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Introduction 

• General accelerator 



Introduction 

• The design orbit is the ideal orbit on which the 
particles should move. 

• We need to i) bend the particles and ii) 
continuously focus the beam into the orbit. 

• Both bending and focusing is accomplished 
with electromagnetic forces.  

• The Lorentz Force is 
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• Why we need magnets? 

W. Barletta, USPAS 2010 



Type of magnets 
Dipole 

 

W. Barletta, USPAS 2010 



Quad 
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Because of the v x B term in  
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Equation of motion in Circular 
Accelerator 

• As coordinate, it is more convenient to use the 
slope or angle: 

                                or equivalently  

• In circular accelerator the particles equation of 
motion to first order are written: 

 

 

 

where 1/ is the dipole weak focusing term and the 
p/p term is present for off-momentum particles  
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Betatron oscillation and beta function 

 

 

• In the case of on-momentum particle p=p0 or 
p=0  

 

 It can be shown that the solution of the Hill 
equation is given by: 
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Betatron oscillations and beta function 

 

 

 Thus, the most general solution to the Hill 
equation is a pseudo-harmonic oscillation. 
Amplitude and wavelenght depend on the 
coordinate s and are both given in term of the 
beta function: 

 

 Another key parameter is the “alpha” function:                                               

 

    which represents the slope of the beta function. 
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Tune and resonances 

• The particle “phase” advance is also 
computed in term of the  beta function 

 

 

• The “tune” or Q value (often denoted also 
with ) is defined as the number of betatron 
oscillations per revolution in a circular 
accelerator: 
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Matrix formalism 

• Typically to track particles, instead of solving the 
equations of motion we use matrices to 
represent the action of the magnetic elements in 
the beam line. Simpler and more manageable. 

• Each beam line element is represented by a 
matrix. 

• The 6 particle coordinates are represented by a 
vector. 

• Transport is obtained by a series of matrix 
multiplications. Total transport “map”. 



The particle coordinates and vector 

• Each particle in the beam is described by 6 
coordinates 

 

 

 

 

 

  

x

px

y

py

z

x



The particle coordinates and vector 

• The coordinates are expressed with respect to 
the reference particle. Since the reference 
particle has coordinates x=x’=y=y’=z= =0, thus 
it is represented by the vector 
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The particle coordinates and vector 

• In the vector representation 

 

 

 

 where =dp/p0 is the relative energy spread 
with respect to the reference particle.  

 Also the normalized momentum: px=p/p0 and px 
= x’ = dx/ds! In this case px (or x’) are expressed 
in radians since they represent an angle. 
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Tracking of particles 

• First order (linear) transport of particles around 
the ring is obtained by matrix multiplications, 
where each magnetic element, dipole, 
quadrupoles, RF cavities etc. is represented by 
a “linear” matrix: 

        M(s1:s0) 
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Matrix formalism 

Start from Hill equation 

Build matrices from the solutions. Example: 

• DRIFT for K=0: 

 

• Quadrupole: 

–K > 0: 

 

–K < 0: 
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Matrix formalism 

• “Thin Lens” Quadrupole     
– Consider a short enough quadrupole so that the 

particle offset doesn’t change while the slope x’ does.   

– Assume length L0 while KL remains finite, thus 

 K > 0 Focusing Quad: 

 

 (change sign for Defocusing Quad) 
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Emittance 

 

 

 

 

 

  

Emittance is the area in the 
phase space (x,x’) or (y,y’) 
containing a certain fraction 
(90%) of beam particles. 

The emittance and the beta 
function are used to compute 
the beam size (Envelope) and 
beam divergence at position s 
along the beam line.  
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Beam envelope E(s) and divergence A(s). Note also 



Horizontal and Vertical Emittance 

 

 

 

 

 

  

We talk about horizontal or vertical “un-normalized” 
emittance (previous definition) statistically defined as  
 
 
the emittance has units of “m  rad” (example: “vertical 
emittance in ILC is 2 pm rad”) but typically we skip the “rad” 
and in “Jargon” talk about meters (example: “vertical 
emittance is 2 pm”). The “normalized” emittance: 
 
 
where  is the relativistic factor. In linacs, the normalized 
emittance is a quantity that stays constant during 
acceleration. 
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Longitudinal emittance 

 

 

 

 

 

  

The longitudinal emittance is defined similarly to the 
transverse emittance  
 
 
and since 
 
 
Is typically small, thus we can safely assume 
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Dispersion function 

• The central design orbit it the ideal closed 
curve that goes through the center of all 
quadrupoles. An ideal particle with nominal 
p=p0, zero displacement and zero slope will 
move on the design orbit for an arbitrary 
number of turns. 

• A particle with nominal p=p0 and with non-
vanishing initial conditions will conduct 
betatron oscillations around the closed orbit. 



Dispersion function 

• Particles will perform betatron oscillations about this new larger circles. 

• A particle with p=p-p00 satisfies the inhomogeneous Hill equation in 

the horizontal plane 

 

• The total deviation of the particle is:                                                                

 

 where                              is the deviation of the closed orbit for a particle 

with p.  

• D(s) is the dispersion function that satisfies the Hill eq.                                                

along the circumference.                     is the slope of the dispersion.  

 

• Particles with larger momentum will 
need a circumference with larger radius 
on which they can move indefinitely.  
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Storage Rings: chromaticity defined as a change of the betatron tunes versus energy.  

In single path beamlines, it is more convenient to use other definitions.  
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In FF design, we usually call ‘chromaticity’ the second order elements T126 and T346. All 
other high order terms are just ‘aberrations’, purely chromatic (as T166, which is second 
order dispersion), or chromo-geometric (as U3246).  

A. Seryi, USPAS 2007 

Chromaticity 
1st:Transport definition 



Introduction to Hamiltonian formalism 

• Hamiltonian mechanics is a reformulation 
of classical mechanics. The simplest 
interpretation is that the Hamiltonian represents 
the energy of the system: 

 

  

 (provided that there are NO external forces), 
which is the sum of the kinetic and potential 
energy, traditionally denoted T and V, 
respectively: 
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Introduction to Hamiltonian formalism 

• The equations of motion of the system are 
obtained by the Hamilton equations: 
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Hamiltonian formalism – example: 
harmonic oscillator 

The hamiltonian for the simple harmonic oscillator is 

 

 

 

 

The equation of motion are derived by the Hamilton 
equations 
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Introduction to Hamiltonian formalism 

• Hamilton formalism is useful to identify 
the constants of motion. 

• See Action-angle variables 



Useful relativistic formulae 

Relativistically speaking: 

 

 

 

 

Particle energy and momentum 
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