Introduction to Accelerator Optics

An Introduction to the USPAS'12 Course "Storage And Damping Ring Design"

M. Pivi SLAC

(with slides from previous classes)

Introduction

ATF2 LAYOUT

Introduction

- The design orbit is the ideal orbit on which the particles should move.
- We need to i) bend the particles and ii) continuously focus the beam into the orbit.
- Both bending and focusing is accomplished with electromagnetic forces.
- The Lorentz Force is

$$
\vec{F}=m a=e(\vec{E}+\vec{v} \times \vec{B})
$$

|| Optics are essential to guide the beam through the accelerator

- Optics (lattice): distribution of magnets that direct \& focus beam

- Lattice design depends upon the goal \& type of accelerator
- Linac or synchrotron
- High brightness: small spot size \& small divergence
- Physical constraints (building or tunnel)

The lattice must transport a real beam not just an ideal beam

Types of magnets \& their fields:dipoles

Dipoles:
Used for steering

$$
\begin{aligned}
& B_{x}=0 \\
& B_{y}=B_{0}
\end{aligned}
$$

IHe Types of magnets \& their fields: quadrupoles

Quadrupoles:
Used for focusing

$$
\begin{aligned}
& B_{x}=K y \\
& B_{y}=K x
\end{aligned}
$$

Iliit
 The quadrupole magnet $\&$ its field

Quadrupole Field

- Note: A quadrupole magnet will focus in one plane, and defocus in the other

Because of the $v \times B$ term in $\vec{F}=m a=e(\vec{E}+\vec{v} \times \vec{B})$

Types of magnets \& their fields: sextupoles

Sextupoles:
Used for chromatic correction
$B_{x}=2 S x y$
$B_{y}=S\left(x^{2}-y^{2}\right)$

IHE Charged particle motion in a uniform（dipole）magnetic field

粦 Let
$\mathbf{B}=\mathrm{B}_{0} \hat{\mathbf{y}}$
粦 Write the Lorentz force equation in two components， z and \perp

$$
\frac{d p_{y}}{d t}=0 \quad \text { and } \quad \frac{d \mathbf{p}_{\perp}}{d t}=q\left(\mathbf{v}_{\perp} \times \mathbf{B}\right)=\frac{q B_{o}}{\gamma m_{o}}\left(\mathbf{p}_{\perp} \times \hat{\mathbf{y}}\right)
$$

粦 $=\Rightarrow p_{y}$ is a constant of the motion
粦 Since B does no work on the particle，$\left|p_{\perp}\right|$ is also constant
\rightarrow The total momentum \＆total energy are constant
\rightarrow For $\mathrm{p}_{\mathrm{y}, 0} \neq 0$ ，the orbit is a helix

\|H: To analyze particle motion we will use local Cartesian coordinates

Change dependent variable from time, t, to longitudinal position, s
The origin of the local coordinates is a point on the design trajectory in the bend plane

The bend plane is generally called the horizontal plane
The vertical is y in American literature \& often z in European literature

Equation of motion in Circular Accelerator

- As coordinate, it is more convenient to use the slope or angle:

$$
x^{\prime}=\frac{d x}{d s} \quad \text { or equivalently } \quad x^{\prime}=\frac{p_{x}}{p_{0}}
$$

- In circular accelerator the particles equation of motion to first order are written:

where $1 / \rho^{2}$ is the dipole weak focusing term and the $\Delta \mathrm{p} / \mathrm{p}$ term is present for off-momentum particles

Betatron oscillation and beta function

- In the case of on-momentum particle $p=p_{0}$ or $\Delta p=0$

$$
x^{\prime \prime}+K(s) x=0
$$

Hill's equation
It can be shown that the solution of the Hill equation is given by:

$$
x(s)=a \sqrt{\beta(s)} e^{ \pm i \Phi(s)}
$$

$$
\text { with } \Phi^{\prime}(s)=\frac{1}{\beta(s)} \quad \text { and } \quad a=\text { const }
$$

Betatron oscillations and beta function

Thus, the most general solution to the Hill equation is a pseudo-harmonic oscillation. Amplitude and wavelenght depend on the coordinate s and are both given in term of the beta function:

$$
\text { amplitude } \propto \sqrt{\beta(s)} ; \quad \lambda(s)=2 \pi \beta(s)
$$

Another key parameter is the "alpha" function:

$$
\alpha(s)=-\frac{1}{2} \beta^{\prime}(s)
$$

which represents the slope of the beta function.

Tune and resonances

- The particle "phase" advance is also computed in term of the beta function

$$
\Phi(s)=\int_{s_{0}}^{s} \frac{1}{\sqrt{\beta(t)}} d t \quad \longleftarrow \quad \begin{aligned}
& \text { Phase computed } \\
& \text { between two } \\
& \begin{array}{l}
\text { locations of the } \\
\text { beam line }
\end{array}
\end{aligned}
$$

- The "tune" or Q value (often denoted also with v) is defined as the number of betatron oscillations per revolution in a circular accelerator:

$$
Q=\frac{1}{2 \pi} \oint \frac{d s}{\beta(s)}
$$

\longleftarrow Integral over the circumference

Matrix formalism

- Typically to track particles, instead of solving the equations of motion we use matrices to represent the action of the magnetic elements in the beam line. Simpler and more manageable.
- Each beam line element is represented by a matrix.
- The 6 particle coordinates are represented by a vector.
- Transport is obtained by a series of matrix multiplications. Total transport "map".

The particle coordinates and vector

- Each particle in the beam is described by 6 coordinates

$$
\boldsymbol{x}=\left(\begin{array}{c}
x \\
p x \\
y \\
p y \\
z \\
\delta
\end{array}\right)
$$

The particle coordinates and vector

- The coordinates are expressed with respect to the reference particle. Since the reference particle has coordinates $x=x^{\prime}=y=y^{\prime}=z=\delta=0$, thus it is represented by the vector

$$
\boldsymbol{x}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The particle coordinates and vector

- In the vector representation

$$
\boldsymbol{x}=\left(\begin{array}{c}
x \\
p x \\
y \\
p y \\
z \\
\delta
\end{array}\right)
$$

where $\delta=d p / p 0$ is the relative energy spread with respect to the reference particle.

Also the normalized momentum: $p x=p / p 0$ and $p x$ $=x^{\prime}=d x / d s$! In this case $p x$ (or x^{\prime}) are expressed in radians since they represent an angle.

Tracking of particles

- First order (linear) transport of particles around the ring is obtained by matrix multiplications, where each magnetic element, dipole, quadrupoles, RF cavities etc. is represented by a "linear" matrix:
$\mathrm{M}(\mathrm{s} 1: \mathrm{s} 0)$

$$
\left(\begin{array}{c}
x \\
p x \\
y \\
p y \\
z \\
\delta
\end{array}\right)_{s=s 1}=M(s 1: s 0)\left(\begin{array}{c}
x \\
p x \\
y \\
p y \\
z \\
\delta
\end{array}\right)_{s=s 0}
$$

Piecewise Method -- Matrix Formalism

- Arbitrary trajectory, relative to the design trajectory, can be computed via matrix multiplication

$$
\binom{x_{N}}{x_{N}^{\prime}}=M_{N} M_{N-1} \cdots M_{2} M_{1}\binom{x_{0}}{x_{0}^{\prime}}
$$

Matrix formalism

Start from Hill equation $x^{\prime \prime}+K(s) x=0$ Build matrices from the solutions. Example:

- DRIFT for $\mathrm{K}=0$:

$$
\binom{x}{x^{\prime}}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\binom{x_{0}}{x_{0}^{\prime}}
$$

Can you show this?

- Quadrupole:

$$
\begin{array}{ll}
-K>0: & \binom{x}{x^{\prime}}=\left(\begin{array}{cc}
\cos \sqrt{K} L & \frac{1}{\sqrt{K}} \sin \sqrt{K} L \\
-\sqrt{K} \sin \sqrt{K} L & \cos \sqrt{K} L
\end{array}\right)\binom{x_{0}}{x_{0}^{\prime}} \\
-K<0: & \binom{x}{x^{\prime}}=\left(\begin{array}{cc}
\cosh \sqrt{K} L & \frac{1}{\sqrt{K}} \sinh \sqrt{K} L \\
-\sqrt{K} \sinh \sqrt{K} L & \cosh \sqrt{K} L
\end{array}\right)\binom{x_{0}}{x_{0}}
\end{array}
$$

Matrix formalism

- "Thin Lens" Quadrupole
- Consider a short enough quadrupole so that the particle offset doesn't change while the slope x^{\prime} does.
- Assume length $L \rightarrow 0$ while KL remains finite, thus K > 0 Focusing Quad:

$$
Q_{F}=\left(\begin{array}{cc}
1 & 0 \\
-K L & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{F} & 1
\end{array}\right)
$$

(change sign for Defocusing Quad)

Valid if length of focus: F>>L.

$$
K L=\frac{B^{\prime} L}{B \rho}=\frac{1}{F}
$$

Emittance

Emittance is the area in the phase space (x, x^{\prime}) or (y, y^{\prime})
containing a certain fraction
(90\%) of beam particles.

The emittance and the beta function are used to compute
the beam size (Envelope) and beam divergence at position s
 along the beam line.

Beam envelope $\mathrm{E}(\mathrm{s})$ and divergence $\mathrm{A}(\mathrm{s})$. Note also $\left.\gamma(s)=\mathbf{\}+\alpha^{2}(s)\right\rfloor \beta(s)$

Horizontal and Vertical Emittance

We talk about horizontal or vertical "un-normalized" emittance (previous definition) statistically defined as

$$
\varepsilon_{y}=\sqrt{\left\langle y^{2}\right\rangle\left\langle y^{\prime 2}\right\rangle-\left\langle y \cdot y^{\prime}\right\rangle^{2}}
$$

the emittance has units of " $m \times$ rad" (example: "vertical emittance in ILC is 2 pm rad") but typically we skip the "rad" and in "Jargon" talk about meters (example: "vertical emittance is 2 pm "). The "normalized" emittance:

$$
\varepsilon_{N}=\gamma \varepsilon
$$

where γ is the relativistic factor. In linacs, the normalized emittance is a quantity that stays constant during acceleration.

Longitudinal emittance

The longitudinal emittance is defined similarly to the transverse emittance

$$
\varepsilon_{z}=\sqrt{\left\langle z^{2}\right\rangle\left\langle\delta^{2}\right\rangle-\langle z \cdot \delta\rangle^{2}}
$$

and since

$$
\langle z \cdot \delta\rangle^{2}
$$

Is typically small, thus we can safely assume

$$
\varepsilon_{z}=\approx \sigma_{z} \sigma_{\delta}
$$

Dispersion function

- The central design orbit it the ideal closed curve that goes through the center of all quadrupoles. An ideal particle with nominal $p=p_{0}$, zero displacement and zero slope will move on the design orbit for an arbitrary number of turns.
- A particle with nominal $p=p_{0}$ and with nonvanishing initial conditions will conduct betatron oscillations around the closed orbit.

Dispersion function

- Particles with larger momentum will need a circumference with larger radius on which they can move indefinitely.

- Particles will perform betatron oscillations about this new larger circles.
- A particle with $\Delta p=p-p_{0} \neq 0$ satisfies the inhomogeneous Hill equation in the horizontal plane

$$
x^{\prime \prime}+K(s) x=\frac{1}{\rho} \frac{\Delta p}{p_{0}}
$$

- The total deviation of the particle is:

$$
x(s)=x_{D}(s)+x_{\beta}(s)
$$

where $\quad x_{D}(s)=D(s) \cdot \frac{\Delta p}{p_{0}}$ is the deviation of the closed orbit for a particle with $\Delta \mathrm{p}$.

- $\mathrm{D}(\mathrm{s})$ is the dispersion function that satisfies the Hill eq. $D^{\prime \prime}+K(s) D=\frac{1}{\rho(s)}$ along the circumference. $D^{\prime}=d D / d s$ is the slope of the dispersion.

Chromaticity

$1^{\text {st: }}:$ Transport definition
Storage Rings: chromaticity defined as a change of the betatron tunes versus energy.
In single path beamlines, it is more convenient to use other definitions.

$$
\mathrm{x}_{\mathrm{i}}=\left(\begin{array}{c}
\mathrm{x} \\
\mathrm{x}^{\prime} \\
\mathrm{y} \\
\mathrm{y}^{\prime} \\
\Delta \mathrm{l} \\
\delta
\end{array}\right)
$$

$$
X_{i}^{\text {out }}=R_{i j} X_{j}^{\text {in }}
$$

The second, third, and so on terms are included in a similar manner:

$$
X_{i}^{\text {out }}=R_{i j} x_{j}^{\text {in }}+T_{i j k} x_{j}^{\text {in }} x_{k}^{\text {in }}+U_{i j k n} x_{j}^{\text {in }} x_{k}^{\text {in }} x_{n}^{\text {in }}+\ldots
$$

In FF design, we usually call 'chromaticity' the second order elements T_{126} and T_{346}. All other high order terms are just 'aberrations', purely chromatic (as T_{166}, which is second order dispersion), or chromo-geometric (as U_{3246}).
A. Seryi, USPAS 2007

Introduction to Hamiltonian formalism

- Hamiltonian mechanics is a reformulation of classical mechanics. The simplest interpretation is that the Hamiltonian represents the energy of the system:

$$
H=T+V
$$

(provided that there are NO external forces), which is the sum of the kinetic and potential energy, traditionally denoted T and V , respectively:

$$
T=\frac{p^{2}}{2 m} \text { and } \quad V=V(x)
$$

Introduction to Hamiltonian formalism

- The equations of motion of the system are obtained by the Hamilton equations:

$$
\begin{aligned}
& \dot{p}=-\frac{\partial H}{\partial x} \\
& \dot{x}=+\frac{\partial H}{\partial p}
\end{aligned}
$$

for each coordinate.

Hamiltonian formalism - example: harmonic oscillator

The hamiltonian for the simple harmonic oscillator is

$$
\begin{aligned}
T=\frac{p^{2}}{2 m}, \quad V(x) & =\frac{1}{2} k x^{2} \quad\left(F=-\frac{\partial V(x)}{\partial x}=-k x\right) \\
H & =\frac{p^{2}}{2 m}+\frac{1}{2} k x^{2}
\end{aligned}
$$

The equation of motion are derived by the Hamilton equations

$$
\begin{aligned}
& \dot{p}=-\frac{\partial H}{\partial x}=-k x \\
& \dot{x}=+\frac{\partial H}{\partial p}=\frac{p}{m}
\end{aligned} \longrightarrow \ddot{x}+\omega^{2} x^{2}=0 \quad \text { with } \quad \omega=\sqrt{\frac{k}{m}}
$$

Introduction to Hamiltonian formalism

- Hamilton formalism is useful to identify the constants of motion.
- See Action-angle variables

Useful relativistic formulae

Relativistically speaking:

$$
\begin{aligned}
& \beta=\mathrm{v} / c \\
& \gamma=\frac{1}{\sqrt{1-\beta^{2}}}
\end{aligned}
$$

Particle energy and momentum

$$
E=\sqrt{p^{2} c^{2}+\left(m c^{2}\right)^{2}}
$$

$$
E=\gamma m c^{2}
$$

$$
p=\gamma \beta m c
$$

$$
p c=\beta E \approx E
$$

References

For example:

1) M. Syphers, A. Warner (Fermilab) R. Miyamoto (U. Texas) USPAS 2008 lectures: http://home.fnal.gov/~syphers/ Education/uspas/USPAS08/w1-2Tue.pdf
2) W. Barletta USPAS 2010 lectures: http://uspas.fnal.gov/materials/09UNM/Unit 7 Lecture 15 Linear optics.pdf
