Introduction to Accelerator Optics

An Introduction to the USPAS'12 Course "Storage And Damping Ring Design"

M. Pivi SLAC

(with slides from previous classes)

Introduction

Introduction

- The design orbit is the ideal orbit on which the particles should move.
- We need to i) bend the particles and ii) continuously focus the beam into the orbit.
- Both bending and focusing is accomplished with electromagnetic forces.
- The Lorentz Force is

$$\vec{F} = ma = e(\vec{E} + \vec{v} \times \vec{B})$$

Optics are essential to guide the beam through the accelerator

• Optics (lattice): distribution of magnets that direct & focus beam

- Lattice design depends upon the goal & type of accelerator
 - Linac or synchrotron
 - High brightness: small spot size & small divergence
 - Physical constraints (building or tunnel)

The lattice must transport a real beam not just an ideal beam

US PARTICLE ACCELERATOR SCHOOL

Types of magnets & their fields:dipoles

Dipoles: Used for steering $B_x = 0$ $B_y = B_o$

Types of magnets & their fields: quadrupoles

Quadrupoles: Used for focusing

$$B_x = Ky$$

 $B_y = Kx$

US PARTICLE ACCELERATOR SCHOOL

W. Barletta, USPAS 2010

The quadrupole magnet & its field

W. Barletta, USPAS 2010

Quadrupole Field

Note: A quadrupole magnet will focus in one plane, and defocus in the other

Because of the v x B term in $\vec{F} = ma = e(\vec{E} + \vec{v} \times \vec{B})$

M. Syphers, A. Warner, R. Miyamoto USPAS 2008

Types of magnets & their fields: sextupoles

Sextupoles: Used for chromatic correction $B_x = 2Sxy$ $B_y = S(x^2 - y^2)$

W. Barletta, USPAS 2010

Charged particle motion in a uniform (dipole) magnetic field

* Let $\mathbf{B} = \mathbf{B}_{o}\hat{\mathbf{y}}$

* Write the Lorentz force equation in two components, z and \perp

$$\frac{dp_{y}}{dt} = 0 \quad \text{and} \quad \frac{d\mathbf{p}_{\perp}}{dt} = q(\mathbf{v}_{\perp} \times \mathbf{B}) = \frac{qB_{o}}{\gamma m_{o}} (\mathbf{p}_{\perp} \times \hat{\mathbf{y}})$$

 $\# => p_y$ is a constant of the motion

- * Since B does no work on the particle, $|p_{\perp}|$ is also constant
 - \rightarrow The total momentum & total energy are constant

To analyze particle motion we will use local Cartesian coordinates

Change dependent variable from time, *t*, to longitudinal position, *s*

The origin of the local coordinates is a point on the *design trajectory* in the *bend plane*

The bend plane is generally called the horizontal plane The vertical is y in American literature & often z in European literature

US PARTICLE ACCELERATOR SCHOOL

W. Barletta, USPAS 2010

Equation of motion in Circular Accelerator

- As coordinate, it is more convenient to use the slope or angle: $x' = \frac{dx}{ds}$ or equivalently $x' = \frac{p_x}{p_0}$
- In circular accelerator the particles equation of motion to first order are written:

$$x'' - \left(k(s) - \frac{1}{\rho(s)^2}\right)x = \frac{1}{\rho(s)}\frac{\Delta p}{p}$$
$$y'' + k(s)y = 0$$

off-momentum particles

dx

where $1/\rho^2$ is the dipole weak focusing term and the $\Delta p/p$ term is present for off-momentum particles

Betatron oscillation and beta function

• In the case of on-momentum particle $p=p_0$ or $\Delta p=0$ x'' + K(s)x = 0Hill's equation

It can be shown that the solution of the Hill equation is given by:

$$x(s) = a\sqrt{\beta(s)} \ e^{\pm i\Phi(s)}$$

with
$$\Phi'(s) = \frac{1}{\beta(s)}$$
 and $a = const$

Betatron oscillations and beta function

Thus, the most general solution to the Hill equation is a pseudo-harmonic oscillation. <u>Amplitude and wavelenght</u> depend on the coordinate *s* and are both given in term of the **beta function**:

amplitude $\propto \sqrt{\beta(s)}$; $\lambda(s) = 2\pi\beta(s)$

Another key parameter is the "alpha" function: $\alpha(s) = -\frac{1}{2}\beta'(s)$

which represents the slope of the beta function.

Tune and resonances

• The particle "phase" advance is also computed in term of the beta function

$$\Phi(s) = \int_{s_0}^s \frac{1}{\sqrt{\beta(t)}} dt$$

Phase computed between two locations of the beam line

 The "tune" or Q value (often denoted also with v) is defined as the number of betatron oscillations per revolution in a circular accelerator:

$$Q = \frac{1}{2\pi} \oint \frac{ds}{\beta(s)} \qquad \leftarrow$$

 Integral over the circumference

Matrix formalism

- Typically to track particles, instead of solving the equations of motion we use matrices to represent the action of the magnetic elements in the beam line. Simpler and more manageable.
- Each beam line element is represented by a matrix.
- The 6 particle coordinates are represented by a vector.
- Transport is obtained by a series of matrix multiplications. Total transport "map".

The particle coordinates and vector

Each particle in the beam is described by 6 coordinates

$$\boldsymbol{X} = \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{p} \boldsymbol{x} \\ \boldsymbol{y} \\ \boldsymbol{p} \boldsymbol{y} \\ \boldsymbol{p} \boldsymbol{y} \\ \boldsymbol{z} \\ \boldsymbol{\delta} \end{pmatrix}$$

The particle coordinates and vector

 The coordinates are expressed with respect to the reference particle. Since the reference particle has coordinates x=x'=y=y'=z=δ=0, thus it is represented by the vector

$$\boldsymbol{X} = \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \\ \boldsymbol{0} \end{pmatrix}$$

The particle coordinates and vector

• In the vector representation

where $\delta = dp/p0$ is the relative energy spread with respect to the reference particle.

Also the normalized momentum: px=p/p0 and px = x' = dx/ds! In this case px (or x') are expressed in radians since they represent an angle.

Tracking of particles

 First order (linear) transport of particles around the ring is obtained by matrix multiplications, where each magnetic element, dipole, quadrupoles, RF cavities etc. is represented by a "linear" matrix:

M(s1:s0) $\begin{pmatrix} x \\ px \\ y \\ py \\ z \\ \delta \end{pmatrix}_{s-s1} = M(s1:s0) \begin{pmatrix} x \\ px \\ y \\ py \\ z \\ \delta \end{pmatrix}_{s-s1}$

Piecewise Method -- Matrix Formalism

Arbitrary trajectory, relative to the design trajectory, can be computed via matrix multiplication

$$\begin{pmatrix} x_N \\ x'_N \end{pmatrix} = M_N M_{N-1} \cdots M_2 M_1 \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$$

M. Syphers, A. Warner, R. Miyamoto USPAS 2008

Matrix formalism

Start from Hill equation x'' + K(s)x = 0Build matrices from the solutions. Example:

• DRIFT for K=0:

$$\begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$$
 Can you show this?

• Quadrupole:

$$-K > 0: \qquad \begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} \cos \sqrt{KL} & \frac{1}{\sqrt{K}} \sin \sqrt{KL} \\ -\sqrt{K} \sin \sqrt{KL} & \cos \sqrt{KL} \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$$
$$-K < 0: \qquad \begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} \cosh \sqrt{KL} & \frac{1}{\sqrt{K}} \sinh \sqrt{KL} \\ -\sqrt{K} \sinh \sqrt{KL} & \cosh \sqrt{KL} \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$$

Matrix formalism

- "Thin Lens" Quadrupole
 - Consider a short enough quadrupole so that the particle offset doesn't change while the slope x' does.
 - Assume length $L \rightarrow 0$ while KL remains finite, thus

K > 0 Focusing Quad:

$$Q_F = \begin{pmatrix} 1 & 0 \\ -KL & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{F} & 1 \end{pmatrix}$$

(change sign for Defocusing Quad)

Valid if length of focus: F>>L.

$$KL = \frac{B'L}{B\rho} = \frac{1}{F}$$

Emittance

Emittance is the area in the phase space (x,x') or (y,y') containing a certain fraction (90%) of beam particles.

The emittance and the beta function are used to compute $A(s) = \sqrt{\epsilon} \sqrt{\gamma(s)}$ the beam size (Envelope) and beam divergence at position s along the beam line.

Beam envelope E(s) and divergence A(s). Note also $\gamma(s) = (+\alpha^2(s))\beta(s)$

Horizontal and Vertical Emittance

We talk about horizontal or vertical "un-normalized" emittance (previous definition) statistically defined as

$$\varepsilon_{y} = \sqrt{\langle y^{2} \rangle \langle y'^{2} \rangle - \langle y \cdot y' \rangle^{2}}$$

the emittance has units of "m × rad" (example: "vertical emittance in ILC is 2 pm rad") but typically we skip the "rad" and in "Jargon" talk about meters (example: "vertical emittance is 2 pm"). The "normalized" emittance:

$$\mathcal{E}_N = \gamma \mathcal{E}$$

where γ is the relativistic factor. In linacs, the normalized emittance is a quantity that stays constant during acceleration.

Longitudinal emittance

The longitudinal emittance is defined similarly to the transverse emittance

$$\mathcal{E}_z = \sqrt{\langle z^2 \rangle \langle \delta^2 \rangle - \langle z \cdot \delta \rangle^2}$$

and since

$$\langle z \cdot \delta \rangle^2$$

Is typically small, thus we can safely assume

$$\varepsilon_z \approx \sigma_z \sigma_\delta$$

Dispersion function

- The central design orbit it the ideal closed curve that goes through the center of all quadrupoles. An ideal particle with nominal p=p₀, zero displacement and zero slope will move on the design orbit for an arbitrary number of turns.
- A particle with nominal p=p₀ and with nonvanishing initial conditions will conduct betatron oscillations around the closed orbit.

Dispersion function

 Particles with larger momentum will need a circumference with larger radius on which they can move indefinitely.

- Particles will perform betatron oscillations about this new larger circles.
- A particle with △p=p-p₀≠0 satisfies the inhomogeneous Hill equation in the horizontal plane

$$x'' + K(s)x = \frac{1}{\rho} \frac{\Delta p}{p_0}$$

• The total deviation of the particle is:

$$x(s) = x_D(s) + x_\beta(s)$$

where $x_D(s) = D(s) \cdot \frac{\Delta p}{p_0}$ is the deviation of the closed orbit for a particle with Δp .

• D(s) is the dispersion **function** that satisfies the Hill eq. $D'' + K(s)D = \frac{1}{\rho(s)}$ along the circumference. D' = dD/ds is the slope of the dispersion.

Chromaticity

1st:Transport definition

Storage Rings: chromaticity defined as a change of the betatron tunes versus energy.

In single path beamlines, it is more convenient to use other definitions.

$$\mathbf{x}_{i} = \begin{pmatrix} \mathbf{x} \\ \mathbf{x}' \\ \mathbf{y} \\ \mathbf{y}' \\ \mathbf{\Delta}\mathbf{l} \\ \mathbf{\delta} \end{pmatrix} \qquad \qquad \mathbf{x}_{i}^{\text{out}} = \mathbf{R}_{ij} \quad \mathbf{x}_{j}^{\text{in}}$$

The second, third, and so on terms are included in a similar manner:

$$x_{i}^{out} = R_{ij} x_{j}^{in} + T_{ijk} x_{j}^{in} x_{k}^{in} + U_{ijkn} x_{j}^{in} x_{k}^{in} x_{n}^{in} + \dots$$

In FF design, we usually call 'chromaticity' the second order elements T_{126} and T_{346} . All other high order terms are just 'aberrations', purely chromatic (as T_{166} , which is second order dispersion), or chromo-geometric (as U_{3246}).

A. Seryi, USPAS 2007

Introduction to Hamiltonian formalism

 Hamiltonian mechanics is a reformulation of classical mechanics. The <u>simplest</u> interpretation is that the Hamiltonian represents the energy of the system:

$$H = T + V$$

(provided that there are NO external forces), which is the sum of the kinetic and potential energy, traditionally denoted T and V, respectively:

$$T = \frac{p^2}{2m}$$
 and $V = V(x)$

Introduction to Hamiltonian formalism

• The <u>equations of motion</u> of the system are obtained by the Hamilton equations:

$$\dot{p} = -\frac{\partial H}{\partial x}$$
$$\dot{x} = +\frac{\partial H}{\partial p}$$

for each coordinate.

Hamiltonian formalism – example: harmonic oscillator

The hamiltonian for the simple harmonic oscillator is

$$T = \frac{p^2}{2m}, \quad V(x) = \frac{1}{2}kx^2 \quad (F = -\frac{\partial V(x)}{\partial x} = -kx)$$
$$H = \frac{p^2}{2m} + \frac{1}{2}kx^2$$

The equation of motion are derived by the Hamilton equations

Introduction to Hamiltonian formalism

- Hamilton formalism is useful to identify the constants of motion.
- See Action-angle variables

Useful relativistic formulae

Relativistically speaking:

$$\beta = \mathbf{v}/c$$

$$\gamma = \frac{1}{\sqrt{1-\beta^2}}$$

Particle energy and momentum

$$E = \sqrt{p^2 c^2 + (mc^2)^2}$$

$$E = \gamma mc^2$$

$$p = \gamma \beta mc$$

References

For example:

- M. Syphers, A. Warner (Fermilab) R. Miyamoto (U. Texas) USPAS 2008 lectures: <u>http://home.fnal.gov/~syphers/</u> <u>Education/uspas/USPAS08/w1-2Tue.pdf</u>
- 2) W. Barletta USPAS 2010 lectures: <u>http://uspas.fnal.gov/materials/09UNM/Unit</u> <u>7 Lecture 15 Linear optics.pdf</u>