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Overview

1. Fundamental lower limit on vertical emittance from synchrotron
radiation

2. Generation of vertical emittance from coupling and dispersion

3. Coupling and dispersion generated by alignment errors

4. Ground motion
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Fundamental lower limit on vertical emittance from
synchrotron radiation

I Natural horizontal emittance is given by

ε0 = Cqγ
2 I5
I2 − I4

(1)

with the synchrotron radiation integrals

I2 =

∮
1

ρ2
ds (2)

I4 =

∮
Dx

ρ

(
1

ρ2
+ 2k1

)
ds with k1 =

e

p0

∂By

∂x
(3)

I5 =

∮
Hx

|ρ|3
ds with Hx = γxD

2
x + 2αxDxDpx + βxD

2
px(4)
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Vertical emittance in a storage ring

I Assume horizontal and vertical motion are independent of each other:
If we could build a totally flat ring, i.e.
Dy = Dpy ⇒ Hy = 0 ⇒ I5y = 0

I This assumes that photons are always emitted exactly forward, which
is not true

I Photons are actually emitted in a cone with opening angle 1/γ

I This results in exciting vertical betatron oscillations leading to a
non-zero vertical emittance
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Fundamental Lower Limit

I Detailed analysis results in

εy ,min =
13

55

Cq

Jy I2

∫
βy

|ρ|3
ds (5)

This can be approximated to

εy ,min ≈
1

4

〈βy 〉Cq

Jy I2

∫
1

|ρ|3
ds =

〈βy 〉
4

Jz

Jy

σ2
δ

γ2
(6)

I Assuming typical parameters for a damping ring (βy = 20m, Jz = 2,
Jy = 1, σδ = 10−3 and γ = 104) one gets εy ,min ≈ 0.1 pm
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Vertical emittance in practice

I In a storage ring, the vertical emittance is usually dominated by two
effects:

I Residual vertical dispersion
I Betatron coupling

Both of those are mainly caused by
I tilts of dipole magnets around the beam axis
I vertical alignment errors of quadrupoles
I tilts of quadrupoles
I vertical alignment errors of sextupoles
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Steering Errors

I Lead to distortion of closed orbit which generates vertical dispersion.
Orbit distortion leeds to beam being offset in sextupoles resulting in
betatron coupling

I vertical steering can be created by:
I a tilted dipole resulting in the magntic field not being exactly vertical
I vertical misalignment of a quadrupole resulting at a horizontal

magnetic field at the location of the reference trajectory

Ina Reichel (Berkeley Lab) Coupling and Alignment June 2012 7 / 40



Rotated quadrupoles

I Tilted quadrupole results in the field being a mixture or a normal and
a skew quadrupole field

I Skew quadrupole field provides a vertical kick the size of which
depends on the horizontal offset in the quadrupole

I Some of the quantum excitation that creates the horizontal emittance
feeds into the vertical plane, blowing up the vertical emittance
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Misaligned sextupoles

I A vertical offset in a sextupole has the same effect as a skew
quadrupole

I Sextupole field is given by

Bx = k2xy (7)

By =
1

2
k2(x

2 − y2) (8)

Vertical offset (y → y + ∆y) results in

Bx = k2∆y x + k2xy (9)

By = −k2∆y y +
1

2
k2(x

2 − y2)− 1

2
k2∆y2 (10)

I The first term in each expression represents a skew quadrupole with a
strength of kz = k2∆y
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Closed Orbit Distortion From Steering Errors

I Use action angle variables Ay and φy

y =
√

2βyAy cos φy (11)

py = −

√
2Jy

βy
(sinφy + αy cos φy ) (12)

I A steering error at s = s0 gives a vertical kick which results in a
change ∆θ of the vertical momentum

I The trajectory will result in a closed orbit when√
2βy0Ay0 cos(φy0 + µy ) =

√
2βy0Ay0 cos φy0 (13)

and

−

√
2Jy0

βy0
(sin(φy0 + µy ) + αy0 cos(φy0 + µy )) (14)

= −

√
2Jy0

βy0
(sinφy0 + αy0 cos φy0)−∆θ (15)
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Closed Orbit Distortion From Steering Errors (cont’d)

I Solving the equations yields

Ay0 =
βy0∆θ2

8 sin2 πνy
(16)

φy0 = πνy (17)

where νy = µy/2π is the vertical tune

I Note: If the tune is an integer, the smallest steering error will kick the
beam out of the ring

I We can now write the closed orbit at any point in the ring as

yCO(s) =

√
βy (s0)βy (s)

2 sinπνy
∆θ cos(πνy + µy (s; s0)) (18)
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Closed Orbit Distortion From Steering Errors (cont’d)

I Adding up all distortions around the ring, we get

yCO(s) =

√
βy (s)

2 sinπνy

C∫
o

√
βy (s ′)

dθ

ds ′
cos(πνy + µy (s; s ′)) ds (19)
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Closed Orbit Distortions from Quadrupole Alignment
Errors

I To estimate the effect of quadrupole misalignment on the closed error
we can use the closed orbit equation. A quadrupole with integrated
strength k1L which is vertically misaligned by ∆Y , the steering is

dθ

ds
= (k1L)∆Y (20)

I Using equation 19 we can calculate the square of the distortion

I Averaging yields〈
y2
CO(s)

βy (s)

〉
=

〈∆Y 2〉
8 sin2 πνy

∑
quads

βy (k1L)2 (21)
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Closed Orbit Errors and Vertical Emittance

I To reach small vertical emittance, vertical closed orbit distortions are
a concern for two reasons:

1. vertical steering creates vertical dispersion
2. vertical orbit errors lead to vertical offsets in sextupoles which then act

as skew quadrupoles
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Betatron coupling

I Betatron coupling describes the effects that can arise when the
vertical motion depends on the horizontal motion and vice versa.

I Skew quadrupole: A particle passing through with a horizontal offset
will get a vertical kick, thus coupling horizontal and vertical motion.

I Skew quadrupoles are often caused by tilted quadrupoles or
misaligned sextupoles

I Full treatment of betatron coupling is quite complex and different
formalisms can be used
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Hamilton’s equations

I Hamiltonian for the motion of a single particle:

H = H(φx ,Ax , φy ,Ay , s) (22)

dAx

ds
= − ∂H

∂φx

dAy

ds
= − ∂H

∂φy

dφx

ds
=

∂H

∂Ax

dφy

ds
=

∂H

∂Ay

I Hamiltonian for a prticle moving along a linear, uncoupled beam line:

H =
Ax

βx
+

Ay

βy
(23)

I Hamiltonian for a skew quadrupole:

H =
1

2
p2
x +

1

2
p2
y − ksxy (24)
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Equations of motion in a coupled beam line

I The “focusing” effect of a skew quadrupole is represented by one
term in the Hamiltonian

ksxy = 2ks

√
βxβy

√
AxAy cos φx cos φy (25)

I Therefore the Hamiltonian for a beam line with distributed skew
quads can be written as

H =
Ax

βx
+

Ay

βy
− 2ks(s)

√
βxβy

√
AxAy cos φx cos φy (26)

I It’s difficult to solve the equation of motion as the β-functions and ks

are functions of s.
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Equations of motion in a coupled beam line (cont’d)

I Can be simplified by “averaging” the Hamiltonian

H = ωxAx + ωyAy − 2κ
√

AxAy cos φx cos φy (27)

where ωx , ωy and κ are constants.

I ωx and ωy are the betatron frequencies

ωx ,y =
1

C

C∫
0

ds

βx ,y
(28)

I Rewrite the coupling term

H = ωxAx +ωyAy−κ−
√

AxAy cos(φx−φy )−κ+

√
AxAy cos(φx +φy )

(29)
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Equations of motion in a coupled beam line (cont’d)

I The constants κ± represent the skew quadrupole strength averaged
around the ring. Taking into account that the kick depends on the
betatron phase:

κ±e iχ =
1

C

C∫
0

e i(µx±µy )ks

√
βxβy ds (30)

I Assuming κ− � κ+ we can drop one term from the Hamiltonian:

H = ωxAx + ωyAy − κ−
√

AxAy cos(φx − φy ) (31)
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Equations of motion in a coupled beam line (cont’d)

I With this we get for the equations of motion

dAx

ds
= − ∂H

∂φx
= κ−

√
AxAy sin(φx − φy ) (32)

dAy

ds
= − ∂H

∂φy
= κ−

√
AxAy sin(φx − φy ) (33)

dφx

ds
=

∂H

∂Ax
= ωx +

κ−
2

√
Ay

Ax
cos(φx − φy ) (34)

dφy

ds
=

∂H

∂Ay
= ωy +

κ−
2

√
Ax

Ay
cos(φx − φy ) (35)

Ina Reichel (Berkeley Lab) Coupling and Alignment June 2012 20 / 40



Equations of motion in a coupled beam line (cont’d)

I The equations of motion are rather difficult to solve. However we are
not interested in a general solution, just in some properties of some
special cases.

I Note that the sum of the actions is constant (in all cases):

dAx

ds
+

dAy

ds
= 0 Ax + Ay = constant (36)

If φx = φy , the rate of change of each action is zero:

If φx = φy then
dAx

ds
=

dAy

ds
= 0 (37)

I If we can find a solution with φx = φy for all s, then the actions will
remain constant.
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Fixed point solutions to the equations of motion in a
coupled beam line

I From the equations of motion we find that if

φ + x = φy and
dφx

ds
=

dφy

ds
(38)

then

Ay

Ax
=

√
1 + κ2

−/∆ω2 − 1√
1 + κ2

−/∆ω2 + 1
(39)

where ∆ω = ωx − ωy
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Fixed point solutions to the equations of motion in a
coupled beam line (cont’d)

I If we use Ax + Ay = A0 where A0 is a constant, then we have the
fixed point solution

Ax =
1

2

1 +
1√

1 + κ2
−/∆ω2

A0 (40)

Ay =
1

2

1 +
1√

1− κ2
−/∆ω2

A0 (41)

I Fixed point actions are well separated for κ− � ∆ω but approach
each other for κ− � ∆ω
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Fixed point solutions to the equations of motion in a
coupled beam line (cont’d)

The condition at which the tunes are equal (or differ by an exact integer)
is known as the difference coupling resonance.
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Equillibrium Emittances

I The emittance may be defined as the betatron action averaged over
all particles in the beam

εx = 〈Ax〉 and εy = 〈Ay 〉 (42)

I Due to synchrotron radiation damping the betatron actions of the
particles will only change slowly, i.e. on the timescale of the radiation
damping, which is slow compared to the timescale of betatron
oscillations
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Equillibrium Emittances (cont’d)

I In that case, the actions of most particles must be in the correct ratio
for a fixed point solution to the equations of motion. As a result if we
assume εx + εy = ε0 being the natural emittance of the storage ring,
the equillibrium emittances are

εx =
1

2

1 +
1√

1− κ2
−/∆ω2

 ε0 (43)

εy =
1

2

1− 1√
1− κ2

−/∆ω2

 ε0 (44)

I The model appears to be rather simplistic and we did gloss over many
subtle issues. However if you do a tune scan in a lattice code (or a
real accelerator for that matter) the emittances behave as expected.
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Measuring the Coupling Strength

I There is an elegant technique for measuring the coupling strength κ.
Using the fixed point solution, the Hamiltonian becomes

H = ωxAx + ωyAy − κ−
√

AxAy (45)

=
(√

Ax

√
Ay

)
·
(

ωx −1
2κ−

−1
2κ− ωy

)
·
( √

Ax√
Ay

)
(46)

I The normal modes can be constructed using eigenvectors of the
matrix in the final expression. The frequencies of these normal modes
are the eigenvalues of this matrix. These are the frequencies at which
a particle (or beam) will resonate if driven by an external oscillator

I The normal mode frequencies are

ω± =
1

2

(
ωx + ωy ±

√
κ2
− + ∆ω2

)
(47)

I Notice that as ∆ω → 0 the measured tunes are separated by κ−
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Difference and Sum Coupling Resonances

I Recall that the skew quadrupupoles introduced two terms into the
Hamiltonian:

H = ωxAx +ωyAy−κ−
√

AxAy cos(φx−φy )−κ+

√
AxAy cos(φx +φy )

(48)
We have assumed that the third term dominates over the fourth. In
this case we have the difference resonance:

I Sum of the actions is constant
I At a fixed point solution, the angle variables remain equal, and the

actions are in a fixed ratio determined by κ−∆ω

I If the fourth term dominates, the behaviour is totally different, as can
be seen by writing down the equations of motion. There are no fixed
point solutions and the actions can grow indefinitely.

I The fourth term can have a strong effect if the sum of the tunes is
close to an integer: sum resonances are to be avoided
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Coupling, vertical emittance and magnet alignment

I Major sources of coupling in storage rings are quadrupole tilts and
sextupole misalingment

I Look at alignment tolerance to achieve a specified vertical emittance
in a given ring

I It is sufficient to find an expression for κ− ∆ω in terms of optical
functions, magnet parameters and rms misalignment

I We start with

κe iχ

∆ω
=

1

2π∆ν

C∫
0

e i(µx−µy )ks

√
βxβy ds (49)

I Taking the modulus squared, and using (for sextupoles) ks = k2∆y :( κ

∆ω

)2
≈
〈∆Y 2

S 〉
4π2∆ν2

∑
sextupoles

βxβy (k2l)
2 (50)
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Coupling, vertical emittance and magnet alignment
(cont’d)

I The value obtained this way is much larger than the real allowed
alignment tolerances as it does not take into account a few things:

I The closed orbit distortions will contribute to offsets in sextupoles;
orbit amplification factors can significantly reduce the alignment
tolerances by a factor of 10 or 20

I We have not made allowances for contributions of the vertical
dispersion to the vertical emittance
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Vertical dispersion

I Equation of motion for the trajectory of a particle with momentum P:

d2y

ds2
=

e

P
Bx (51)

I For small energy deviation δ:

P ≈ (1 + δ)P0 (52)

The horizontal field to the first order in derivatives:

Bx ≈ B0x + y
∂Bx

∂y
+ x

∂Bx

∂x
(53)

I Consider a particle following an off-momentum orbit:

y = Dyδ and x = Dxδ (54)
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Vertical dispersion

I Combining equations, we find

d2Dy

ds2
− k1Dy ≈ −k0s + k1sDx (55)

I This is similar to the “equation of motion” for the closed orbit

d2yCO

ds2
− k1yCO ≈ −k0s + k1sxCO (56)

I We can therefore generalise the relationship between the closed orbit
and the quadrupole misalignments, to apply to the dispersion:〈

D2
y (s)

βy (s)

〉
=

〈∆Y 2
Q〉

8 sin2 πνy

∑
quads

βy (k1L)2 +
〈∆Y 2

S 〉
8 sin2 πνy

∑
sext

D2
x βy (k2L)2

(57)
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Vertical Dispersion and Vertical Emittance

I Now we need to relate the vertical dispersion to the vertical
emittance. Using the same equation as for the horizontal emittance:

εy = Cqγ
2 I5y

Jy I2
(58)

with the synchrotron radiation integrals

I2 =

∮
1

ρ2
ds (59)

I5 =

∮
Hx

|ρ|3
ds with Hx = γxD

2
x + 2αxDxDpx + βxD

2
px(60)

If the vertical disperion is generated randomly, then it will, in general,
not be correlated with the curvature 1/ρ of the reference trajectory.
Therefore we can write

I5y ≈ 〈Hy 〉
∮

1

|ρ|3
ds = 〈Hy 〉I3 (61)
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Vertical Dispersion and Vertical Emittance

I We now get for the vertical emittance

εY ≈ Cqγ
2〈Hy 〉

I3
Jy I2

(62)

I Using the natural energy spread

σ2
δ = Cqγ

2 I3
Jz I2

(63)

we get

εy ≈
Jz

Jy
〈Hy 〉σ2

δ (64)
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Vertical Dispersion and Vertical Emittance (cont’d)

I Comparing the action

2Ay = γyy2 + 2αyypy + βyp2
y (65)

and the H-function

Hy = γyD2
y + 2αyDyDpy + βyD2

py (66)

I This implies that we can write

Dy

√
βyHy cos φDy

〈
D2

y

βy

〉
=

1

2
〈Hy 〉 (67)

I Combining with equation 64 we get

εy ≈ 2
Jz

Jy

〈
D2

y

βy

〉
σ2

δ (68)
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Dispersion and Coupling Contributions to the Vertical
Emittance

I Together with our previous results (including quadrupole tilts) we get〈
D2

y

βy

〉
≈

〈∆Y 2
Q〉

8 sin2 πνy

∑
quads

βy (k1L)2

+
〈∆Θ2

Q〉
8 sin2 πνy

D2
x βy (k1L)2 +

〈∆Y 2
S 〉

8 sin2 πνy

∑
sexts

D2
x βy (k2L)2(69)

to relate the expected vertical emittance generated by dispersion with
the rms quadrupole and sextupole alingment errors.

I To this we need to add the contribution from vertical coupling

εy ≈
1

2

(
1− 1√

1 + κ2/∆ω2

)
ε0 (70)

where( κ

∆ω

)2
≈

〈Θ2
Q〉

4π2∆ν2

∑
quads

βxβy (k1l)
2 +

∠∆Y 2
S 〉

4π2∆ν2

∑
sexts

βxβy (k2l) (71)
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Ground motion

I Ground moving means magnets in the ring move which can negatively
impact the performance

I Two main types:

1. Slow movements, e.g. tides
2. Fast movements, e.g. vibrations due to nearby highway
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Slow movements

I Water table and earth tides can cause distortions of the ring or
circumference changes

I Usually slow and easily corrected by automated feedback

I Although earth tides are minuscule, because of the large momentum
compaction factor they can result in a measurable change of the
beam energy
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Tides measured at LEP
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Fast movements
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