

Mobility in Gases

$$
\begin{aligned}
&\langle L\rangle^{-1} \cong N_{o} \rho \sigma / A \\
& \sigma \sim \pi a_{o}^{2} \\
&\left\langle v_{d}\right\rangle \sim\left(\frac{e E}{m_{e}}\right)\left(\frac{A / N_{o} \rho \sigma}{v_{T}}\right)=\frac{e E A}{N_{o} \rho \sigma \sqrt{3 k T m_{e}}} \\
& \mu \equiv \frac{\left\langle v_{d}\right\rangle}{E / \rho} \sim \text { const },\left\langle v_{d}\right\rangle \equiv \mu E\left(P_{o} / P\right) \\
& P_{o}=1 A T M=760 T o r r(S T P) \\
& \mu \sim(e / M)\left[\frac{A}{N_{o} \sigma v_{T}}\right] \\
& \mu_{A r}=1.7\left(\mathrm{~cm}^{2} / V \cdot \mathrm{sec}\right) \\
& \mu_{C O_{2}}=1.1\left(\mathrm{~cm}^{2} / V \cdot \mathrm{sec}\right) \\
& \text { e.g. } \mathrm{E}=1 \mathrm{kV} / \mathrm{cm}, \mathrm{CO} 2, \mathrm{vd}=11 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Consider the motion of ionization e in collision with molecules in a gas. They have a thermal velocity which is random and are accelerated between collisions by an electric field.

Drift velocity is the acceleration times the mean time between collisions. ~ L/vt.

Mobility is the drift velocity per E field per STP density.

Drift and Mean Free Path

Thermal energy and velocity

$$
T_{T}=M v_{T}^{2} / 2 \sim \frac{3}{2} k T
$$

$v_{T} \sim \sqrt{\frac{3 k T}{M}}$

Drift velocity

$\vec{a}=e \vec{E} / M$
$\left\langle v_{d}\right\rangle \sim a \tau$

$$
\sim\left(\frac{e E}{M}\right)\left(\frac{\langle L\rangle}{v_{T}}\right)
$$

Example of collision cross section of e on a gas - in units of $\mathrm{A}^{\wedge} 2$.

Demo - Maxwell - Boltzmann

Demo - Maxwell - Boltzmann II

40 particles in a box - vs $10^{\wedge} 23$
One can vary the volume of the box and track the number of wall collisions and the momentum transfer ~ pressure - ideal gas laws?

LAr Drift Velocity

The same analysis applies to liquids. Expect that drift velocity goes as
$\sim \mathrm{E}$ and
1/sqrt(T).
However, cross section also depends on the collision energy.

Scale of velocity is $\sim \mathrm{mm} / \mathrm{usec}$

Diffusion Eq.

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}=-D \partial^{2} \rho / \partial x^{2} \\
& \rho(x, t) \sim \frac{1}{\sqrt{D t}} e^{-x^{2} / 4 D t} \\
& \sigma_{x_{T}} \sim \sqrt{2 D t} \sim \sqrt{2 v_{T}\langle L\rangle\left(x /\left\langle v_{d}\right\rangle\right)} \\
& \begin{aligned}
\sigma_{x_{T}} & \sim \sqrt{\frac{v_{T}^{2} x}{a}},\left\langle v_{d}\right\rangle \sim a\langle L\rangle / v_{T} \\
\sigma_{x_{T}} & \cong \sqrt{\left(\frac{2 k T}{e E}\right) x} \\
\sigma_{x_{T}} & \cong\left[\sqrt{\frac{2 k T}{e V_{0}}}\right] x
\end{aligned}
\end{aligned}
$$

A pointlike charge distribution will spread out as it drifts due to the stochastic nature of the collisions.

The 1-D diffusion Eq. defines a diffusion coefficient D. The longitudinal spread of the charge goes $\mathrm{a} \sim \operatorname{sqrt}(\mathrm{t})$ which is characteristic of random processes.

Competition between thermal energy $\sim \mathrm{kT}$ and electric acceleration $\sim \mathrm{V}$

Demo - Heat Diffusion

The heat equation has diffusion built in. An initial state of temperature spreads out with time. (n.b. wave packets in quantum mechanics).

Drift/Diffusion in Gases

Transverse Diffusion for different gas mixtures

For gases with an external field of
$\sim 5 \mathrm{kV} / \mathrm{cm}$ a vd of $\sim 5 \mathrm{~cm} / \mathrm{usec}$ is typical.

The transverse size for a 1 cm drift is typically $\sim 0.2 \mathrm{~mm}$. This spread will limit the ultimate spatial resolution

Pulse Formation - I

$$
\begin{aligned}
d U & =Q_{o} d Q(t) / C=F d x \\
& =[q(t) E]\left[\left\langle v_{d}\right\rangle d t\right] \\
d Q & =\frac{q(t) E}{V_{o}}\left(\left\langle v_{d}\right\rangle d t\right) \\
q(t) & =q_{s} \text { for } t<\tau_{d}^{\prime},=0, t>\tau_{d}^{\prime}, \tau_{d}^{\prime} \equiv x_{o} /\left\langle v_{d}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
I(t) & =\frac{q_{s}}{\tau_{d}^{\prime}}, t<\tau_{d}^{\prime}=0, t>\tau_{d}^{\prime} \\
Q(t) & =q_{s} t / \tau_{d}^{\prime} \\
& \leq q_{s}\left(x_{o} / d\right)
\end{aligned}
$$

Current is constant. qs is ionization charge, $\mathrm{Q}(\mathrm{t})$ is $\sim \mathrm{t}$ and is the electrode charge

Look at ionization in "unity gain" devices.
Devices have energy U stored in an applied E field. Ionization charge causes a change in energy, dU as it moves in E to the collecting electrode.

Source charge qs is produced at a point and drifts to electrodes a distance xo in time td'.

Pulse Formation - II

$$
\begin{aligned}
& d Q(t)=q(t)\left\langle v_{d}\right\rangle d t\left[E / V_{o}\right]=\left[q(t) \mu E^{2} / V_{o}\right] d t \\
& \frac{d Q(t)}{d t}
\end{aligned} \begin{array}{rl}
q(t) & =q_{s}\left(1-\frac{t}{\tau_{d}}\right), t<\tau_{d} \\
& =0 \\
& =d / t) \mu E^{2} / V_{o} \\
\begin{aligned}
\tau_{d} & =t>v_{d}>
\end{aligned} \\
I(t) & =\left(q_{s} / \tau_{d}\right)\left(1-t / \tau_{d}\right) \\
\int I & I(t) d t \equiv Q(t) \\
& =q_{s}\left[y-y^{2} / 2\right], y=t / \tau_{d}
\end{array}
$$

Line ionization. In this case the ionization is a line from electrode to electrode - a "gap" of length d.
$q(t)$ is charge remaining in the "gap" - decreases linearly as charge is swept up by the field. I9t) is electrode current, decreasing linearly.

Lorentz Angle

$$
\begin{aligned}
& \vec{F}_{F}=\vec{p} / \tau, \vec{F}=q(\vec{E}+\vec{\beta} \times \vec{B})+m c \vec{\beta} / \tau=m \vec{a} \\
& \vec{a}=0 \text { when } \vec{v}=-\frac{q \tau}{m}(\vec{E}+\vec{\beta} \times \vec{B}) \\
& \left\langle\vec{v}_{d}^{\prime}\right\rangle=\frac{-e \tau / m}{\left[1+\left(\omega_{c} \tau\right)^{2}\right]}\left[\vec{E}+\left(\omega_{c} \tau\right) \hat{B} \times \vec{E}+\left(\omega_{c} \tau\right)^{2}(\hat{B} \cdot \vec{E}) \hat{B}\right]
\end{aligned}
$$

$$
\omega_{c}=e B / m
$$

$$
\vec{E} \perp \vec{B}
$$

$$
\tan \varphi_{L}=\omega_{c} \tau
$$

Angle in E,B
plane between
E and vd, caused by B

For ionization drifting in combined E and B fields the path is more complicated. Take tau as the mean time between collisions where the ionization responds to E and B and use that to represent the force for diffusion. The new variable is the cyclotron frequency which describes the NR circular motion in the B field. Note that in strong B fields the diffusion of the ionization can be greatly reduced-TPC.

B and Reduced Diffusion

$\left\langle\vec{v}_{d}^{\prime}\right\rangle=\frac{\left[\vec{v}_{d}+\omega_{c} \tau\left(\hat{B} \times \vec{v}_{d}\right)\right]}{\left[1+\left(\omega_{c} \tau\right)^{2}\right]}$
$\left\langle v_{d}^{\prime}\right\rangle=\left\langle v_{d}\right\rangle / \sqrt{1+\left(\omega_{c} \tau\right)^{2}}$

TPC - drift long distances with much reduced diffusion of the charge. The drift time is longer, but the diffusion of charge is reduced to that the position resolution of the ionization is improved.

TPC Construction

Background: TPC

Ouluc conhisiment volum * Simulated 2000 bunch crossings (BXs) of beam background
Central ekctodede * For TPC, conservatively take drift velocity to be $4 \mathrm{~cm}_{\mathrm{\mu}} \mathrm{~s}^{-1}$
Inner containment volun

* Therefore fill TPC with 150 BXs of background shifted in z
* First order attempt to merge unresolvable hits
* Superimpose on fully-hadronic top-pair events at 500 GeV

150 BXs of pair background

ILD proposal for ILC detector. The time to collect the charge is not a
 severe constraint at the ILC

ArgoNeuT Neutrino Event

Pulse Formation in PWC

$$
\begin{aligned}
& E=2 \lambda / r \\
& V_{o}=2 \lambda \ln (b / a), V(r)=V_{o} \ln (r / a) / \ln (b / a) \\
& E(r)=\frac{\left(V_{o} / r\right)}{[\ln (b / a)]}, \quad v_{d}=d r / d t=\mu(2 \lambda / r)
\end{aligned}
$$

E near sense wire

$$
\begin{aligned}
& d N(r)=N(r) \alpha d r \quad \text { E multiply by impact in high E near the wire } \\
& N(r)=N_{o} e^{\alpha r} \\
& \langle I\rangle_{A} \sim 26 \mathrm{eV} \\
& \text { typical ionization potential in the gas. } \\
& d V=\frac{q_{s}}{C V_{o}} E(r) d r \\
& \int_{a}^{r} r d r=\mu[2 \lambda] \int_{o}^{t} d t \\
& V^{-}=\int_{a}^{N_{a} a} d V, \quad V^{+}=\int_{N a}^{b}(-d V) \\
& V^{-}=\frac{q_{s}}{C} \frac{\ln (N)}{\ln (b / a)}, \quad V^{+}=\frac{q_{s}}{C} \frac{\ln (b / N a)}{\ln (b / a)} \gg V^{-} \\
& r=a \sqrt{1+4 \mu \lambda t / a^{2}} \\
& \equiv a \sqrt{1+t / \tau_{o}}, \quad \tau_{o}=a^{2} / 4 \mu \lambda
\end{aligned}
$$

Motion of e to the wire and positive ions to the wall. Ion motion makes for the detected signal. Ions with mobility u move in E field defined by lambda.

PWC/Drift Electrostatics

In a drift chamber there are both sense wires and field shaping wires to provide a ~ uniform E field $=>$ a constant drift velocity so that a time of arrival of the ionization => the distance from the wire.

Not a unity gain device like LAr. Gas multiplication near the wire in the high field region of the PWC. The pulse has a short rise time and a long tail. The characteristic time is set by drifting a distance \sim a in a field $\mathrm{E}(\mathrm{a})$;

$$
\begin{aligned}
\mu & =\left\langle v_{d}\right\rangle / E \sim a /\left(\tau_{o} E(a)\right) \\
\tau_{o} & \sim a / \mu E(a)=a^{2} / 2 \mu \lambda
\end{aligned}
$$

Pulse Formation - II

$$
\begin{aligned}
I(t) & =q_{s} \mu E^{2} / V_{o} \\
& =\frac{q_{s} \mu\left(2 \lambda / r^{2}\right)}{\ln (b / a)} \\
I(t) & =\frac{q_{s}\left(2 \lambda \mu / a^{2}\right)}{\ln (b / a)\left(1+t / \tau_{o}\right)} \\
I(t) & =\left[\frac{q_{s} / 2 \tau_{o}}{\ln (b / a)}\right] /\left(1+t / \tau_{o}\right)=I(0) /\left(1+t / \tau_{o}\right)
\end{aligned}
$$

$$
\begin{aligned}
E(a) & =160 \mathrm{kV} / \mathrm{cm} \\
\mu_{A} & \sim 1.5 \mathrm{~cm}^{2} /(V \cdot \mathrm{sec}) \\
\tau_{o} & =8.3 \mathrm{nsec}
\end{aligned}
$$

A typical time constant value

Time structure of the PWC pulse. There is a
rapid rise followed by an inverse t falloff with a characteristic time constant.

Induced Charges - Pads

$$
E_{11}=0
$$

$$
E_{T}(r) \sim\left(q_{s} / r^{2}\right)(2 a / r) \sim \sigma(r)
$$

$$
q_{p}=\int_{-d / 2}^{d / 2} \int_{\infty}^{\infty}\left(2 q_{s} a / r^{3}\right) d y d z
$$

$$
=q_{s}\left(\theta_{1}-\theta_{2}\right) / \pi, \pm d / 2 a=\tan \left(\theta_{1,2}\right)
$$

$$
q_{p} / q_{s}=\frac{\tan ^{-1}(d / 2 a)}{\pi} \rightarrow \frac{1}{2}
$$

The motion of the ions capacitively induces a charge on the other electrode. Used to get an additional "pad" signal

Fig. 8.15: a) Geometry for deriving the induced surface charge on a pad, σ, for source charge q_{s} at height $=a$ above the pad. b) Geometry for infinitely long strip electrode of width d . orthogonal to the wire => " 3 d readout" - e.g. TPC

Pad Charges - 3d

wire

Use the electrodes needed for field shaping in a drift chamber to provide another independent coordinate. In this specific case, the distance along the wire.

Fig. 8.16: Relationship of the pad charge ratio to the position along the wire for the structure shown in Fig. 8.6. (From Ref. ll with.pormission).

