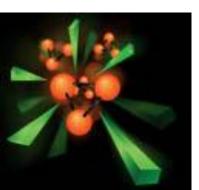


US Particle Accelerator School

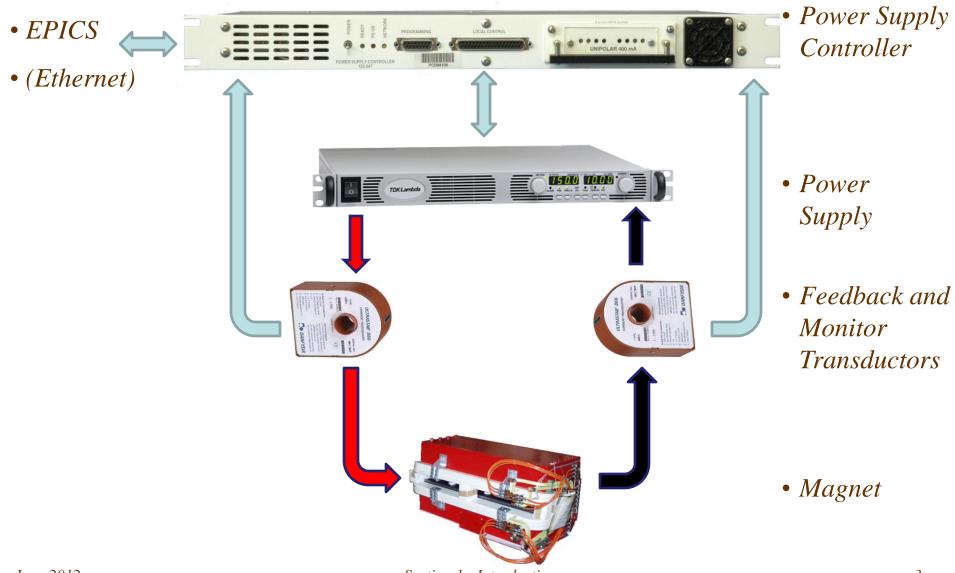

Michigan State University

Accelerator Power Electronics Engineering

June 2012

Paul Bellomo and Fernando Rafael

SLAC National Accelerator Laboratory (SLAC)



Sections

- 1. Introduction
- 2. <u>Purpose, Goals and Intended Audience</u>
- 3. <u>Typical Load Types</u>
- 4. <u>Power Line Considerations</u>
- 5. <u>DC Power Supplies</u>
- 6. <u>Pulsed Power Supplies</u>
- 7. <u>Magnetics</u>
- 8. <u>Controls</u>
- 9. <u>Personnel and Equipment Safety</u>
- 10. <u>Reliability, Availability, Maintainability</u>
- 11. Power Supply Specifications
- 12. <u>References</u>
- 13. Homework Problems

A Typical DC Magnet Power System

Section 2

- Purpose
- <u>Goals</u>
- Intended Audience
 - <u>Civil, Mechanical Designers</u>
 - <u>Control Engineers</u>
 - <u>Electrical Distribution System Designers</u>
 - Maintenance Personnel
 - Magnet Designers
 - <u>Operators</u>
 - Physicists
 - Power Conversion / Power Supply Designers
 - **Project Engineers / Managers**
 - <u>Safety Engineers / Designers</u>

Purpose

• Provide an overview of Accelerator Power Electronics Engineering with an emphasis on DC and pulsed power supplies

Goals

- Provide a historical overview of Accelerator Power Supplies from early designs, to presently employed technology, to some promising future developments now in incubation
- Give other, non-power conversion disciplines a glimpse of, and a better understanding of, Power Electronics Engineering
- Survey the most pertinent power supply topologies from the perspectives of accelerators, load type and rating
- Define the information needed for the power supply designer to make appropriate choices for power supply type, design, and rating

• *Civil, Mechanical Designers* – *interest in facility space, mounting, cooling*

• Control Designers – an insight into some interface requirements

Section 2 - Purpose, Goals and Intended Audience

- *Electrical Distribution System Designers* AC distribution requirements, address and reduce harmonics and EMI
- *Maintenance Personnel* power system reliability and maintainability
- Magnet Designers tradeoffs between power supply output voltage, current and stability limitations and the magnet design. The power supply role in magnet protection via cooling interlocks and ground fault detection and protection

Section 2 - Purpose, Goals and Intended Audience

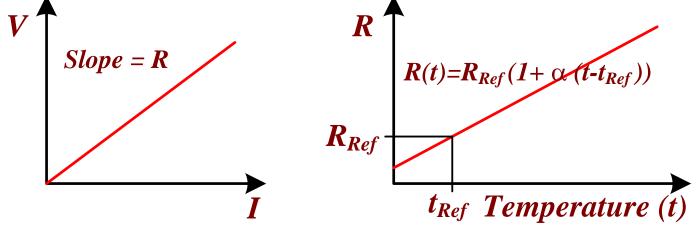
• Operators – Power supply control and operating characteristics

• *Physicists* – *Power system rating limitations, magnet configuration options vs. physics tradeoffs, long and short-term current stability limitations*

• Power Conversion / Power Supply Designers – power systems from another point of view

• Project Engineers and Managers – Power conversion system costs

• Safety Engineers / Designers – Personnel and equipment safety in an electrical power environment. General power safety provisions


Section 3

- Typical Load Types
 - <u>Resistive Filament</u>
 - <u>Resistive Titanium Sublimation Pumps (TSPs)</u>
 - <u>DC Magnets</u>
 - <u>Klystrons</u>
 - Linear Accelerators
 - Electron Beam Gun
 - Pulsed Magnets
 - <u>Flash lamp</u>

Resistive Load Characteristics

Electron Beam Guns (Filament) / Titanium Sublimation Pump Heaters

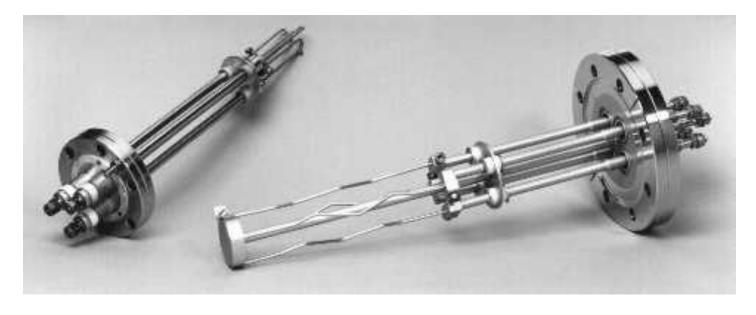
- *High temperature 1,500 ° C not uncommon*
- *High current 10 to 100s of amperes, low voltage, typically < 50 V*
- Short thermal time-constants 100s of milliseconds, power stability needed to keep temperature constant
- *Resistive with* (+) *metal or* (-) *carbon temperature coefficient of resistance*
- Power with constant voltage, current or power, depending upon circumstances
- Heat gradually to avoid thermally shocking and breaking brittle loads
- Usually linear V-I and R-T characteristics, but sometimes non-linear

Section 3 - Types of Loads

Resistive Load Characteristics

Electron Beam Gun Filaments / Titanium Sublimation Pump Heaters Ideal Characteristics

- Low potential barrier (work function)
- High melting point
- Chemical stability at high temperatures
- Long life

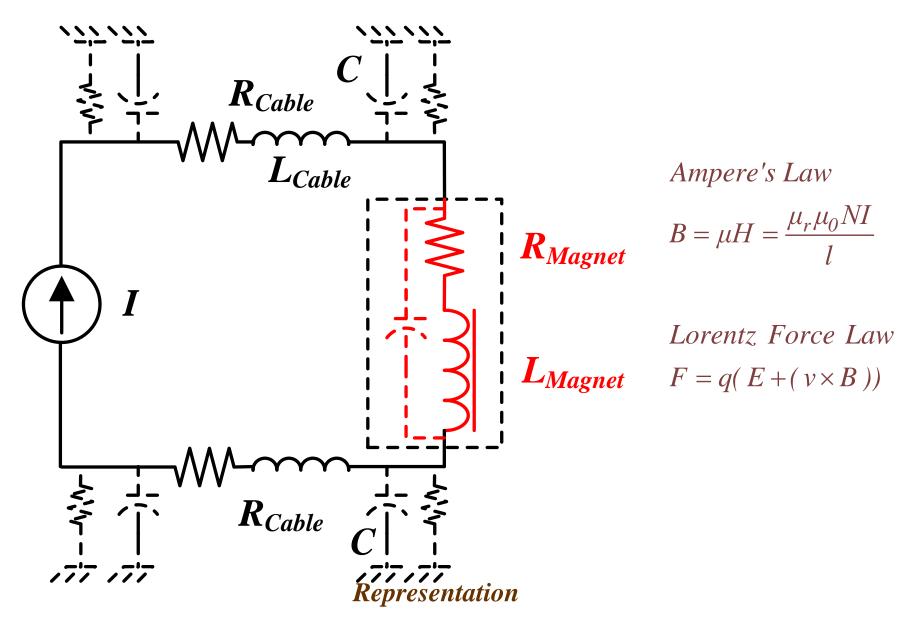


Work function - the minimum energy which must be supplied to extract an electron from a solid; symbol ϕ , units J (joule), or more often eV (electron-volt). It is a measure of how tightly electrons are bound to a material. The work function of several metals is given below:

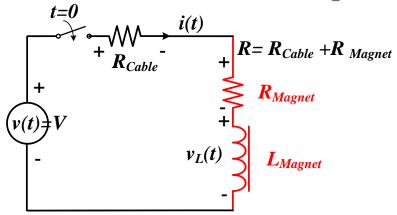
Material	Work function (eV)
Sodium	2.75
Silver	4.26
Titanium	4.33
Silicon	4.60
Gold	5.31
Graphite	5.37
Tungsten	5.40

Titanium Sublimation Pumps (TSP s)

- Titanium Sublimation Pumps (TSPs) are used to pump chemically reactive, getterable gases, such as H₂, H₂O, CO, N₂, O₂, CO₂ from vacuum vessels. Titanium is effective, easily sublimed, and inexpensive.
- TSPs filaments are 85% titanium and 15% molybdenum, a combination which prevents premature filament "burnout" and have high pumping speeds, typically 101/sec/cm²



DC Magnet Loads – Characteristics


- Linear and inductive with long (mS to sec) electrical time-constants ($\tau = L/R$)
- Families include dipole steering, quadrupole and sextupole focusing / defocusing, corrector / trims
- Driven by constant current and require high current stability (ΔI in PPM)
- Correctors / trims frequently require current modulation for beam-based alignment / diagnostic systems, orbit correction and stabilization
- Air-cooled or water-cooled (temperature or flow interlocks to power supply)
- Occasionally series-connected in strings and powered from a common power supply to reduce power system cost

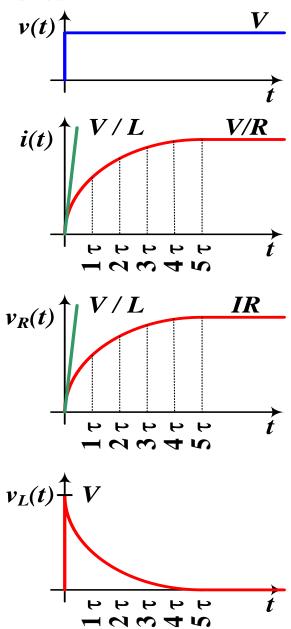
DC Magnet Loads – Characteristics

Section 3 - Types of Loads

DC Magnet Loads – Characteristics

Using Kirchoff's voltage law (KVL):

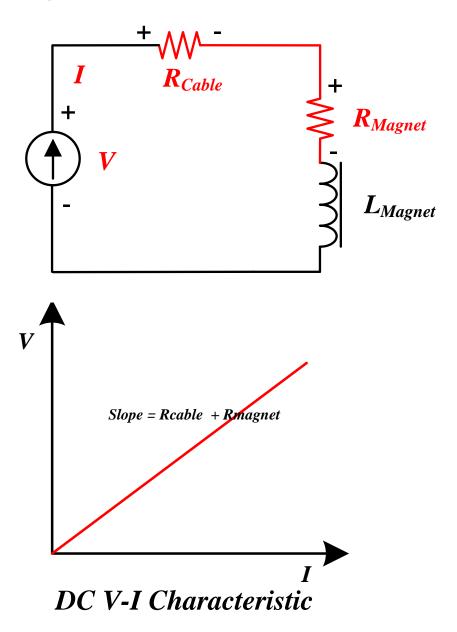
$$-v(t) + (R_{cable} + R_{magnet})i(t) + L\frac{di(t)}{dt} = 0$$


$$R i(t) + L \frac{di(t)}{dt} = v(t)$$

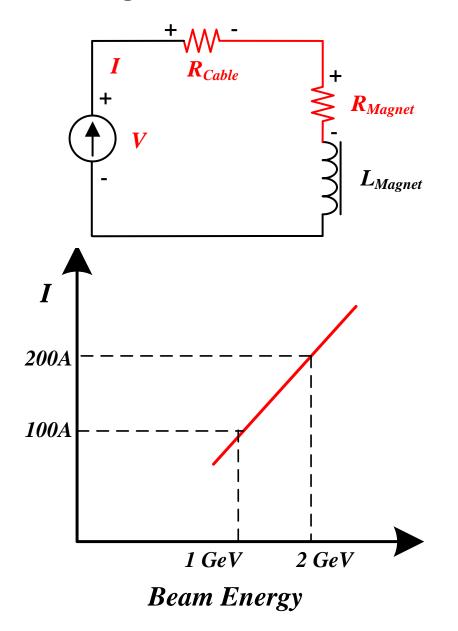
Converting to the s domain

$$R I(s) + LsI(s) - Li(0) = V(s),$$
 But $i(0) = 0$ and $V(s) = \frac{V}{s}$

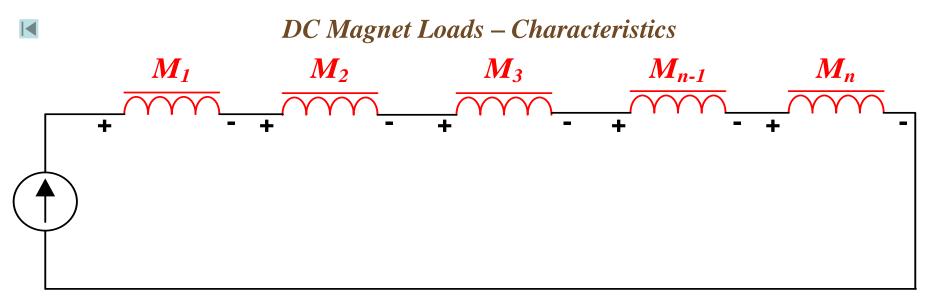
Rearranging gives


$$I(s)\frac{L}{R}\left(s+\frac{R}{L}\right) = \frac{V}{R}\frac{1}{s} \qquad let \ \frac{R}{L} = \alpha \ and \ \frac{L}{R} = \frac{1}{\alpha} = \tau$$
$$I(s) = \frac{V}{R} \ \frac{\alpha}{s(s+\alpha)} \qquad i(t) = \frac{V}{R}\left(1-e^{-\frac{t}{\tau}}\right)$$
$$v_L(t) = Ve^{-t/\tau}$$

June 2012


Section 3 - Types of Loads

DC Magnet Loads – Characteristics



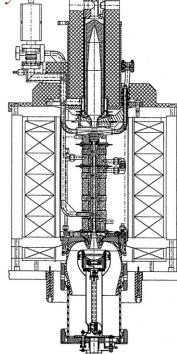
Section 3 - Types of Loads

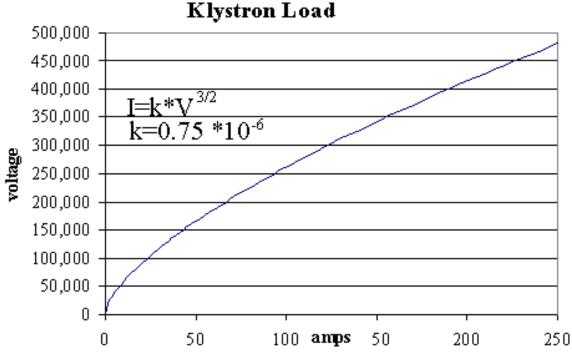
DC Magnet Loads – Characteristics

Section 3 - Types of Loads

String (series-connect) magnets for economy when magnets are not adjacent to **insertion devices** or when there are no special optics requirements. The current in each series-connected magnet is the same.

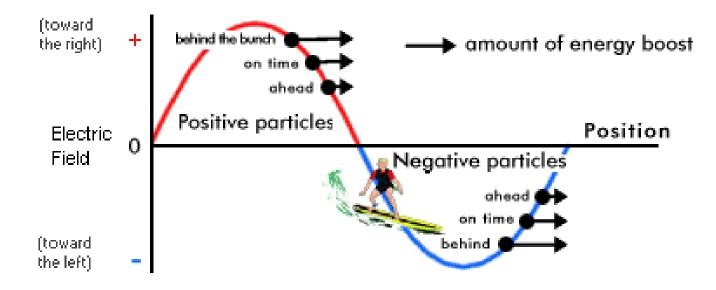
An insertion device (ID) is a component in modern synchrotron light sources. They are periodic magnetic structures that stimulate highly brilliant, forwarddirected synchrotron radiation emission by forcing a stored charged particle beam to perform wiggles, or undulations, as they pass through the device. This motion is caused by the Lorentz force, and it is from this oscillatory motion that we get the names for the two classes of device, which are known as wigglers and undulators June 2012 Section 3 - Types of Loads


Photograph of an Insertion Device at the APS

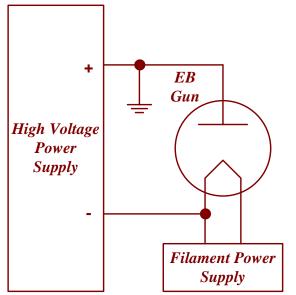


Klystron Load

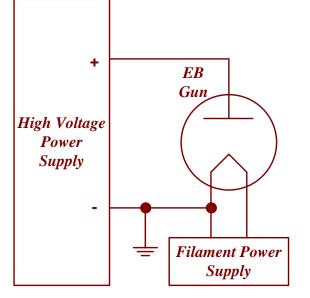
- Klystrons are used in RF and microwave systems to accelerate electron beams
- Their transfer function is called perveance (k) which is the ratio between beam current and accelerating voltage. Perveance is usually expressed in μp.
- In LINACs they are used in a pulsed mode to accelerate the electron beam
- In boosters and storage rings they are used as continuous-mode to supply make-up energy to the electron beam to compensate for the energy lost by synchrotron radiation



Section 3 - Types of Loads


Klystrons and Linear Accelerators

- *Electrons and positrons may be accelerated by injecting them into structures with traveling electromagnetic waves*
- The microwaves from klystrons in the are fed into the accelerator structure via waveguides. This creates a pattern of electric and magnetic fields, which form an electromagnetic wave traveling down the accelerator. The beam energy is a function of the energy boost per klystron and the total number of klystrons.



Electron Beam Gun Electrical Load Characteristics

- Electron gun exhibits non-linear V-I characteristics
- Capacitive loading
- High voltage, low DC current
- High peak pulsed current
- Subject to arcing
- Limited fault energy capability arc protection (crowbar) needed

If work surface (anode) is difficult to insulate - put at ground potential. Float filament at HV.

If work surface (anode) is easy to insulate - float at HV. Put filament at ground potential.

Characteristics

- Capacitive loading
- High voltage, low DC current
- High peak pulsed current
- Subject to arcing
- Limited energy capability arc protection (crowbar) needed

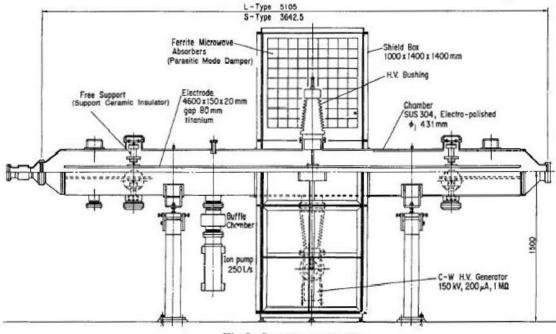
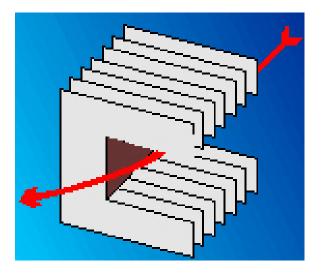



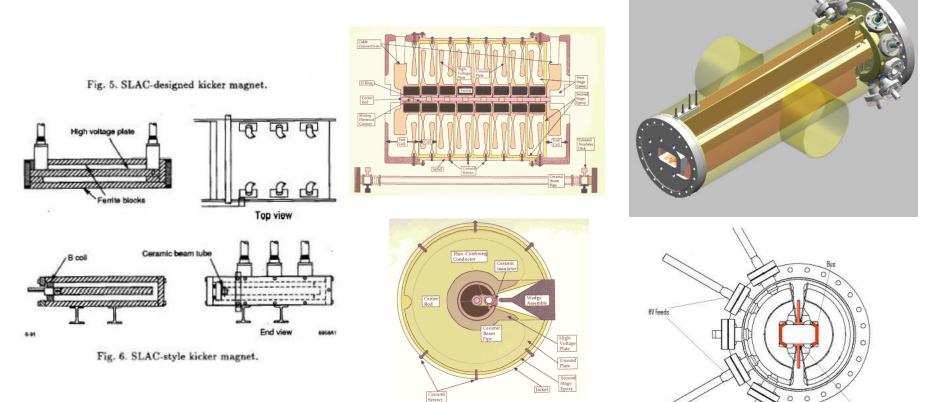
Fig.2 Separator chamber.

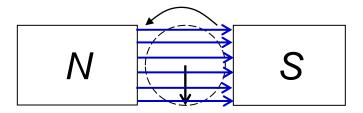
Pulsed Magnet Loads - Kickers, Pulsed Deflectors, Etc.

- Kicker magnets interact with positively or negatively charged particle beams which, in most cases, are grouped into bunches
- The purpose of an injection kicker is to fully deflect (kick) bunches, without disturbance to the preceding or following bunches, from a linear section (LINAC) into a storage ring
- An ejection kicker will do the inverse, that is, kick a particle beam from a storage ring into a working beamline.

Pulsed Magnet Loads – Kickers, Pulsed Deflectors

- Short time constants ($\tau = L/R$) < 1 mS
- Characteristic impedance is like a transmission line
- High voltage, low impedance
- Fast pulse, match or terminating resistors
- Subject to reflection and breakdown



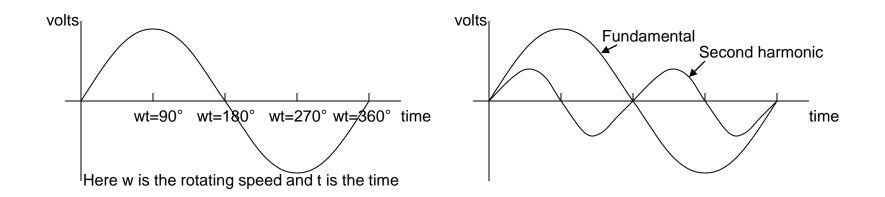

Image Current Return

Section 4

- Power Line and Other Considerations
 - Fundamental Quantities
 - Single Phase Systems
 - <u>Three Phase Systems</u>
 - <u>The Per Unit Calculation System</u>
 - Harmonics, Complex Waveforms and Fourier Series
 - SCR Commutation as Distortion Cause
 - Electromagnetic Compatibility and Interference (EMC/EMI)
 - <u>Power Factor</u>

Fundamental Quantities - Characteristics of Sinusoidal Waves

• Generation of sine waves



• Expression of sine waves

 $v(t) = V_{max} sin(t)$ $v(\omega t) = V_{max} sin(\omega t)$ $\omega = 2\pi f$

• *Plotting of sine waves*

• Harmonics between sine waves

• Average value:

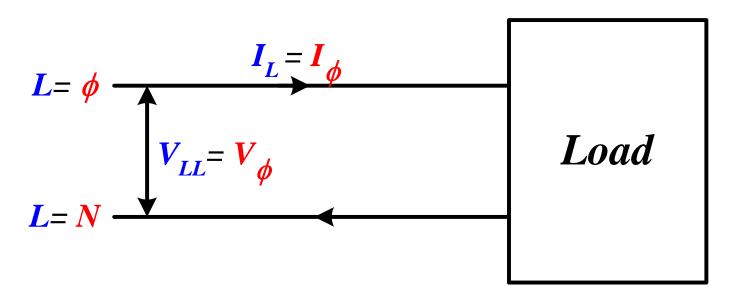
$$V_{ave} = \frac{1}{T} \int_0^T v(t) dt$$

for AC sine system

$$v(t) = V_m \sin(\omega t)$$
, then $V_{ave} = \frac{1}{T} \int_0^T V_m \sin(\omega t) dt = 0.636 * V_m$

• RMS value:

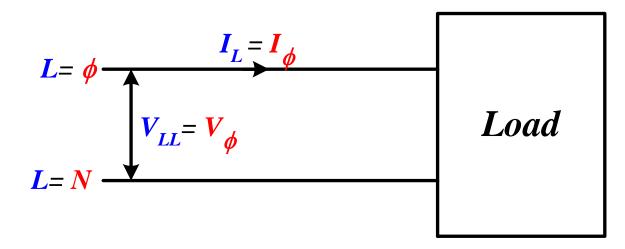
$$V_{rms} = \sqrt{\frac{1}{T} \int_0^T v(t)^2 dt}$$


for AC sine system

$$V_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} (V_{m} \sin(\omega t))^{2} d\omega t} = \frac{V_{m}}{\sqrt{2}} = 0.707 * V_{m}$$

Class Voltage Type **Derivatives** *3ø* 138 kV None High Voltage 3ф 69 kV None 3ø 13.8 kV None Medium *3\phi* $12.47 \, kV$ None Voltage *3\phi* 4.16 kV None *3ø* 480 V 277 V, 1*\phi* Low *3ø* 208 V 120 V, 1*\phi* Voltage 120 V 1ø None

Fundamental Quantities American Commercial and Residential AC Voltages


$$V_{LL}(RMS) = \sqrt{\frac{1}{T} \int_{0}^{T} v_{LL}^{2}(t) d\omega t}$$

For 1\phi AC input

 $V_{\phi} = V_{LL}$ $I_{\phi} = I_L$ where V_{ϕ} and I_{ϕ} are RMS values

Single Phase Systems

The Apparent, Real and Reactive "powers" are:

Apparent $S_{1\phi} = V_{LL} I_L = P_{I\phi} + j Q_{I\phi}$ VARe al $P_{I\phi} = V_{LL} I_L \cos \left(\alpha_{I_L} - \beta_{V_{LL}} \right)$ Watt $\cos(\alpha_{I_L} - \beta_{V_{LL}}) = power factor$ Re active $Q_{I\phi} = V_{LL} I_L \sin \left(\alpha_{I_L} - \beta_{V_{LL}} \right)$ VAR

All "powers" are average "powers"

$$S_{l\phi} = \sqrt{\frac{1}{T} \int_{0}^{T} v_{LL}^{2}(t) dt} * \sqrt{\frac{1}{T} \int_{0}^{T} i_{L}^{2}(t) dt} = \frac{1}{T} \int_{0}^{T} v_{LL}(t) i_{L}(t) dt$$

June 2012

Single Phase Systems

Instantaneous power p(t) is the product of the instantaneous voltage v(t) and the instantaneous current i(t)

Derivation

$$p(t) = v(t)i(t)$$

$$v(t) = \sqrt{2}V \sin(\omega t)$$

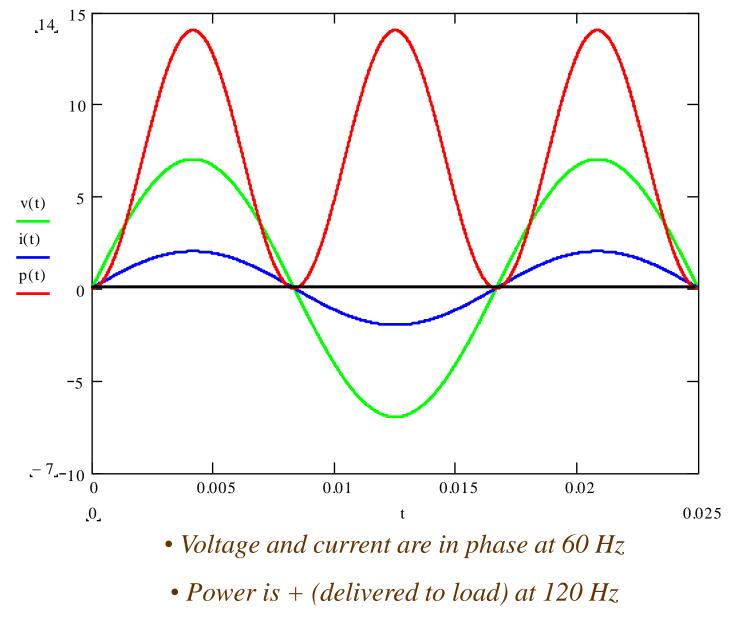
$$i(t) = \sqrt{2}I \sin(\omega t + \phi)$$
and
$$p(t) = \sqrt{2}V \sin(\omega t)\sqrt{2}I \sin(\omega t + \phi) = 2VI \sin(\omega t)\sin(\omega t + \phi)$$

Identity

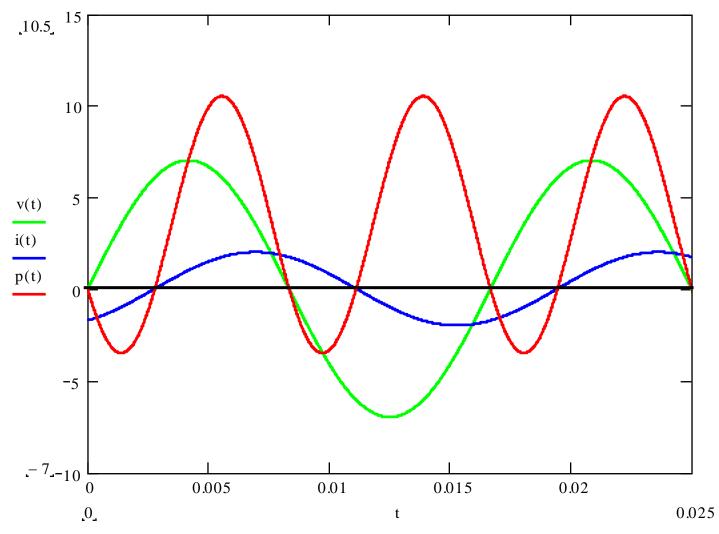
$$sin(a)sin(b) = \frac{1}{2}(cos(a-b) - cos(a+b))$$

Substituting

$$p(t) = V I[cos(\omega t - \omega t - \phi) - cos(\omega t + \omega t + \phi)]$$
$$p(t) = V I[cos(-\phi) - cos(2\omega t + \phi)]$$

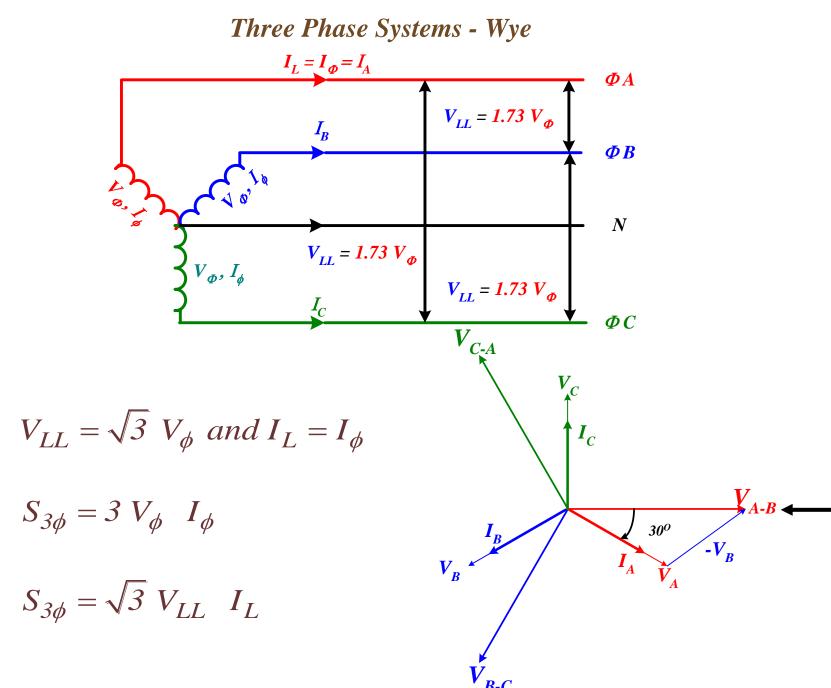

recognizing that $cos(-\phi) = cos(\phi)$

$$p(t) = V I \cos(\phi) - V I \cos(2\omega t + \phi)$$

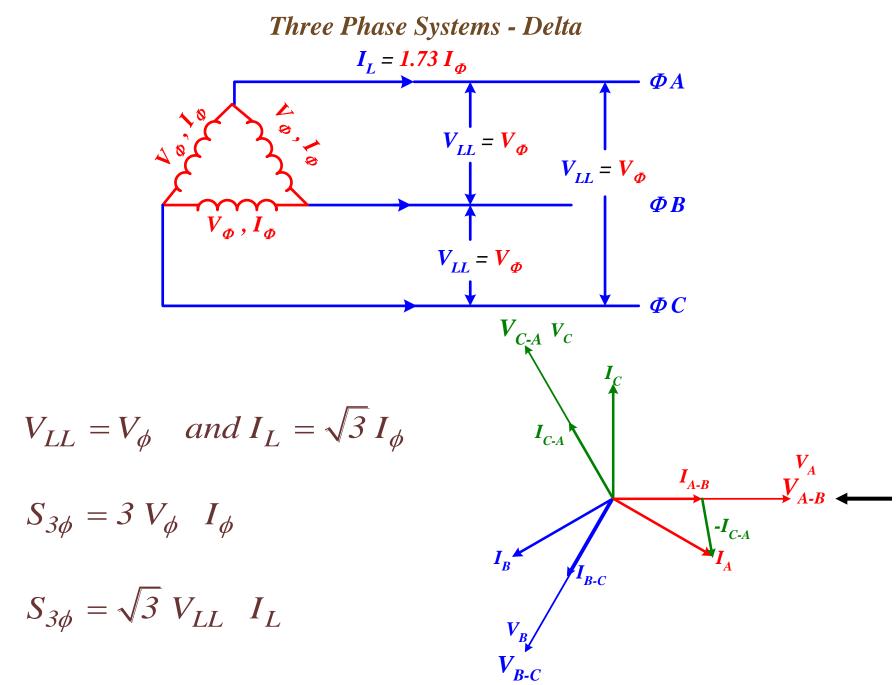

It is seen that

p(t) = DC component + AC component with twice the frequency of the voltage or current The DC component is a max imum when the voltage and current are in phase The power is the product of the RMS values of the line – line voltage and line current

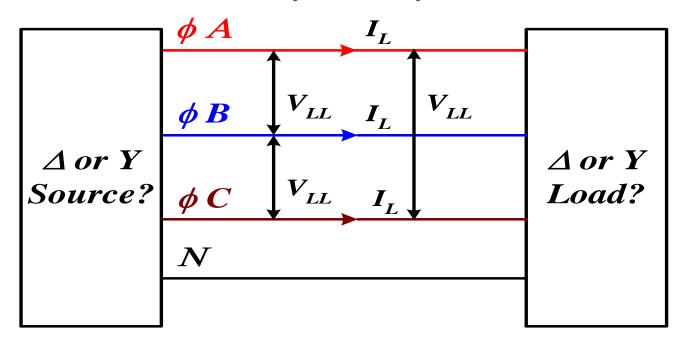
Single Phase Systems



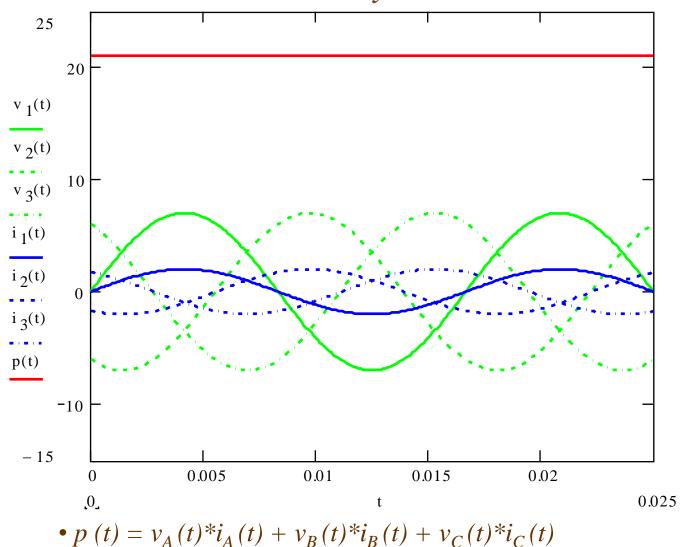
Single Phase Systems



• Voltage leads current by 60⁰ at 60 Hz


- Power is + (delivered to load) and (returned to the AC line) and 120 Hz
- + and power are equal when current voltage are 90⁰ out of phase

Section 4 - Power Line and Other Considerations


Three Phase Systems – Wye or Delta

For WyeFor Delta
$$S_{3\phi} = \sqrt{3} V_{LL} I_L$$
 $S_{3\phi} = \sqrt{3} V_{LL} I_L$

 $V_{A-B} = V_{A-B} / e^{j0} V_{B-C} = V_{B-C} / e^{-j120} V_{C-A} = V_{C-A} / e^{-j240}$

Three Phase Systems

- 3 times the single phase power with only 3 conductors, not 6
- For balanced load, p (t) is constant Section 4 - Power Line and Other Considerations

Three Phase Systems

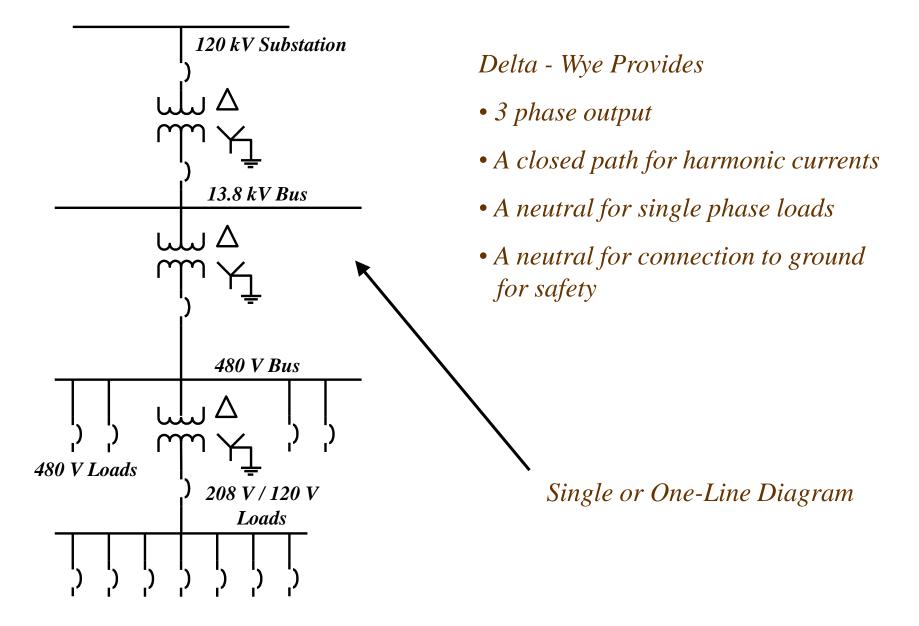
This will show that three phase power is constant

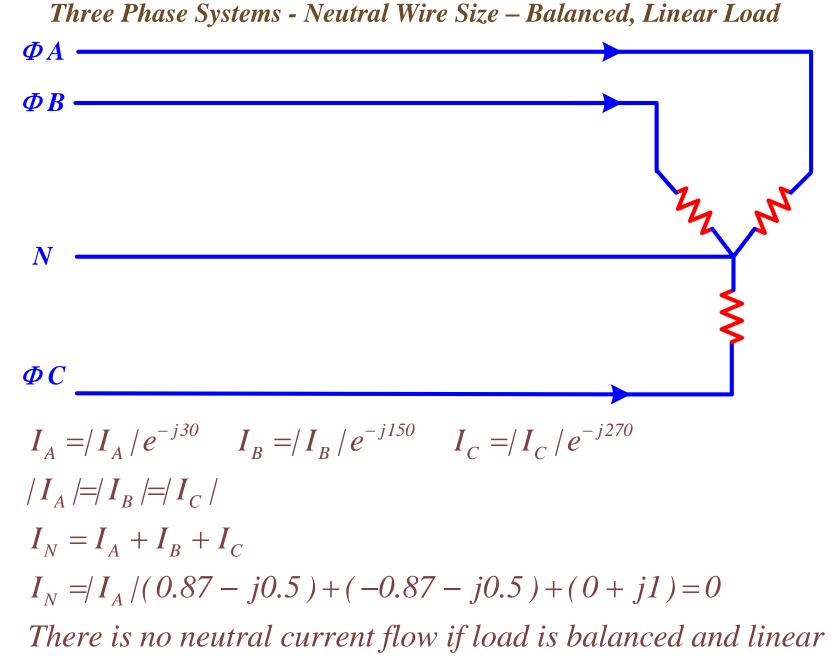
$$s(t) = v_{ab}(t)i_{a}(t) + v_{bc}(t)i_{b}(t) + v_{ca}(t)i_{c}(t)$$

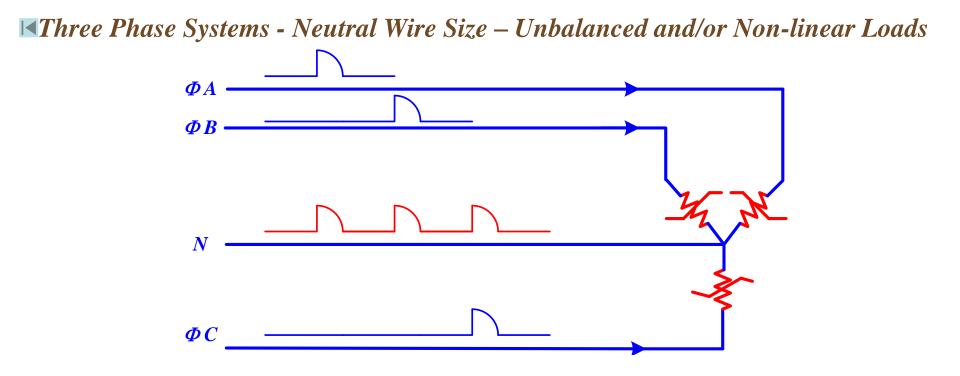
$$s(t) = \frac{|V_{ab}|}{\sqrt{2}}sin(\omega t)\frac{|I_{a}|}{\sqrt{2}}sin(\omega t - \phi)$$

$$+ \frac{|V_{bc}|}{\sqrt{2}}sin(\omega t - 120^{0})\frac{|I_{b}|}{\sqrt{2}}sin(\omega t - 120^{0} - \phi)$$

$$+ \frac{|V_{ca}|}{\sqrt{2}}sin(\omega t - 240^{0})\frac{|I_{c}|}{\sqrt{2}}sin(\omega t - 240^{0} - \phi)$$
But $\frac{|V_{ab}|}{\sqrt{2}} = \frac{|V_{bc}|}{\sqrt{2}} = \frac{|V_{ca}|}{\sqrt{2}} = V$ and $\frac{|I_{a}|}{\sqrt{2}} = \frac{|I_{b}|}{\sqrt{2}} = I(if load is balanced)$


Identity


$$sin(\alpha)sin(\beta) = \frac{1}{2}(cos(\alpha - \beta) - cos(\alpha + \beta))$$


Making the substitutions we have

$$s(t) = VI[cos(\omega t - \omega t + \phi) - cos(\omega t + \omega t - \phi)] + VI[cos(\omega t - 120^{0} - \omega t + 120^{0} + \phi) - cos(\omega t - 120^{0} + \omega t - 120^{0} - \phi)] + VI[cos(\omega t - 240^{0} - \omega t + 240^{0} + \phi) - cos(\omega t - 240^{0} + \omega t - 240^{0} - \phi)] \\ s(t) = VI[cos(\phi) - cos(2\omega t - \phi) + cos(\phi) - cos(2\omega t - 240^{0} - \phi) + cos(\phi) - cos(2\omega t - 480^{0} - \phi)] \\ Re cognizing that cos(-480^{0}) = cos(-120^{0}) the following is obtained \\ s(t) = VI[cos(\phi) - cos(2\omega t - \phi) + cos(\phi) - cos(2\omega t - 240^{0} - \phi) + cos(\phi) - cos(2\omega t - 120^{0} - \phi)] \\ s(t) = VI[3cos(\phi) - (cos(2\omega t - \phi) + cos(2\omega t - 120^{0} - \phi) + cos(2\omega t - 240^{0} - \phi))] \\ Acknowledging that cos(2\omega t - \phi) + cos(2\omega t - 120^{0} - \phi) + cos(2\omega t - 240^{0} - \phi) = 0 yields \\ s(t) = 3VI cos(\phi)$$

A constant power, with a maximum when $\phi=0^{0}$ and where V and I are RMS values

For balanced non-linear loads $|I_A| = |I_B| = |I_C| = |I_L|$ $|I_N| = \sqrt{|I_A|^2 + |I_B|^2 + |I_C|^2} = \sqrt{3} I_L$

For unbalanced linear or non-linear loads $|I_A| \neq |I_B| \neq |I_C|$ $|I_N| = \sqrt{|I_A|^2 + |I_B|^2 + |I_C|^2}$ The neutral conductor can safely be sized for $\sqrt{3} * MAX(I_A, I_B, I_C)$

June 2012

The Per Unit Calculation System

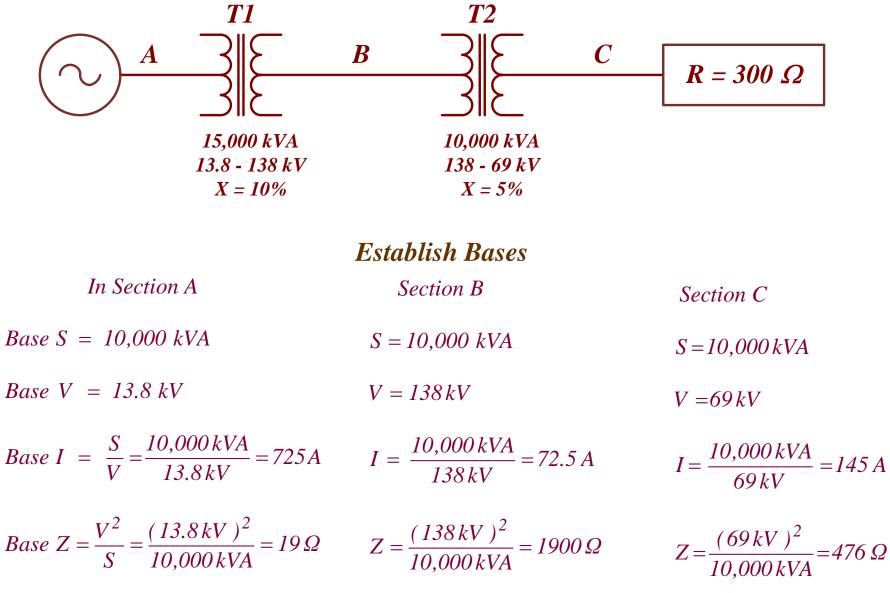
Why Used

- To make quantities and values convenient and manageable
- To put quantities on a single per phase or 3-phase basis
- To avoid having to remember to correct for transformer turns ratios, reflected voltages, current and impedances
- No worries about delta or wye configurations

Why Mentioned Here

- Because the power supplies will interface to the AC line
- Because all AC power equipment (generators, motors, transformers and chokes) impedances are expressed in %
- Because line limitations (short-circuit currents, arc flash, V droop, transients, harmonics) must be considered. These effects are usually calculated in the per unit system

Establish Power, Voltage, Current and Impedance Bases						
Base	Per <i>\phase</i>	3 Phase	Notes			
<i>S</i> , <i>P</i> , <i>Q</i>	= Base kVA	= Base kVA = 3* per ø Base kVA	One power base must be used throughout			
V	= Base kV (L-N)	$= Base \ kV (L-L)$	V Base location dependent			
Ι	= Base kVA / Base kV	$=$ Base kVA / $\sqrt{3}$ Base kV	I Base location dependent			
Ζ	$= (Base \ kV)^2 / Base \ kVA$	$= (Base \ kV)^2 / Base \ kVA$	Z Base location dependent Z Base phase independent per ϕ Z Base = 3ϕ Z Base			

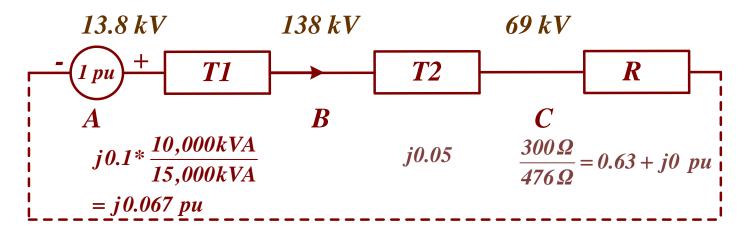

The Per Unit Calculation System

• *p.u.* = actual value / Base value

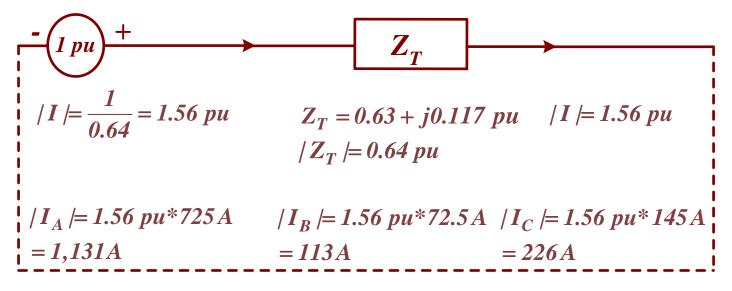
• p.u. _{new} = p.u. _{given}
$$\left(\frac{Base \, kV_{given}}{Base \, kV_{new}}\right)^2 * \left(\frac{Base \, kVA_{new}}{Base \, kVA_{given}}\right)$$

• Choose the system and base that yield the most convenient numbers and calculations!

I The Per Unit Calculation System - 1 \$\phi\$ Example to Calculate Line Currents

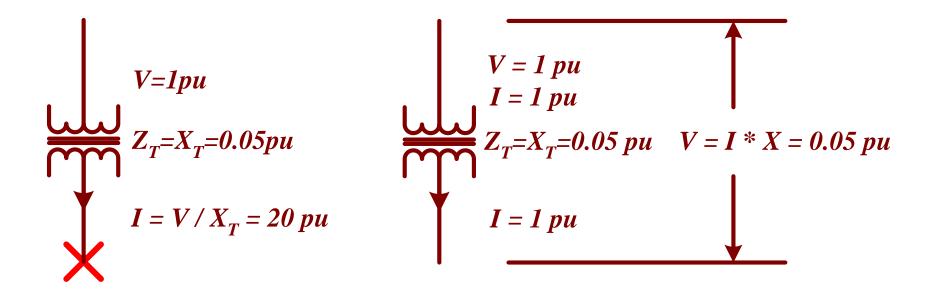


June 2012


Section 4 - Power Line and Other Considerations

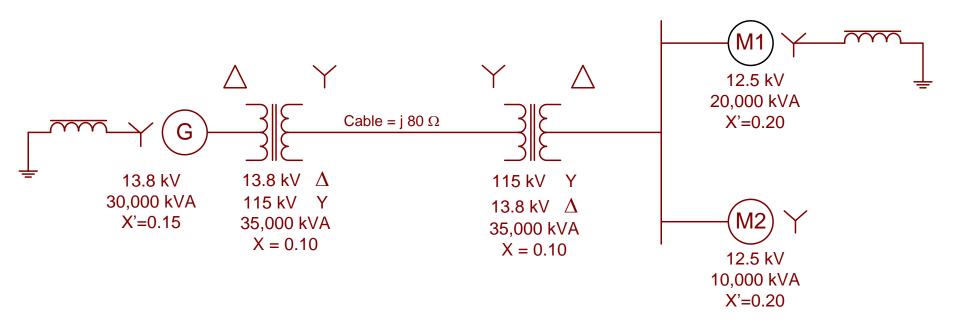
The Per Unit Calculation System -1ϕ Example (Continued)

Obtain pu values

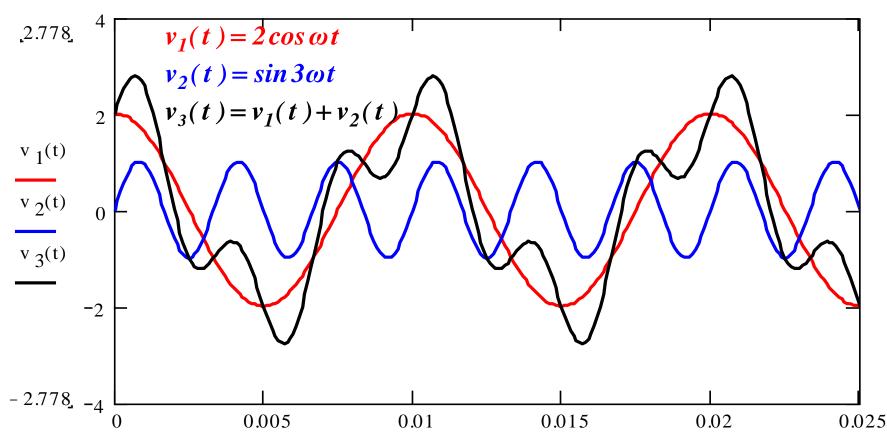

Combine impedances – Solve for I

The Per Unit Calculation System

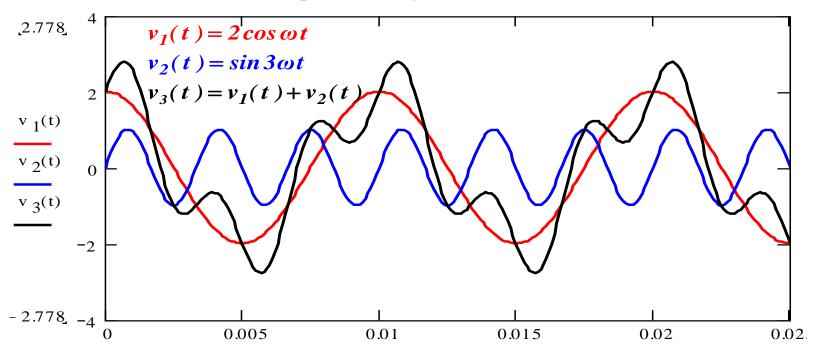
A transformer impedance of 5% means:


- The short circuit current is 20X rated full load input / output
- The voltage drop across the transformer at full load is 5% of rated

The Per Unit Calculation System - Homework Problem #1


Referring to the one-line diagram below, determine the line currents in the:

A. Generator B. Transmission Line C. M1 D. M2

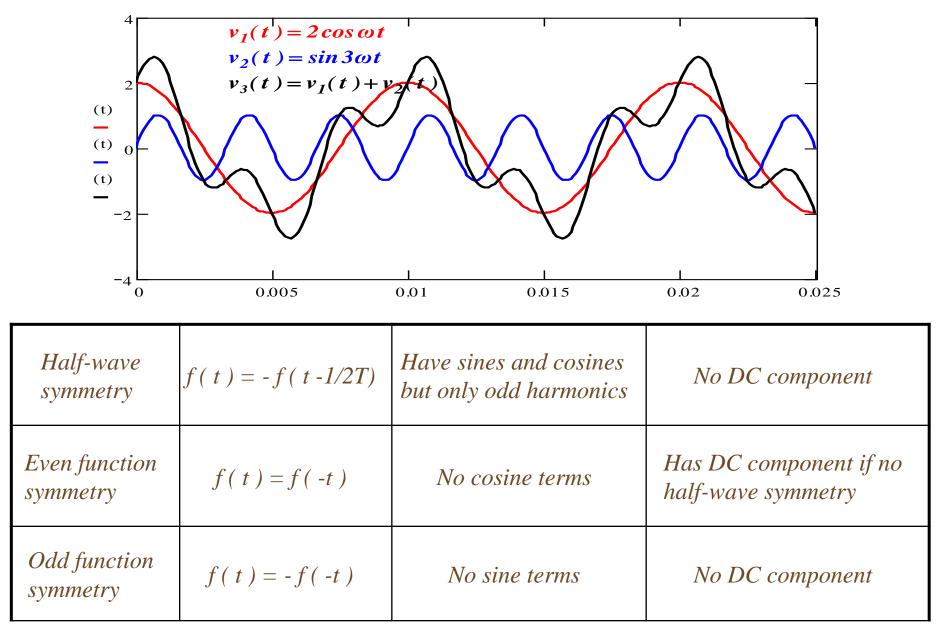

Harmonics, Complex Waveforms and Fourier Series

- Non-sinusoidal waves are complex and are composed of sine and cosine harmonics
- The harmonics are integral multiples of the fundamental frequency (1st harmonic) of the wave. The second harmonic is twice the fundamental frequency, the third harmonic is 3 X the fundamental frequency, etc.

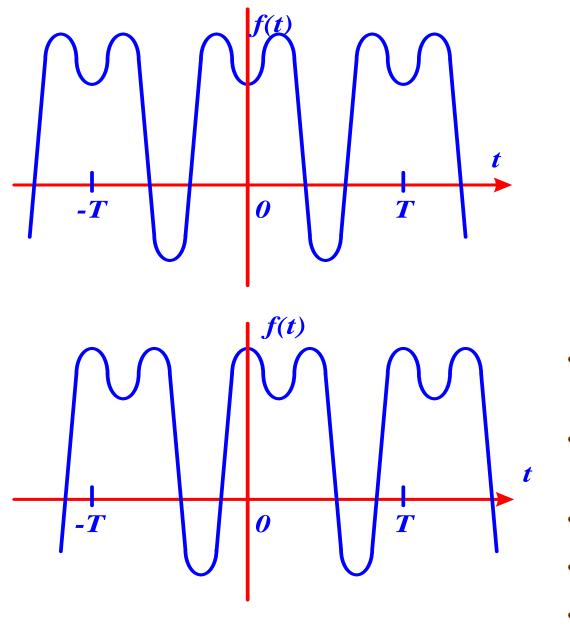
Section 4 - Power Line and Other Considerations

Harmonics, Complex Waveforms and Fourier Series

Trigonometric form of the Fourier Series

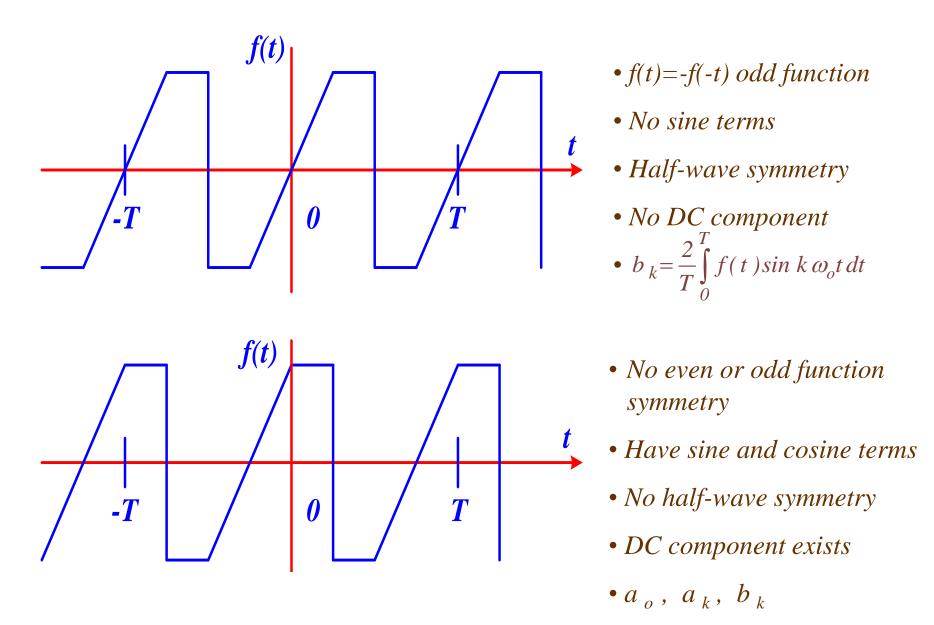

$$a_0 = \frac{1}{T} \int_0^T f(t) dt \qquad a_k = \frac{2}{T} \int_0^T f(t) \cos k \, \omega t \, dt$$

$$b_k = \frac{2}{T} \int_0^T f(t) \sin k \, \omega t \, dt$$


Complex form from Euler $e^{jx} = \cos x + j \sin x$

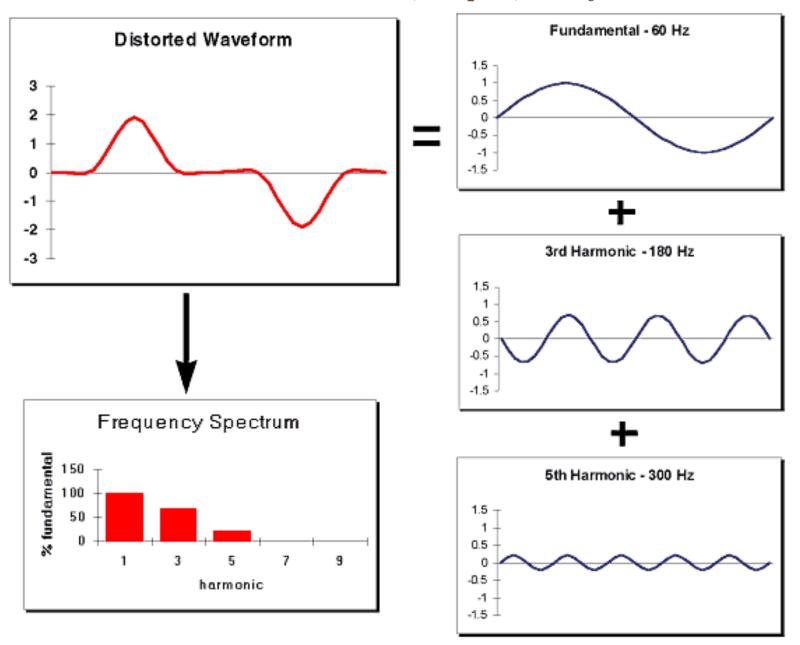
$$c_k = \frac{1}{T} \int_0^T f(t) e^{-jk\omega t} dt$$

Fourier Series - Example of Even Function Symmetry


- •f(t) = f(-t) even function
- No cosine terms
- No half-wave symmetry

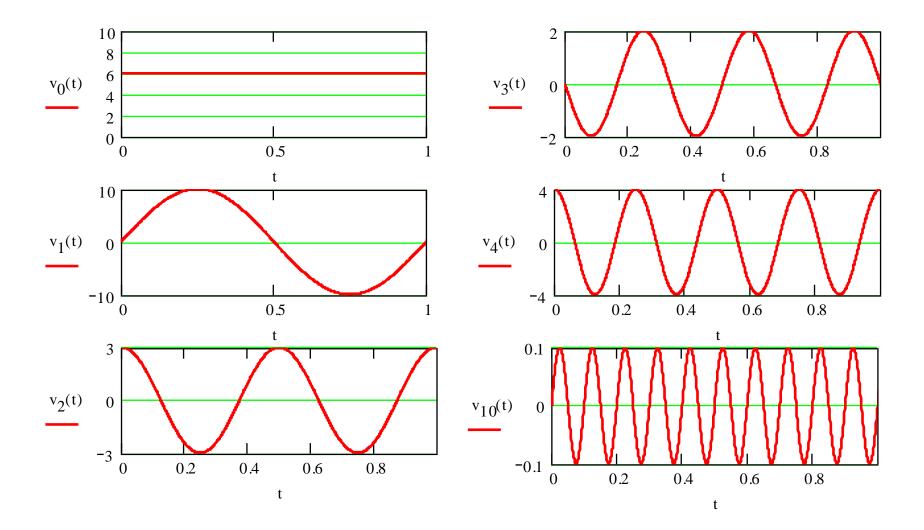
• DC component,
$$a_o$$

• $a_k = \frac{2}{T} \int_0^T f(t) \cos k \omega_o t dt$


- No even or odd function symmetry
- Have sine and cosine terms
- No half-wave symmetry
- *DC* component, a_o

•
$$a_o, a_k, b_k$$
 terms

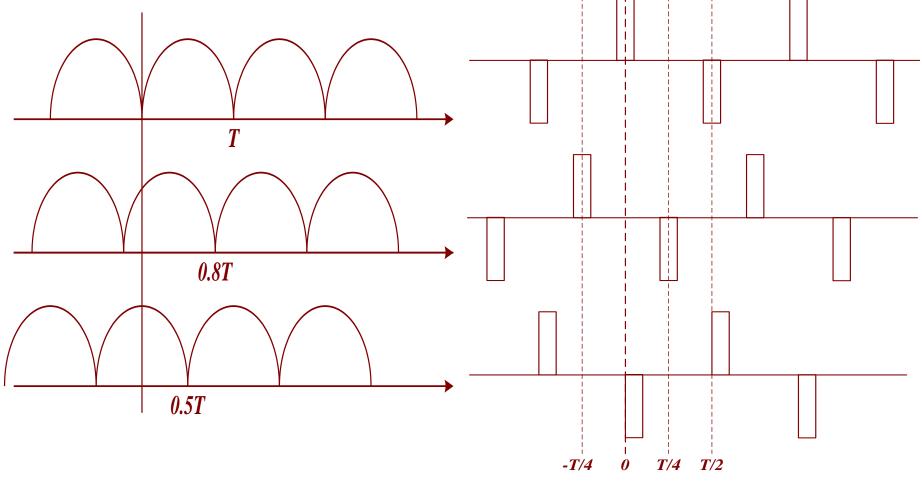
Fourier Series - Example of Odd Function Symmetry



Fourier Series - Distorted (Complex) Waveforms

Section 4 - Power Line and Other Considerations

A waveform v(t) was analyzed and found to consist of 6 components as shown here.

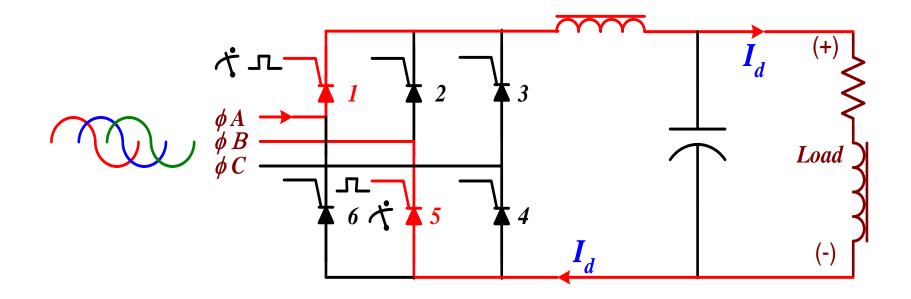

Section 4 - Power Line and Other Considerations

- a. Write the Fourier series for v(t) in terms of ωt
- b. Show the harmonic content graphically by plotting the frequency spectrumc. Give the numerical result of

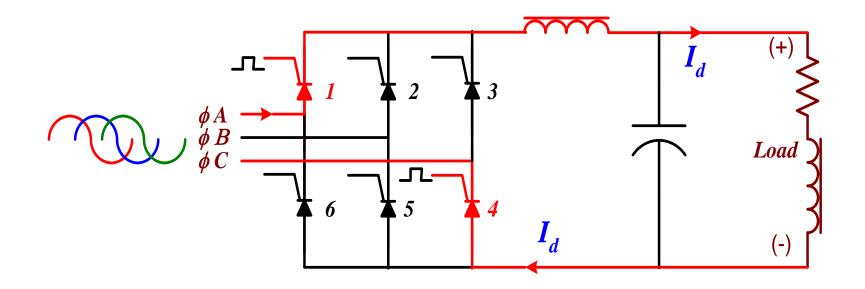
$$b_{3} = \frac{2}{T} \int_{0}^{T} v(t) \sin 3\omega t \, dt \qquad Help: \int \sin^{2}(3\omega t) \, dt = \frac{1}{3} * \frac{\frac{1}{2}\cos(3\omega t)\sin(3\omega t) + \frac{3}{2}\omega t}{\omega}$$
$$b_{4} = \frac{2}{T} \int_{0}^{T} v(t)\sin 4\omega t \, dt \qquad Help: \int \cos(4\omega t)\sin(4\omega t) \, dt = \frac{-1}{8} \frac{\cos^{2}(4\omega t)}{\omega}$$

Fourier Series - Homework Problem #3

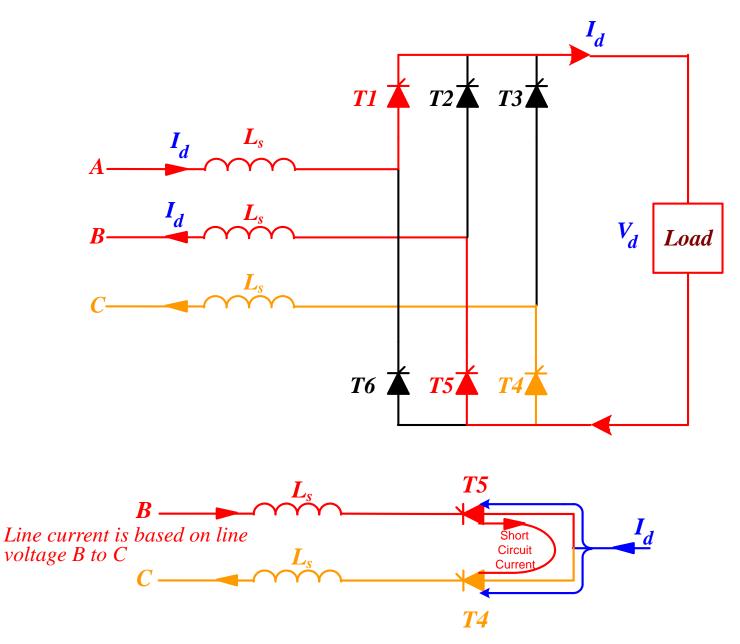
Each waveform below can be written as a Fourier series. The result depends upon the choice of origin. For each of the 6 cases, state the type of symmetry present, non-zero coefficients and the expected harmonics.



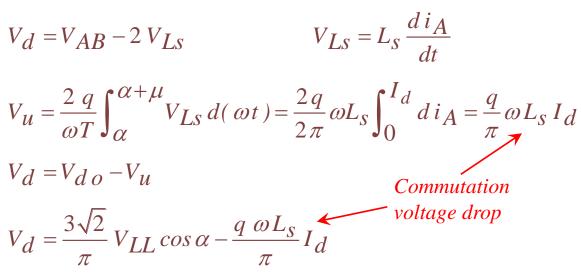
Signal Total Harmonic Distortion (THD): The ratio of the square root of the summed squares of the amplitudes of all harmonic frequencies above the fundamental frequency to the fundamental frequency


$$THD_{V} = \frac{\left[\sum_{i=2}^{N} V_{i}^{2}\right]^{1/2}}{V_{1}} * 100\%$$

$$THD_{I} = \frac{\left[\sum_{i=2}^{N} {I_{i}^{2}}\right]^{1/2}}{I_{1}} * 100\%$$


- Unbalanced 3-phase, non-linear loads
- SCR or diode commutation

State 1: A-B (+) SCR s 1 – 5 On

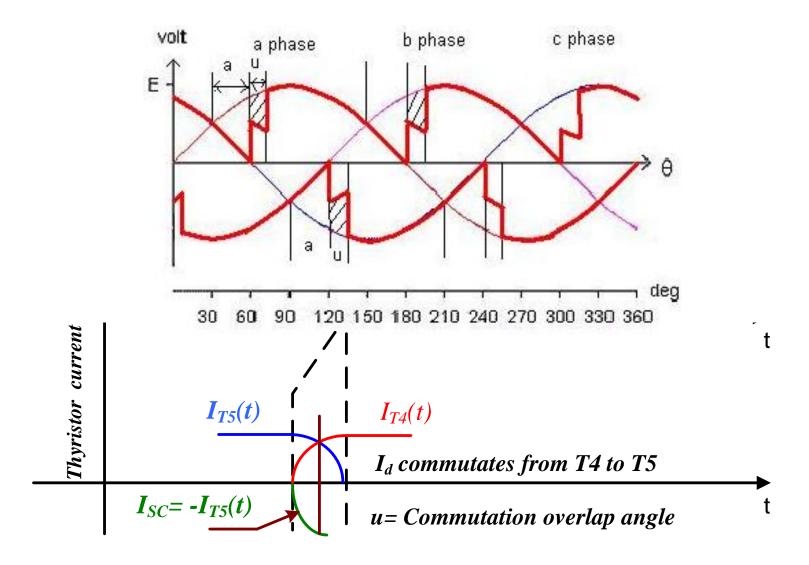


State 2 : C-A (-), 5 off, 4 on, SCR s 1 – 4 On

Section 4 - Power Line and Other Considerations

SCR Commutation Voltage Drop

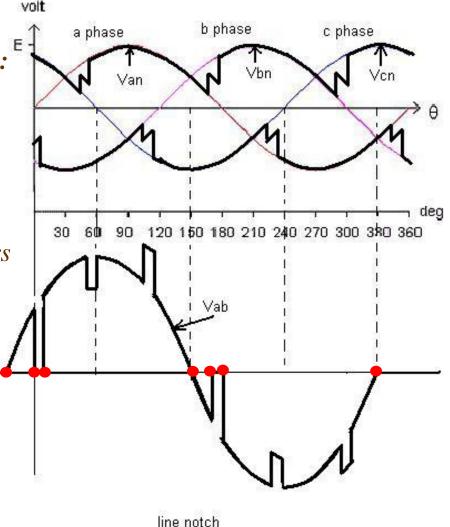
 V_{AB} = Line-line voltage, V_u = commutation drop, V_{LS} = Line impedance I_d = Load current, V_{do} = Theoretical output, V_d = reduced output, i_A = phase current q= number of possible rectifier states, α = SCR gate trigger retard angle μ = commutation overlap angle, ω = operating frequency in radians


Conclusions

•The current commutation takes a finite commutation interval u.

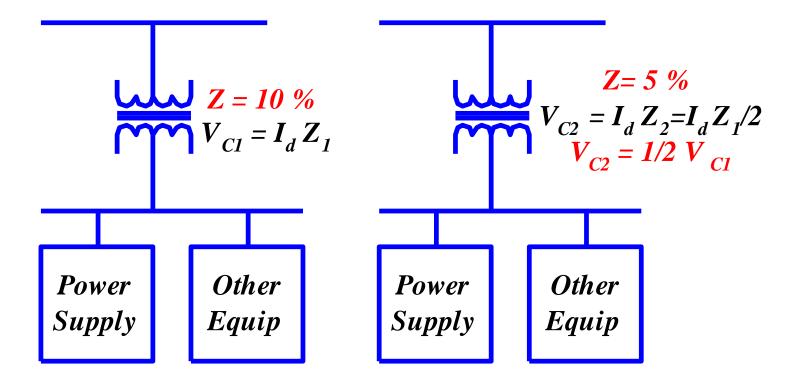
•During the commutation interval, three SCRs conduct.

•*Vu* (and line voltage distortion) is directly proportional to the inductive reactance of the input AC line or transformer and the DC current flowing in the load


SCR Commutation as Distortion Cause

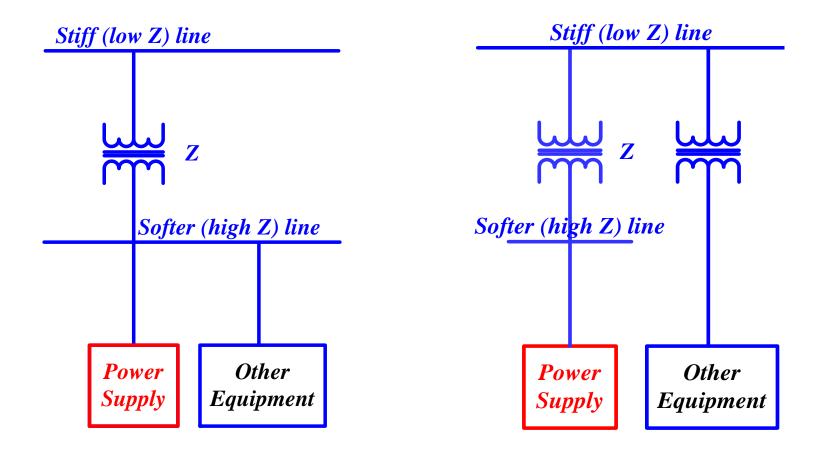
SCR Commutation Effects

SCR / diode commutation line notches:


- Are a source of line voltage distortion
- If deep enough, they cause extra zero crossovers in the line voltage. In 3 phase systems, instead of 2 zero crossovers per cycle, 6 zero crossovers can be experienced
- The extra zero crossovers can upset equipment timing. This can cause SCRs to trigger at the wrong time, damaging the power supply or cause false turn-on and damage to other equipment.

SCR Commutation Effects

Reducing SCR commutation effects


• Commutation notches (voltage drops) are directly proportional to system Z and DC load current. To reduce commutation notch depth, use a stiff (large, low Z) line.

Section 4 - Power Line and Other Considerations

Reducing SCR commutation effects on other equipment

• Isolate other equipment by placing them on another line

SCR Commutation Effects - International Harmonic Distortion Standards

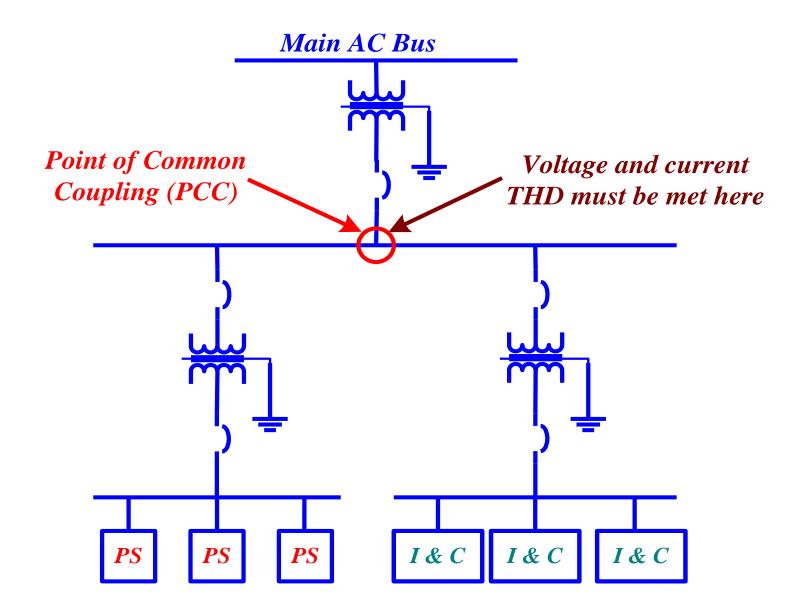
Australia	AS 2279 - "Disturbances in Mains Supply Networks"
Britain	G5/3 - "Standard for Harmonic Control in Power Systems"
Europe	International Electrotechnical Commission IEC 555 Series for harmonic current distortion limits for small devices (extended by IEC 1000 standards)
United States	IEEE 519 – 1992 "Standard Practices and Requirements for Harmonic Control in Electrical Power Systems".

Table 10.2 Low Voltage System Classification And Distortion Limits					
	Special Applications ¹	General Systems	Dedicated Systems ²		
THD (Voltage)	3%	5%	10%		
Notch Depth	10%	20%	50%		
Notch Area ³	16,400 V - μS	22,800 V - μS	36,500 V - μ S		
1. Airports and hospitals					

2. Exclusive use converters

3. Multiply by V/480 for other than 480 V systems

SCR Commutation Effects - IEEE 519- 1992 Load Current Distortion Limits


General Distribution Systems – 120 V Through 69 kV		
I_{SC} / I_L	Maximum THD	
< 20	5	
20 < 50	8	
50 < 100	12	
100 < 1,000	15	
> 1,000	20	

1. I_{SC} = maximum short-circuit current at Point of Common Coupling (PCC)

2. I_L = maximum load current at PCC

3. I_{SC}/I_L = system short-circuit current capability to load current ratio

SCR Commutation Effects - Point of Common Coupling Illustrated

Section 4 - Power Line and Other Considerations

Electromagnetic Compatibility and Interference - Glossary of EMC/EMI Terms

Electromagnetic Interference (EMI) is any electromagnetic disturbance that interrupts, obstructs, or otherwise degrades or limits the effective performance of electronics/electrical devices, equipment or systems. Sometimes also referred to as radio frequency interference (RFI)

Electromagnetic Compatibility (EMC) describes how an electronic device will behave in a "real world" setting of EMI

Broadband Interference This type of interference usually exhibits energy over a wide frequency range and is generally a result of sudden changes in voltage or current. It is normally measured in decibels above one micro-volt (or micro-ampere) per megahertz dB μ V/MHz or dB μ A/MHz

Narrowband Interference has its spectral energy confined to a specific frequency or frequencies. This type of interference is usually produced by a circuit which contains energy only at the frequency of oscillation and harmonics of that frequency. It is normally measured in "decibels above one micro-volt (or micro-ampere)", e.g., $dB \mu V$ or $dB \mu A$.

Electromagnetic Compatibility and Interference - Glossary of Terms

Five Types of EMI

- Conducted Emissions (CE) the EMI emitted into lines and connections by an electronic device. Of particular interest is the EMI conducted onto the AC input power lines
- Conducted Susceptibility (CS) the EMI present on lines and connections (e.g. power lines) and its effect on a connected electronic device.
- Radiated Emissions (RE) the EMI radiated by an electronic device
- Radiated Susceptibility (RS) radiated EMI effect on an electronic device
- *Electromagnetic Pulse (EMP) radiated EMI by lightning or atomic blast*

Culprits and Victims

- Culprits are devices, equipment or systems that emit EMI
- Victims are devices, equipment or systems that are susceptible to EMI

Electromagnetic Compatibility and Interference - EMI / EMC Standards

USA

- *MIL-STD-461E Emissions & Susceptibility Standard for Defense Electronics This standard sets the Emissions & Susceptibility (Immunity) noise limits and test levels for electrical / electronic and electromechanical equipment*
- *MIL-STD-462E* is the companion standard that describes the methods and test procedures for certification under MIL-STD-461.
- The object of the standards is to maximize safety and reliability and to minimize downtime and breakdowns of equipment essential for defense.
- The worldwide defense electronics and aerospace community recognizes and generally accepts MIL-STD-461.

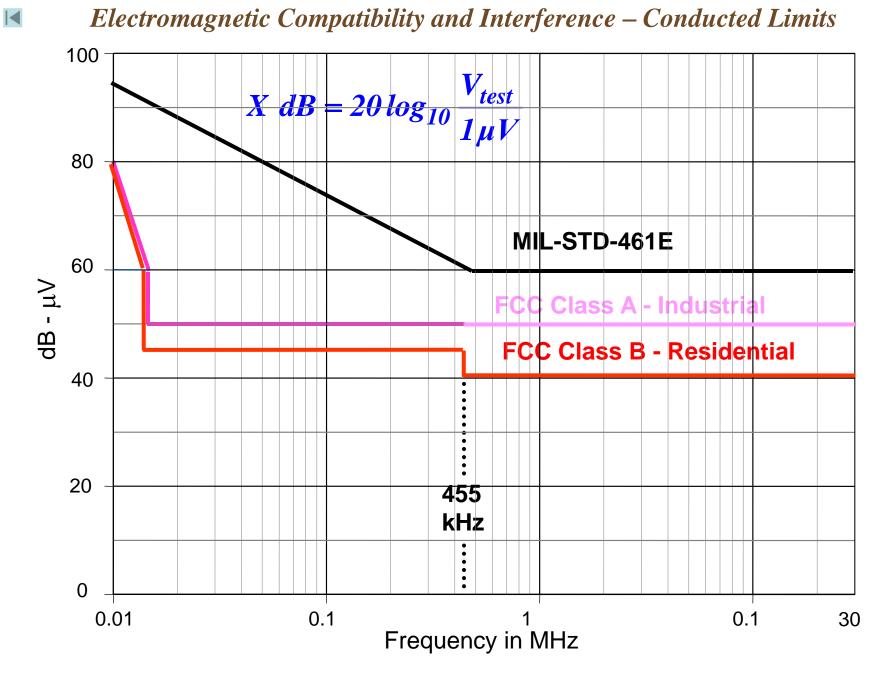
USA

Federal Communications Commission (FCC) under the Code of Federal Regulations CFR, Part 15, Sub-Part J, for Class A and B devices and equipment.

Germany

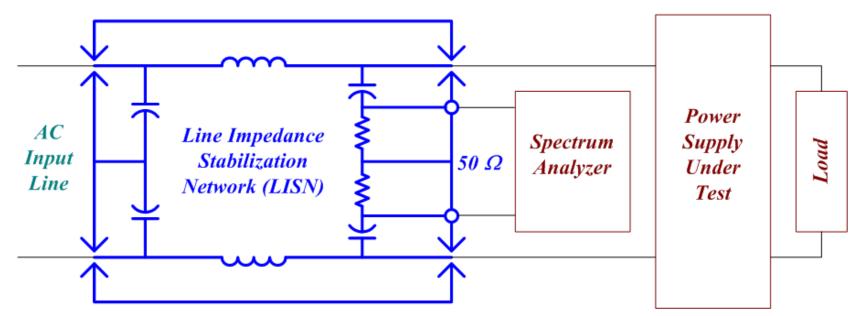
Verband Deutscher Elektrotechniker (VDE) has developed VDE 0871 for Level A and Level B.

European Community EMC Directives of 1996


The FCC and VDE specifications are similar in that Class A and Level A describe industrial equipment, while Class B and Level B are applicable to consumer equipment.

Electromagnetic Compatibility and Interference - Conducted Emissions

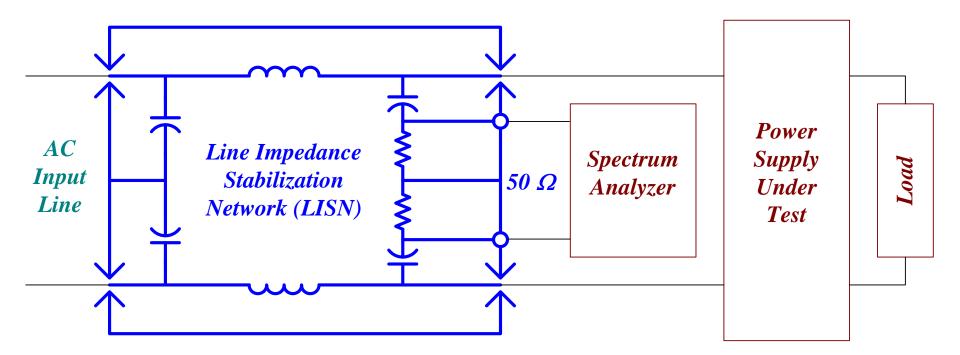
Conducted emissions


- EMI conducted onto AC Lines by the power supply.
- Typically 10 kHz to 30 MHz
- Measured in μ V or dB μ V (Reference: 1μ V = 0 dB)

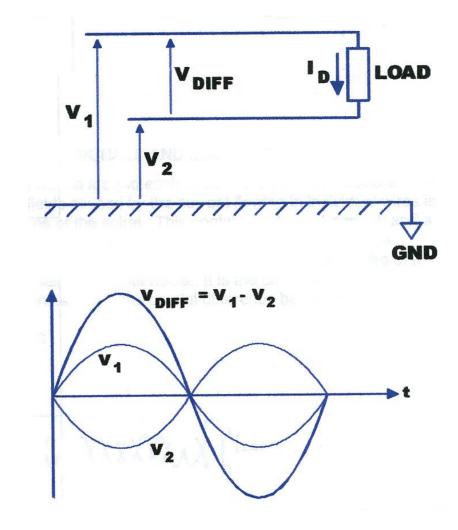
$$dB = 20 * \log_{10} \frac{\text{measured } \mu V}{1 \, \mu V}$$

Section 4 - Power Line and Other Considerations

- Electromagnetic Compatibility and Interference Conducted Emissions Test equipment used – Spectrum analyzers with Line Impedance Stabilization Networks (LISNs) that
 - Filter and divert external AC line intrinsic noise from the EMI measurements
 - Isolate and decouple the AC line high voltage and prevent line transients from damaging spectrum analyzers and other sensitive test equipment
 - Present a known, fixed impedance at RF frequencies to the power supply undergoing test

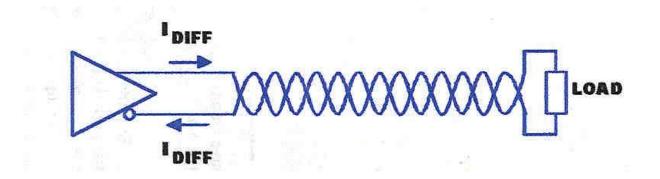


Section 4 - Power Line and Other Considerations

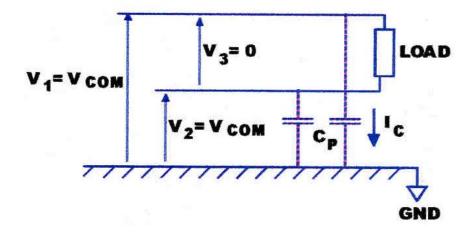

Electromagnetic Compatibility and Interference Conducted Emissions – LISNs

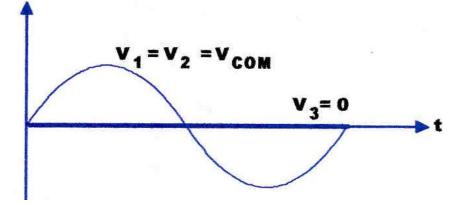
LISN considerations:

- Desired impedance (typically 50 Ω)
- Bandwidth (typically victims are susceptible to 10 kHz to 30 MHz)
- *Line type (DC, Single phase, 3 \phi delta, 3 phase wye)*
- *Line voltage (120 V, 208 V, 480 V, etc)*
- Power supply input current when under load


Electromagnetic Compatibility and Interference - Differential Mode Noise

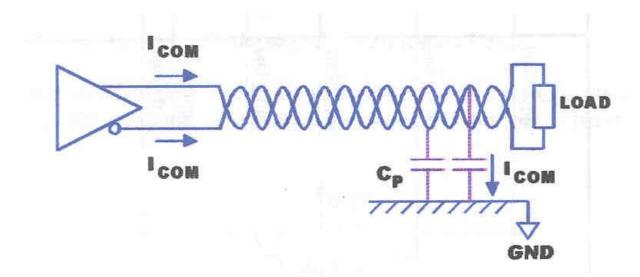
• Produced as a natural result of complex, high frequency switching V and I


• $V_1 = -V_2$


- Magnitudes are equal
- Phase difference is 180⁰
- $V_{DIFF} = V_1 V_2 = unwanted signal$
- $I_D = (V_1 V_2) / R_{Load}$

- Current flow in opposite directions so that the magnetic field is contained within the spirals
- The tighter the cable twist the greater the containment and noise attenuation
- Shielding the pair (and tying the shield to ground in one or more places) will also increase noise attenuation

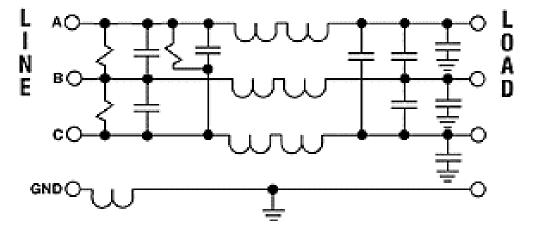
EMC/EMI - Common Mode Noise



 Produced as a result of circuit imbalances, currents produced by simultaneous high frequency voltages on (+) and (-) capacitively coupled to ground

•
$$V_1 = V_2 = V_{COM}$$

- Magnitudes are equal
- Phase difference is 0^{O}
- $V_{DIFF} = V_1 V_2 = wanted signal$
- $I_D = (V_1 V_2) / R_{Load}$
- $\bullet V_{SUM} = V_1 + V_2 = 0$


EMC/EMI - Common Mode Compatibility

- Common mode current generated by common mode voltages impressed across parasitic capacitances to ground
- Current flows are the same magnitude and in the same direction so that the spirals have no effect on containing the magnetic fields
- The pair must be shielded and the shield tied to ground in one or more places for noise attenuation

EMC/EMI - Input Conducted Line Noise Filters

Delta input

Wye input

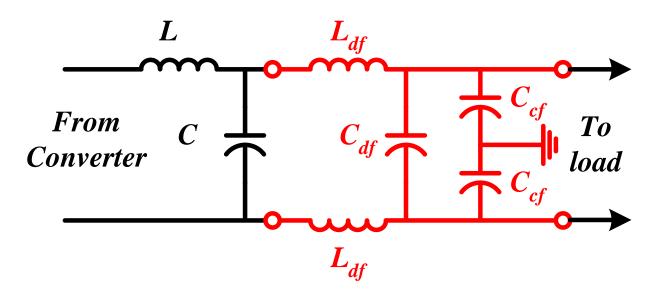
- Configurations C, L, Pi, T
- Attenuation 20 to 70dB
- Filters both differential and common mode noise

http://www.filterconcepts.com/three_phase/3v_series.html

A D

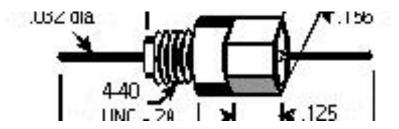
June 2012

AC

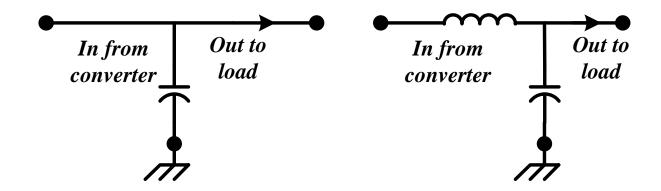

вC

сC

мĆ

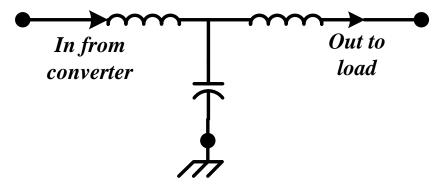

L

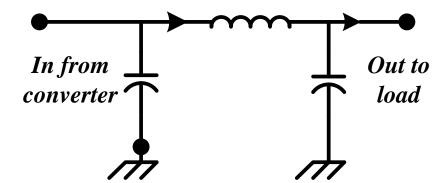
Ň



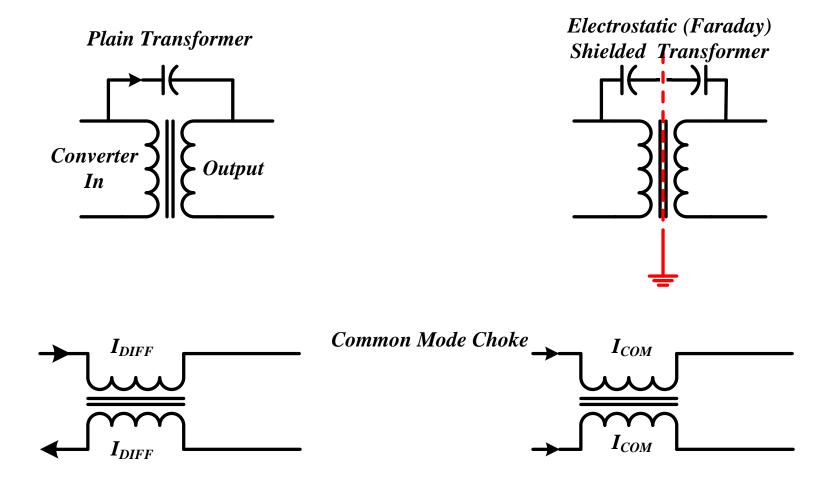
- L and C are not good noise $(f > f_{sw})$ filters
- L looks capacitive at $f > f_{sw}$, C looks inductive at $f > f_{sw}$
- *L*_{df} is a differential / common mode noise filter inductor and might be a real inductance or the intrinsic inductance of the bus
- C_{df} is a differential mode noise filter capacitor
- C_{cf} are common mode noise filter capacitors

EMC/EMI - Output Line Feed-through Noise Filters

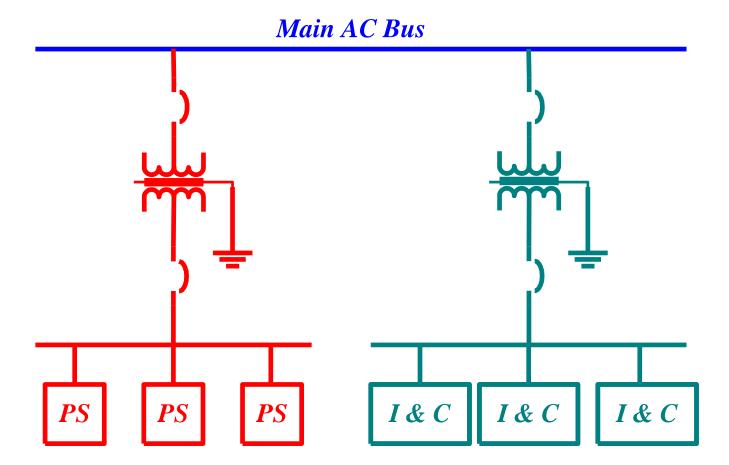

• *C filters* are the most common EMI filter, consisting of a 3 terminal feedthru capacitor, used to attenuate high frequency signals


• *L filters* consist of one inductive element and one capacitor. One disadvantage is that the inductor element in smaller filters consists of a ferrite bead that will saturate and lose effectiveness at larger load currents

EMC/EMI - Output Line Feed-through Noise Filters


• *T filters* consist of two inductive elements and one capacitor. This filter presents a high impedance to both the source and load of the circuit

• **Pi** filters consist of two capacitors and one inductor. They present a low impedance to both source and load. The additional capacitor element, provides better high frequency attenuation than the C or L filters



EMC/EMI - Other Conducted Noise Filters

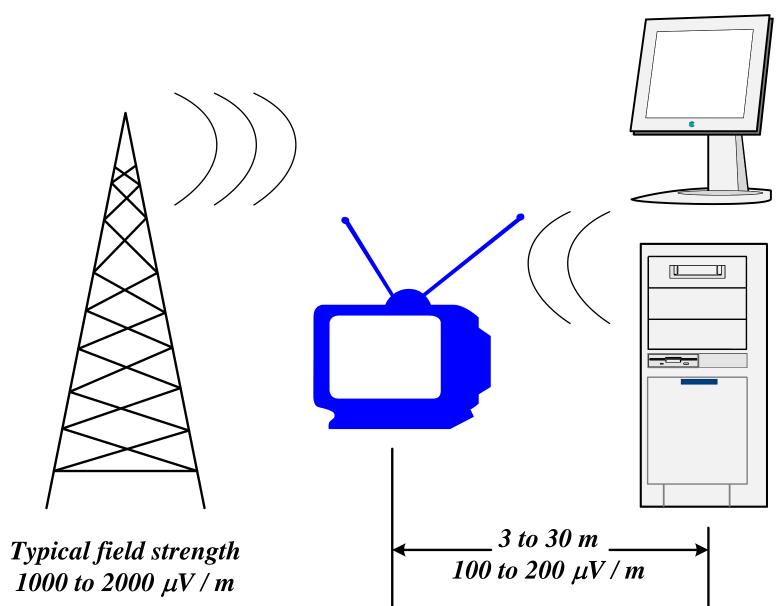
Differential mode currents flow in opposite directions. Magnetic fields cancel, choke presents low impedance, low attenuation to noise Common mode currents flow in same direction. Magnetic fields add, choke presents high impedance, high attenuation to noise

EMC/EMI - Reducing Conducted Noise on Other Systems / Equipment

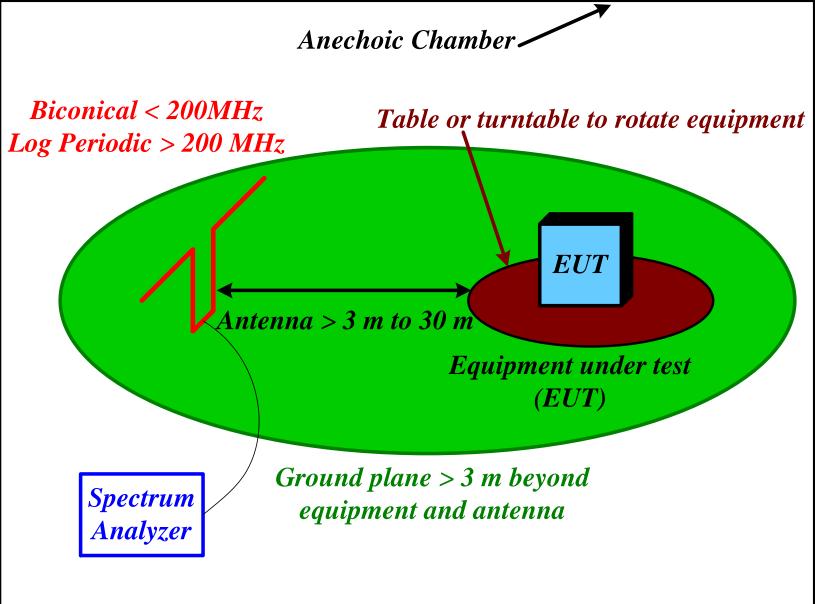
• Separate noisy power supplies from sensitive I & C loads by Faradayshielded transformers to attenuate common mode noise

Radiated emissions

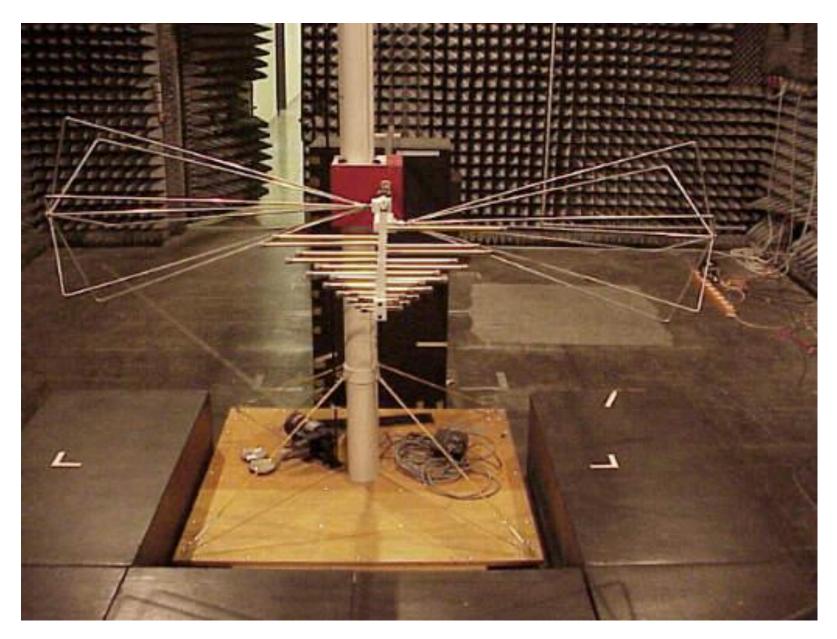
- EMI radiated from cables, transformers, other components.
- Typically 30 MHz to > 1GHz. 30 MHz start because cables and other equipment are effective radiators of frequencies above 30 MHz
- Measured in $\mu V/m$ or $dB \mu V/m$ (Reference: $1 \mu V/m = 0 dB$)
- Measured 3 m (residential) or 30 m (industrial) from the emitting equipment. TVs located within 3 m of computers in the home and within 30 m in the industrial setting. Limits 100 to 200 μ V / m are 1/10 of TV reception signal
- Industrial FCC Class A limits of 200 μ V / m are higher (less severe) because it is assumed that there will be an intervening wall between culprit and victim that will provide some shielding


Test equipment used

• Spectrum Analyzers, rotating tables, conical and/or log periodic antennas and anechoic chambers designed to minimize reflections and absorb external EMI


EMC/EMI - Radiated Emissions

Any component or cable > 1/2 wavelength (λ) will be an efficient radiating or receiving antenna


Cable Lengths Vs Wavelength			
Frequency	λ	1/2 λ	1/4 λ
10 kHz	30 km	15000 m	7500 m
100 kHz	3 km	1500 m	750 m
1 MHz	300 m	150 m	75 m
10 MHz	30 m	15 m = 50 ft	7.5 m = 25 ft
30 MHz	10 m	$500 \ cm = 16 \ ft$	2.5 m = 8 ft
100 MHz	3 m	$150\ cm = 5\ ft$	$75 \ cm = 2.5 \ ft$
1 GHz	30 cm	$15 \ cm = 6 \ in$	$7.5\ cm = 3\ in$

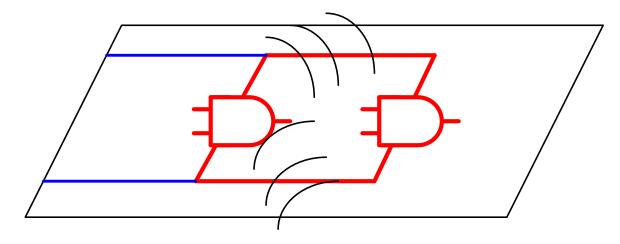
EMC/EMI - Bi-Conical Antenna

EMC/EMI - Log-Periodic Antenna

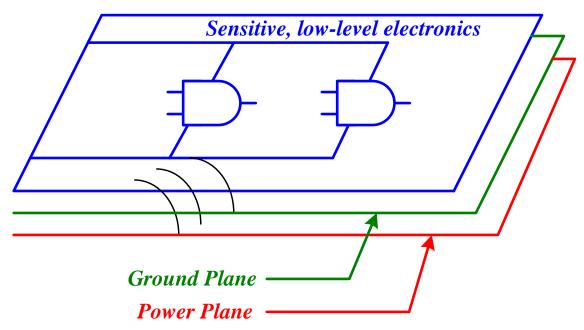
EMC/EMI - Radiated Noise Reduction – Small Loops

•
$$B=T=10,000$$
 gauss
• $A=m^2$
Faraday's Induced Voltage Law
• $(T/s)*m^2 = V$

$$V = \prod E \Box dl = -\frac{d \varphi}{dt} = -\frac{d B}{dt} A$$

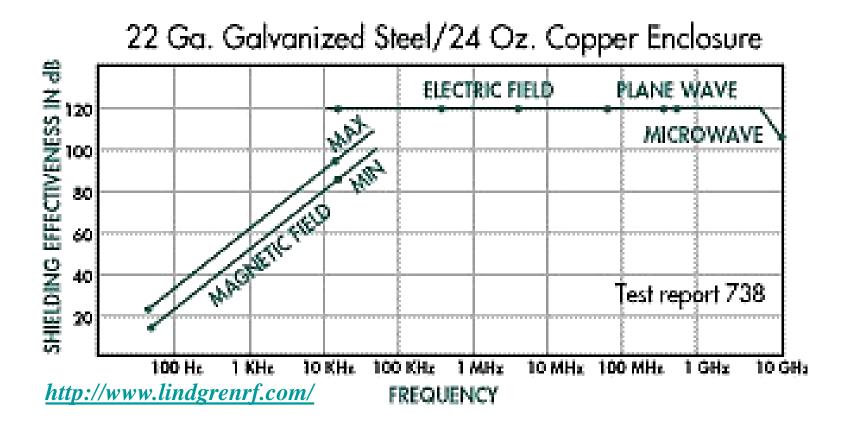

10

Hint: Homework problem


$$V \propto \frac{dB}{dt}$$
 the magnitude and rate of change of flux density with time

 $V \propto A$ the area of the loop cut by flux

Moral - minimize loop areas by: running supply and return bus or cable conductors together twisting cables whenever possible **EMC/EMI - Radiated Noise Reduction By PCB Small Loops**



Radiated Noise Reduction By PCB Ground Planes

Use shielded cables

Use shielded enclosures (if necessary for interior controls)

Section 4 - Power Line and Other Considerations

Shielding

- •Use ground planes extensively to minimize E and H fields
- If ribbon cable is used, employ and spread ground conductors throughout to minimize loop areas
- Avoid air gaps in transformer/inductor cores.
- Use toroid windings for air core inductors
- If shielding is impractical, then filter

Filtering

- Use common mode chokes whenever practical
- Use EMI ferrites, not low-loss ferrites useful frequency range 50 to 500 MHz. Be careful of DC or low-frequency current saturation
- Use capacitors and feed-through capacitors, separately or in conjunction with chokes/ferrites. Be mindful of capacitor ESR and inductance

Homework Problem # 4

A uniform magnetic field B is normal to the plane of a circular ring 10 cm in diameter made of #10 AWG copper wire having a diameter of 0.10 inches. At what rate must B change with time if an induced current of 10 A is to appear in the ring? The resistivity of copper is about 1.67 $\mu \Omega * cm$.

Power Factor - Calculation and Importance

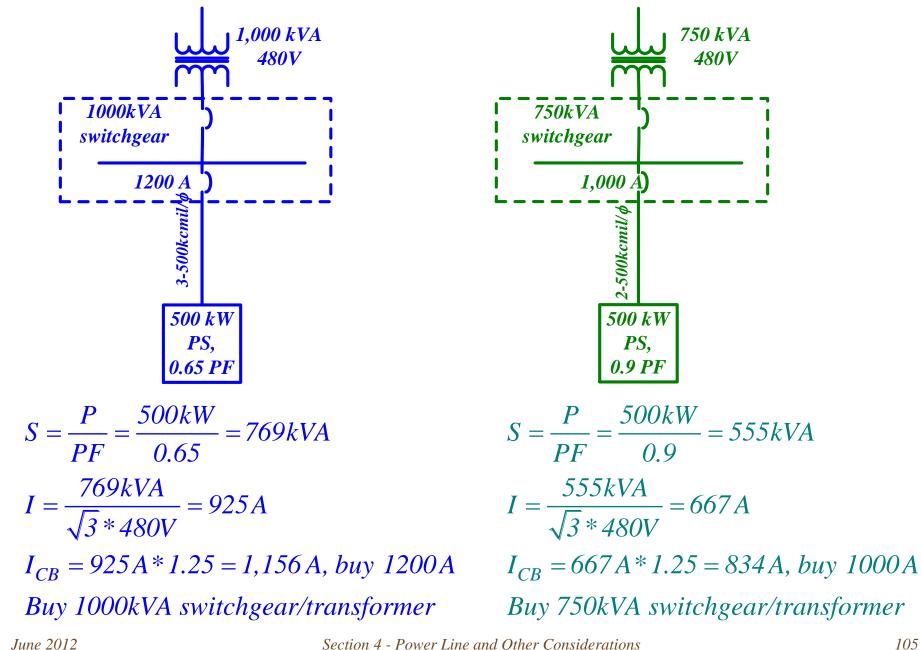
Single Phase

 $S_{1\phi} = V_{\phi} \overline{I_{\phi}} = P_{1\phi} + Q_{1\phi}$ $P_{l\phi} = V_{\phi} | I_{\phi} \cos(\alpha_{I_{\phi}} - \beta_{V_{\phi}})$ $S_{1\phi}$ $Q_{1\phi}$ $Q_{1\phi} = V_{\phi} | I_{\phi} \sin(\alpha_{I_{\phi}} - \beta_{V_{\phi}})$ $(\alpha_{I_{\phi}})$ $PF = \frac{P_{I\phi}}{S_{I\phi}} = \cos(\alpha_{I\phi} - \beta_{V\phi})$ $P_{l\phi}$ $0 \le PF \le 1$, leading or lagging, current is reference $Eff = \frac{I_o}{P_o}$ *PF is not efficiency*

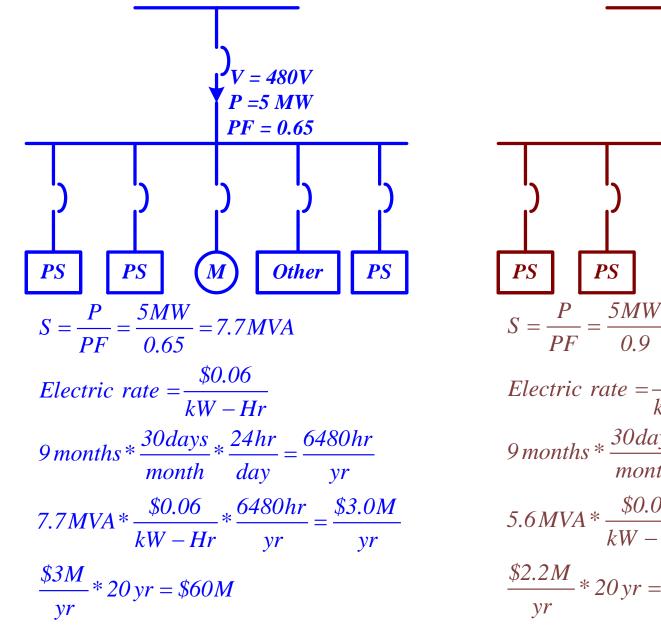
Balanced three Phase

$$S_{3\phi} = 3V_{\phi} I_{\phi} = \sqrt{3} V_{LL} I_{L}$$

$$P_{3\phi} = 3V_{\phi} I_{\phi} \cos(\alpha_{I\phi} - \beta_{V_{\phi}})$$


$$PF_{3\phi} = \frac{P_{3\phi}}{S_{3\phi}} = \cos(\alpha_{I_{\phi}} - \beta_{V_{\phi}})$$
Unbalanced three phase power
$$S_{3\phi} = V_{\phi A} I_{\phi A} + V_{\phi B} I_{\phi B} + V_{\phi C} I_{\phi C}$$

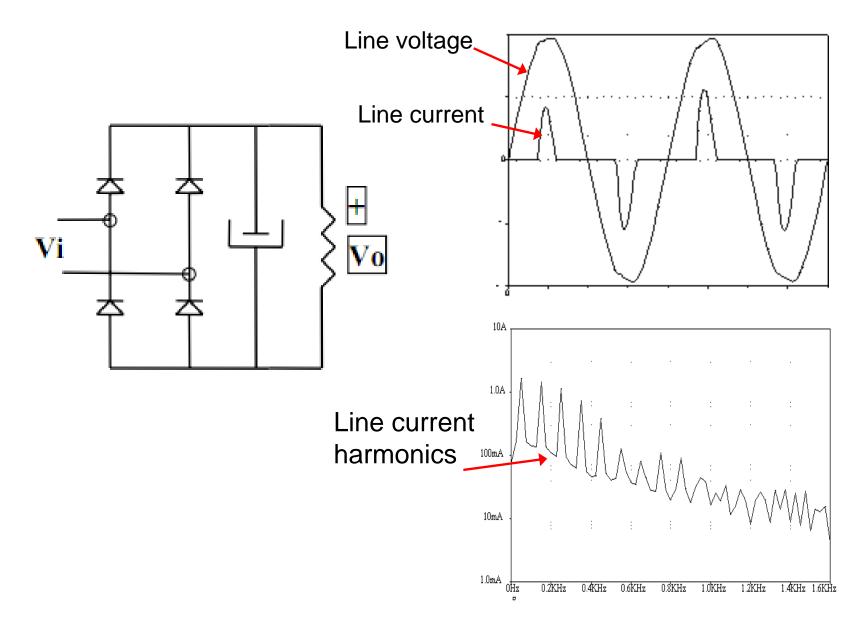
$$P_{3\phi} = V_{\phi A} I_{\phi A} \cos(\alpha_{I_{\phi A}} - \beta_{V_{\phi A}}) + V_{\phi B} I_{\phi B} (\alpha_{I_{\phi B}} - \beta_{V_{\phi B}}) + V_{\phi C} I_{\phi C} (\alpha_{I_{\phi C}} - \beta_{V_{\phi C}})$$


$$PF_{3\phi} = \frac{P_{3\phi}}{S_{3\phi}}$$

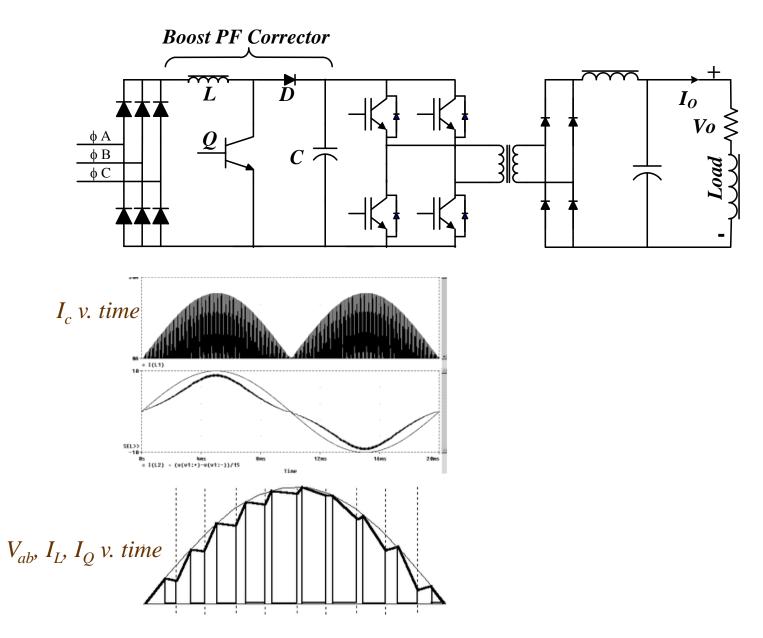
June 2012

Power Factor is Important - Capital Equipment Cost

Power Factor is Important – Energy Cost

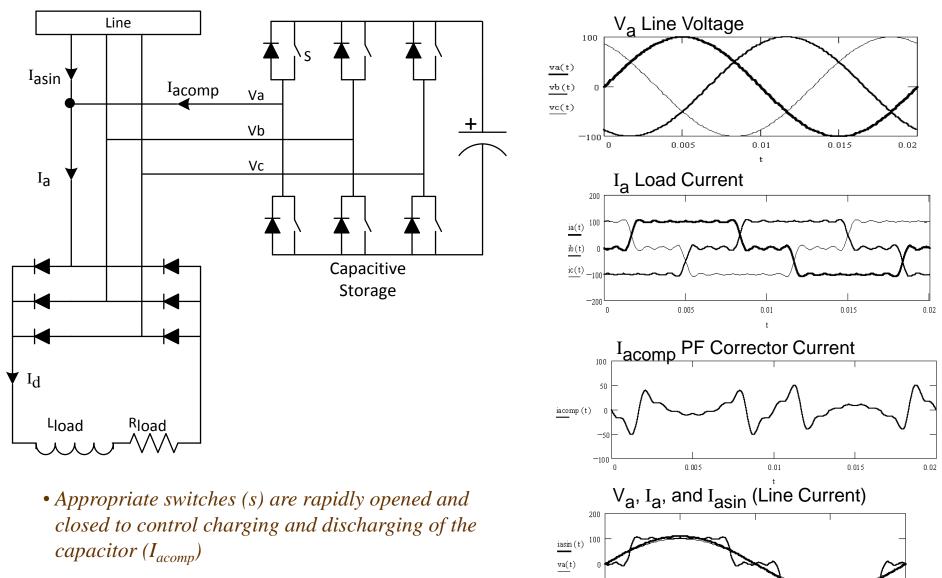

V = 480VP = 5 MWPF = 0.9Other **PS** M $S = \frac{P}{PF} = \frac{5MW}{0.9} = 5.6MVA$ Electric rate = $\frac{\$0.06}{kW - Hr}$ 9 months * $\frac{30 days}{24hr} = \frac{6480hr}{6480hr}$ month day yr $5.6 MVA * \frac{\$0.06}{kW - Hr} * \frac{6480hr}{yr} = \frac{\$2.2M}{yr}$ $\frac{\$2.2M}{20}$ * 20 yr = \$44M

June 2012


Power Factor Improvement

Higher Power Factor Translates to:

- Lower apparent power consumption
- Lower equipment electrical losses
- Electrically/physically smaller equipment
- Less expensive equipment
- Lower electric bill
- Implies lower distortion of the line voltage and current



Section 4 - Power Line and Other Considerations

Section 4 - Power Line and Other Considerations

Active Power Factor Correction - 3 Phase Systems

• From KCL, $I_{asin} = I_a - I_{acomp}$

June 2012

Section 4 - Power Line and Other Considerations

ia(t)

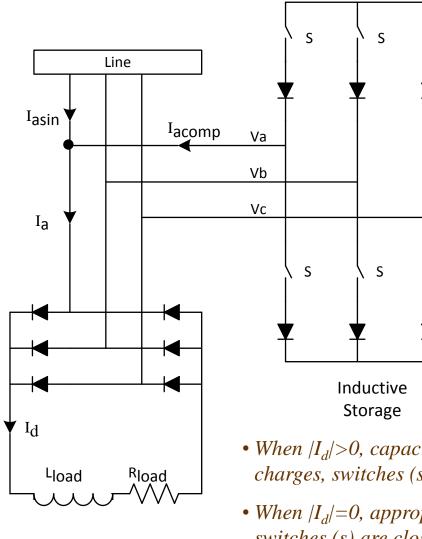
-100

Π

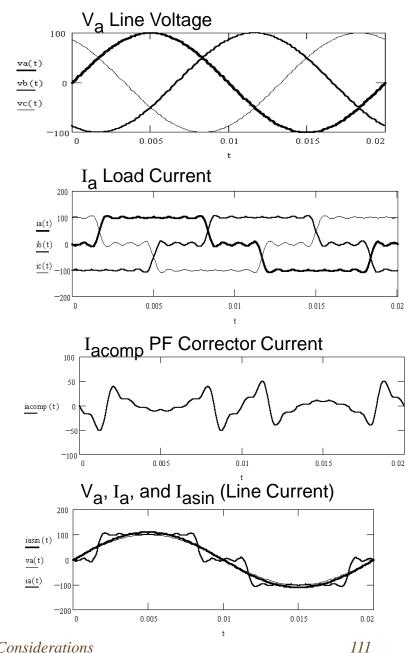
0.005

0.01

t

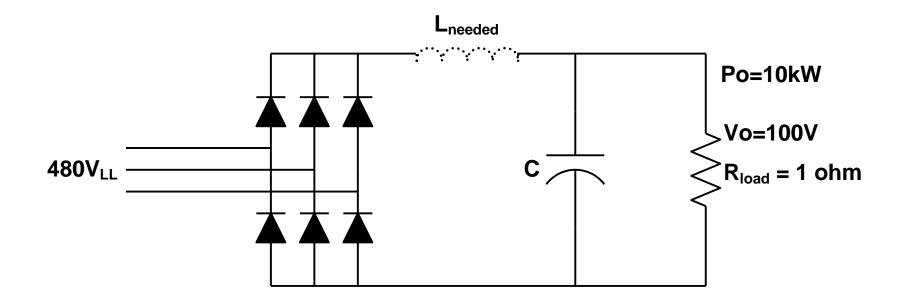

0.02

0.015


Active Power Factor Correction - 3 Phase Systems

S

S


- When $|I_d| > 0$, capacitor charges, switches (s) are open
- When $|I_d|=0$, appropriate switches (s) are closed to rapidly discharge the capacitor
- From KCL, $I_{asin} = I_a I_{acomp}$

Section 4 - Power Line and Other Considerations

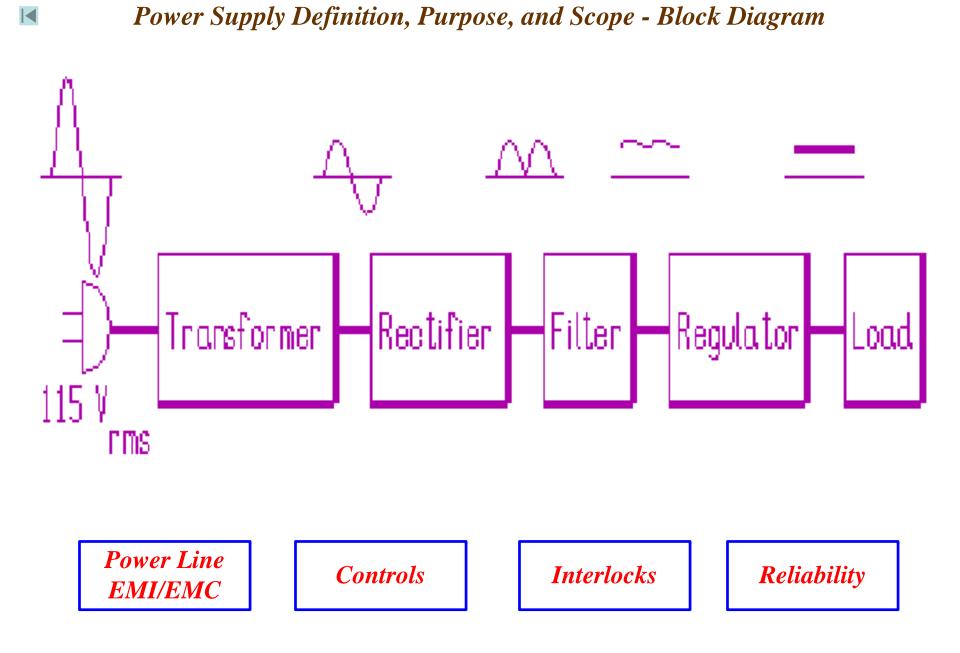
Homework Problem # 5

A 10kW, 3 phase power supply has an efficiency of 90% and operates with a leading power factor of 0.8. Determine the size of the inductor needed to improve the power factor to leading 0.95. Hint: the ripple frequency of the rectifier output is 360Hz.

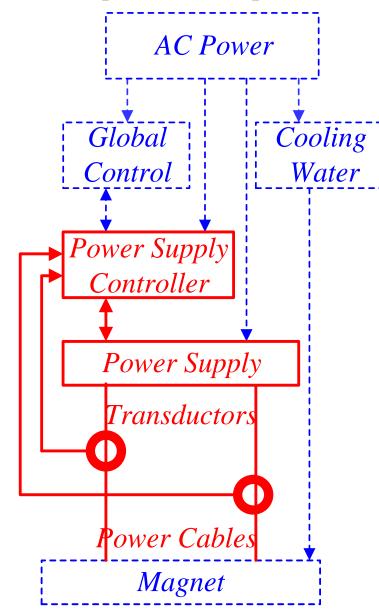
Section 5

- Power Supplies
 - Power Supply Definition, Purpose, and Scope
 - <u>Transformer Primer</u>
 - <u>Rectifiers</u>
 - Voltage and Current Sources
 - Linear Systems Disadvantage
 - <u>Switchmode DC Power Supplies</u>
 - <u>Advantages</u>
 - <u>Switch Candidates</u>
 - <u>Converter Topologies</u>
 - Pulse Width Modulation
 - <u>Conducting and Switching Losses</u>
 - <u>Resonant Switching</u>
 - <u>High Frequency Transformers and Inductors</u>
 - <u>Ripple Filters</u>
 - Other Design Considerations
 - Power Supplies in Particle Accelerators

Definition


• A "DC power supply" is a device or system that draws uncontrolled, unregulated input AC or DC power at one voltage level and converts it to controlled and precisely regulated DC power at its output in a form required by the load

Purpose


- Change the output to a different level from the input (step-up or step-down)
- Rectify AC to DC
- Isolate the output from the input
- Provide for a means to vary the output
- Stabilize the output against input line, load, temperature and time (aging) changes

Example

• 120 VAC is available. The load is a logic circuit in a personal computer that requires regulated 5V DC power. The power supply makes the 120 V AC power source and 5V DC load compatible

Power Supply Definition, Purpose, and Scope – A DC Magnet Power System

I Power Supply Definition, Purpose, and Scope – A DC Magnet Power System

Power Supply Definition, Purpose, and Scope – Characteristics

Some characteristics of the power supplies most often used in particle or synchrotron accelerators are:

• They can be DC-DC converters

•They are voltage or current sources that use the AC mains (off-line) as their source of energy. The bipolar power supplies discussed later are typically used for small corrector magnets are DC-DC converters fed from a common off-line power supply

- They are not AC controllers.
- They have a single output.

• The output voltage or current is not fixed (such as those used by the telephone and communications industry), but are adjustable from zero to the full rating

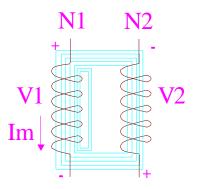
- They are <u>not</u> computer power supplies or printed circuit board converters
- The DC output power ratings range from a few watts to several megawatts
- •Typical loads are magnets or capacitor banks

Transformer Primer - Why Needed

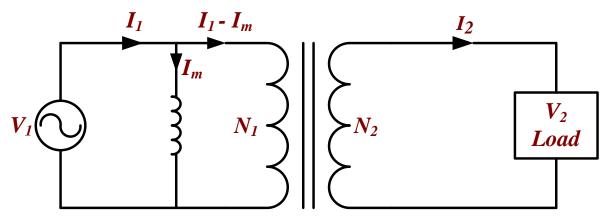
- Needed to match the load voltage to the line voltage
- Needed to isolate the load from the line better ground fault immuniyty and to reduce the magnitude of fault currents

- Transformers are inductors with linked flux φ :
 - Volts = # of turns * time rate of change of flux in the coil Volts = (inductance) * (rate of change of current)

 $V = N * d \varphi / dt \quad or$ $V = L_m * di / dt$


- Iron core transformers are used at frequencies below 1 kHz
- L_m results from the number of turns, the area of turn path, length of flux path and μ of the iron. It is normally referred to as the magnetizing inductance
- Magnetizing inductance for a low frequency transformer is large, typically requiring about 1% of the rated primary current to produce the desired excitation

Transformer Primer


Equivalent Transformer Circuit

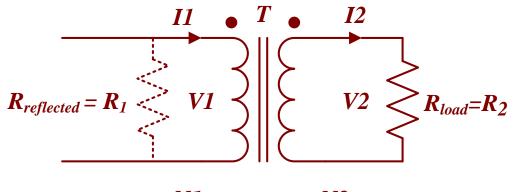
- The current required to magnetize the core with flux is called the magnetizing current and is made up of two parts:
 - 1. A component out of phase with the induced voltage due to the magnetizing inductance.
 - 2. A component in phase with the induced voltage from losses due to eddy current and hysteresis losses.
- The magnetizing inductance is obtained by driving the transformer with the secondary open circuited $I_2=0$ and measuring the Primary voltage and current.

 $L_{m} = (V_{1} \ / I_{1}) / (\ 2 \ * \ \pi * f)$

Transformer Primer – Turns / Voltage / Current Ratios

Secondary winding turns cut by the common flux produce a voltage with the same volts per turn as the driving primary turns

$$\frac{V_1}{N_1} = \frac{d\phi}{dt} = \frac{V_2}{N_2} \qquad or \qquad \frac{V_1}{V_2} = \frac{N_1}{N_2}$$

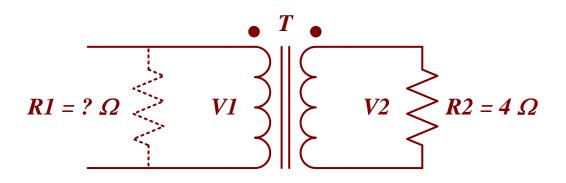

Where N_1 and N_2 are the number of turns cut by the same flux

With a source and a load, the primary current equals the source current minus the magnetizing current. Ampere-turns in the primary and secondary must equate

$$N_1(I_1 - I_m) = I_2 N_2$$
 or $\frac{N_1}{N_2} = \frac{I_2}{I_1 - I_m}$
If $I_m << I_1$ then $\frac{I_1}{I_2} = \frac{N_2}{N_1}$

June 2012

Transformer Primer - Impedance Ratios and Reflected Impedances

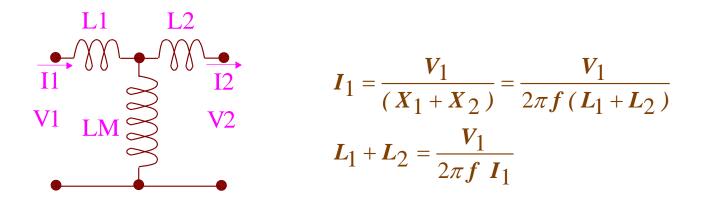

N1 turns

N2 turns

$$R_{1} = \frac{V_{1}}{I_{1}} = \frac{\frac{N_{1}}{N_{2}}V_{2}}{\frac{N_{2}}{N_{1}}I_{2}} = \frac{N_{1}V_{2}}{N_{2}} * \frac{N_{1}}{N_{2}I_{2}}$$
$$R_{1} = \frac{N_{1}^{2}}{N_{2}^{2}} * \frac{V_{2}}{I_{2}} = \frac{N_{1}^{2}}{N_{2}^{2}} * R_{2}$$
$$\frac{R_{1}}{R_{2}} = \left(\frac{N_{1}}{N_{2}}\right)^{2}$$

Transformer Primer - Impedance Ratios and Reflected Impedances

Example $R_2 = 4\Omega$, what is the value of the reflected resistance as seen on the primary side?


N1=27 turns N2=9 turns

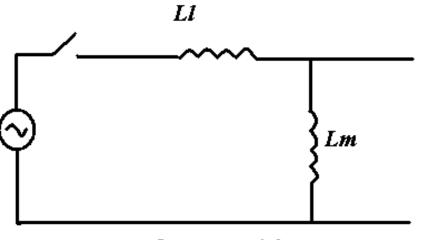
$$\boldsymbol{R}_{1} = \frac{N_{1}^{2}}{N_{2}^{2}} * \boldsymbol{R}_{2} = \frac{27^{2}}{9^{2}} * 4\Omega$$

$$\boldsymbol{R}_1 = 9 * 4\Omega = 36\Omega$$

Transformer Primer - Leakage Inductance - Equivalent Circuit

- Flux that does not couple both windings is called the leakage flux and acts like a series inductor called the leakage inductance
- If the secondary is shorted and the magnetizing current is small $(I_m << I_1)$, then the leakage inductance is proportional to the primary voltage divided by the primary current (or secondary current referred to the primary side)

• If the secondary is shorted the "percent impedance" is the drive voltage divided by the rated input voltage with rated load current flowing

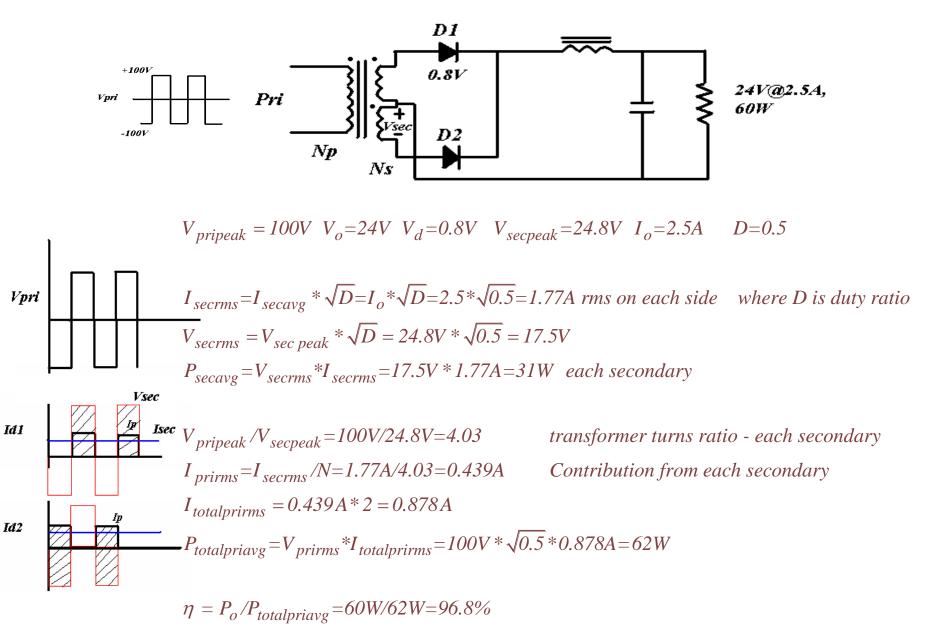

$$\frac{V_1}{V_{rated}}$$
 with I_{rated} X 100% = % impedance

A 1000kVA, 12.47kV to 480V, 60Hz three-phase transformer has an impedance of 5%. Calculate:

a. The actual impedance and leakage inductance referred to the primary winding

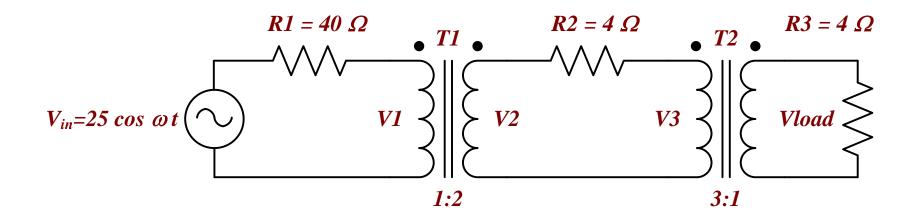
b. The actual impedance and leakage inductance referred to the secondary winding

c. The magnetizing inductance referred to the primary winding



transformer model

An air gap is undesirable in a transformer because:

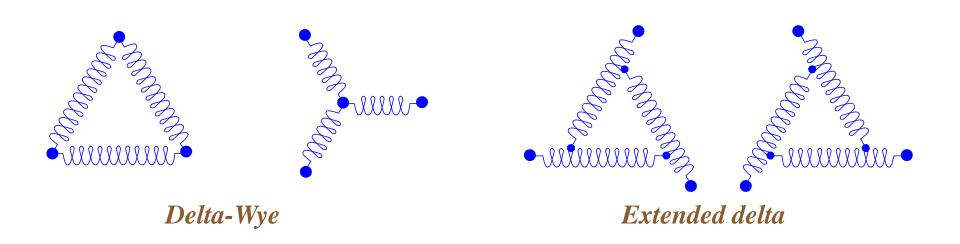

• it reduces L_m , and a large L_m is desired to reduce the magnetizing and inrush current

• a small L_l is desired to lower energy and other losses

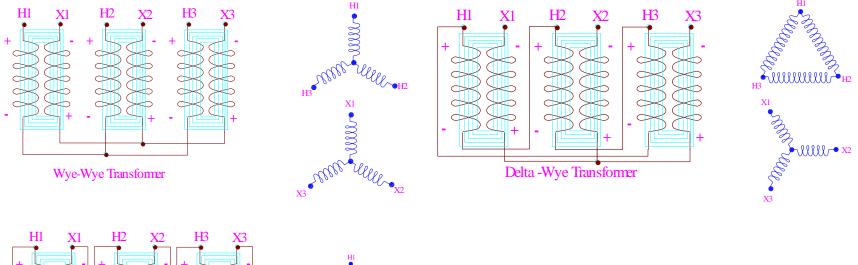
Transformer Primer - Homework Problem #7

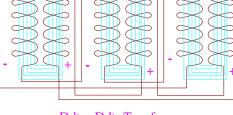
Calculate the output voltage in the circuit shown below.

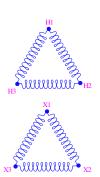
Transformer Primer - Configuration


- Low frequency, 60 Hz, transformers almost always use laminated iron cores to direct the flux to tightly couple the windings to reduce the size, cost, leakage reactance and magnetizing current (large magnetizing inductance) of a transformer
- For low power applications < 2.5 kW single phase transformers are used to eliminate the need for costly 3 phase input power lines.
- 3 phase lines and transformers are used to reduce the cost of higher power systems (usually >2.5 kW)
- 3 phase lines allow the use of phase shifting transformers to generate any number of output phases

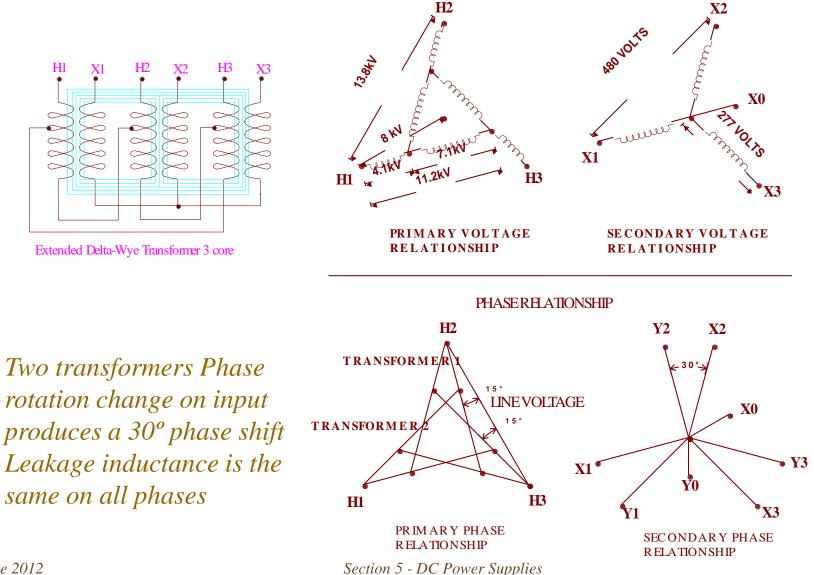
Section 5 - DC Power Supplies


Transformer Primer - Common Three-Phase Types

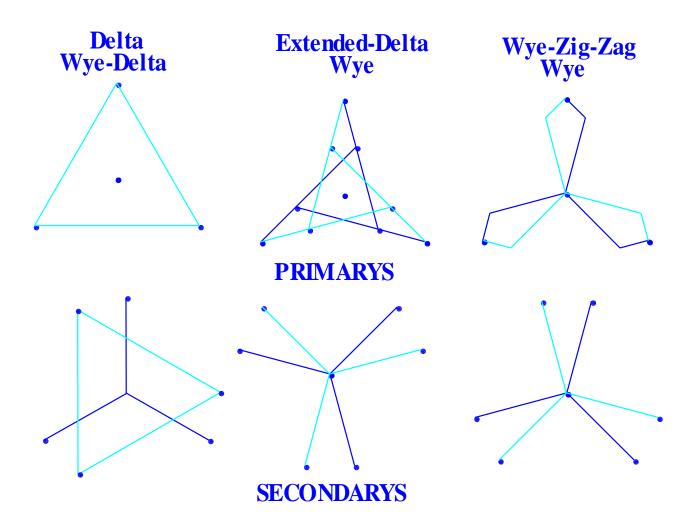

Delta –wye and extended delta produce 6 phase outputs


Transformer Primer - Three Phase Most Common Types Three phase Transformers

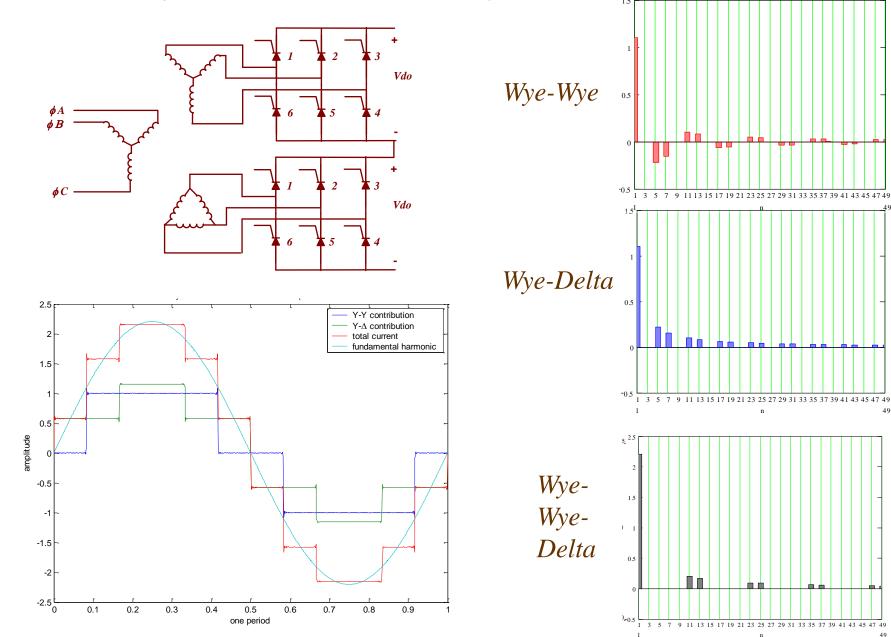
- A three phase transformer can be constructed with 1 core or 2 or 3 independent cores
- Independent core transformers are more expensive (use more steel) and can result in line imbalances



Delta - Delta Transformer


Transformer Primer - Three Phase Phase Shifting Transformer Extended Delta Phase shifting transformer

EXTENDED DELTA 13.8kV to 480 V 7.5 °



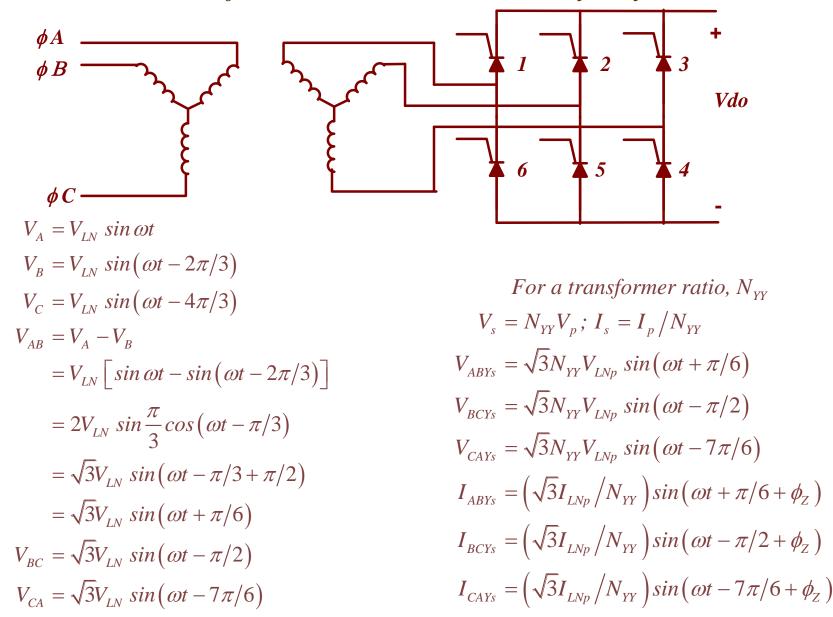
June 2012

Transformer Primer - Three Phase Phase Shifting Transformer Phase shifting transformer for 12 Pulse operation

Transformer Primer - Total Primary Current in Wye-Wye-Delta

Section 5 - DC Power Supplies

Transformer Primer - Balanced Bridge Harmonics - Trigonometric Identities


Addition formulae sin(A+B) = sin A cos B + sin B cos A sin(A-B) = sin A cos B - sin B cos ATherefore sin(A+B) + sin(A-B) = 2 sin A cos B sin(A+B) - sin(A-B) = 2 sin B cos Aand

$$sin a + sin b = 2 sin \frac{a+b}{2} cos \frac{a-b}{2}$$
$$sin a - sin b = 2 sin \frac{a-b}{2} cos \frac{a+b}{2}$$
Similarly, since

 $\cos(A+B) = \cos A \cos B - \sin A \sin B$ $\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}$ $\cos a - \cos b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}$

Section 5 - DC Power Supplies

Transformer Primer - Three Phase Wye-Wye

Transformer Primer - Spectrum of Wye-Wye

Assume full conduction into a large inductive load

The load current, I_L , is then constant

The current out of the A leg of the transformer is

 $I_{ANYs}(t) = 0 \qquad 0 \le t \le T/12$ = $I_L \qquad T/12 \le t \le 5T/12$ = $0 \qquad 5T/12 \le t \le 7T/12$ = $-I_L \qquad 7T/12 \le t \le 11T/12$ = $0 \qquad 11T/12 \le t \le T$

The Fourier series expansion is

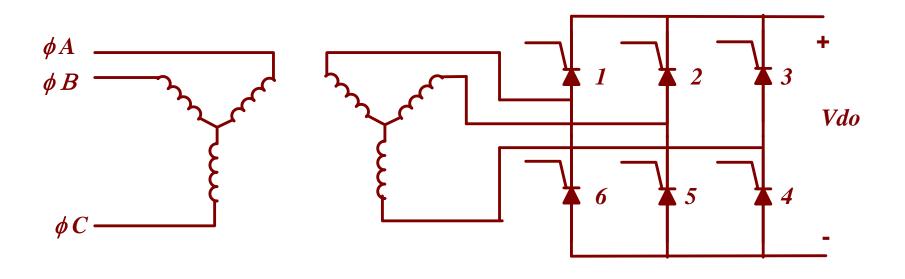
$$I_{ANYs}(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{2\pi nt}{T} + b_n \sin \frac{2\pi nt}{T}$$

From the symmetry of the waveform,

 $a_0 = a_n = 0$

$$b_n = \frac{2}{T} \int_0^T I_{ANYs}(t) \sin \frac{2\pi nt}{T} dt$$

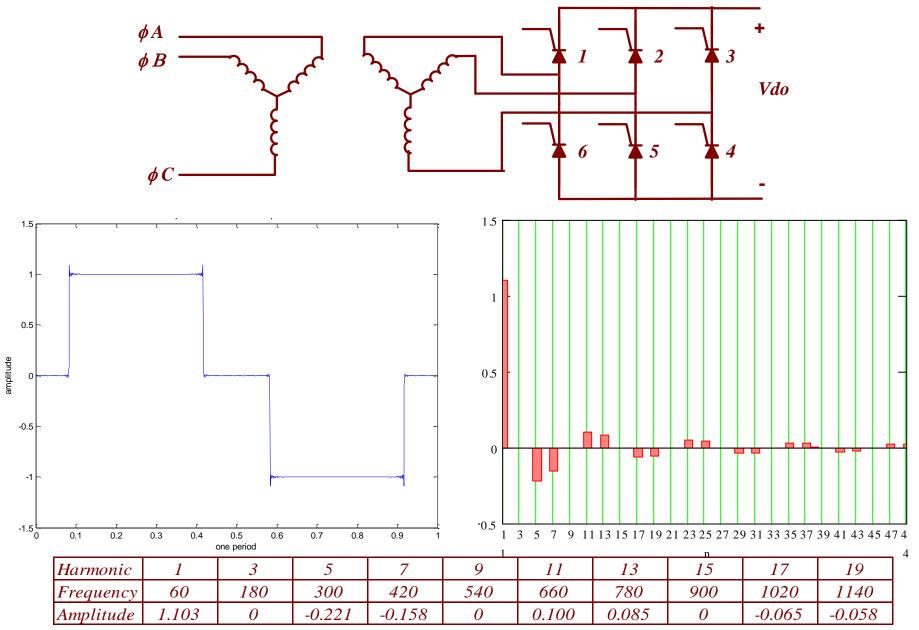
$$=\frac{2I_L}{T}\left[\int_{T/12}^{5T/12} \sin\frac{2\pi nt}{T} dt - \int_{7T/12}^{11T/12} \sin\frac{2\pi nt}{T} dt\right]$$


$$=\frac{4I_L}{T}\int_{T/12}^{5T/12}\sin\frac{2\pi nt}{T}dt$$

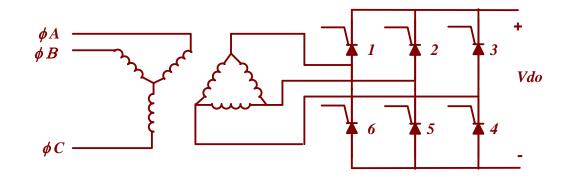
$$= -\frac{2I_L}{n\pi} \cos \frac{2\pi nt}{T} \Big|_{T/12}^{5T/12}$$

$$=-\frac{2I_L}{n\pi} \left[\cos\left(5n\pi/6\right) - \cos\left(n\pi/6\right)\right]$$

$$b_n = \frac{4I_L}{n\pi} \sin \frac{n\pi}{2} \sin \frac{n\pi}{3}$$


Transformer Primer - Wye-Wye Primary Current

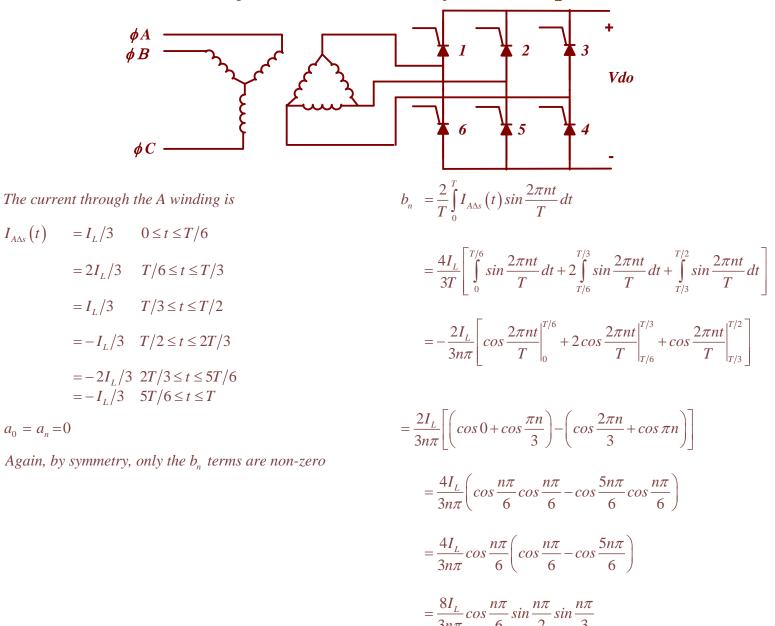
The current on the primary leg of the transformer, due to the *YY* winding is


$$I_{ANYp}(t) = N_{YY} \frac{4I_L}{n\pi} \sum_{n=1}^{\infty} \sin \frac{n\pi}{2} \sin \frac{n\pi}{3} \sin \frac{2\pi nt}{T}$$

Note that the first term eliminates all of the even harmonics and the second eliminates all multiples of the third harmonic. Transformer Primer - Wye-Wye Primary Current

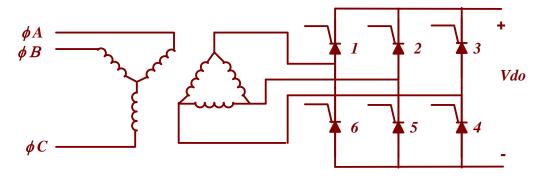
June 2012

Transformer Primer - Three Phase Wye-Delta



In order to have balanced current on the primary $I_{A\Delta s} + I_{B\Delta s} + I_{C\Delta s} = 0$ When two delta leg A switches conduct $I_{B\Delta s} = I_{C\Delta s}$ so that $I_{A\Delta s} + 2I_{B\Delta s} = 0$ The current through the switch is then $I_{L} = I_{A\Delta s} - I_{B\Delta s}$

$$I_{L} = I_{A\Delta s} + \frac{1}{2}I_{A\Delta s}$$
$$I_{L} = \frac{3}{2}I_{A\Delta s}$$
$$I_{A\Delta s} = \frac{2}{3}I_{L}$$


For a transformer ratio $N_{Y\Delta}$ $V_{AB\Delta s} = N_{Y\Delta}V_{LNp} \sin(\omega t)$ $V_{BC\Delta s} = N_{Y\Delta}V_{LNp} \sin(\omega t - 2\pi/3)$ $V_{CA\Delta s} = N_{Y\Delta}V_{LNp} \sin(\omega t - 4\pi/3)$ $I_{AB\Delta s} = (V_{LNp}/N_{Y\Delta})\sin(\omega t + \phi_Z)$ $I_{BC\Delta s} = (V_{LNp}/N_{Y\Delta})\sin(\omega t - 2\pi/3 + \phi_Z)$ $I_{CA\Delta s} = (V_{LNp}/N_{Y\Delta})\sin(\omega t - 4\pi/3 + \phi_Z)$ For equal secondary voltages $N_{Y\Delta} = \sqrt{3}N_{YY}$

Transformer Primer - Wye-Delta Spectrum

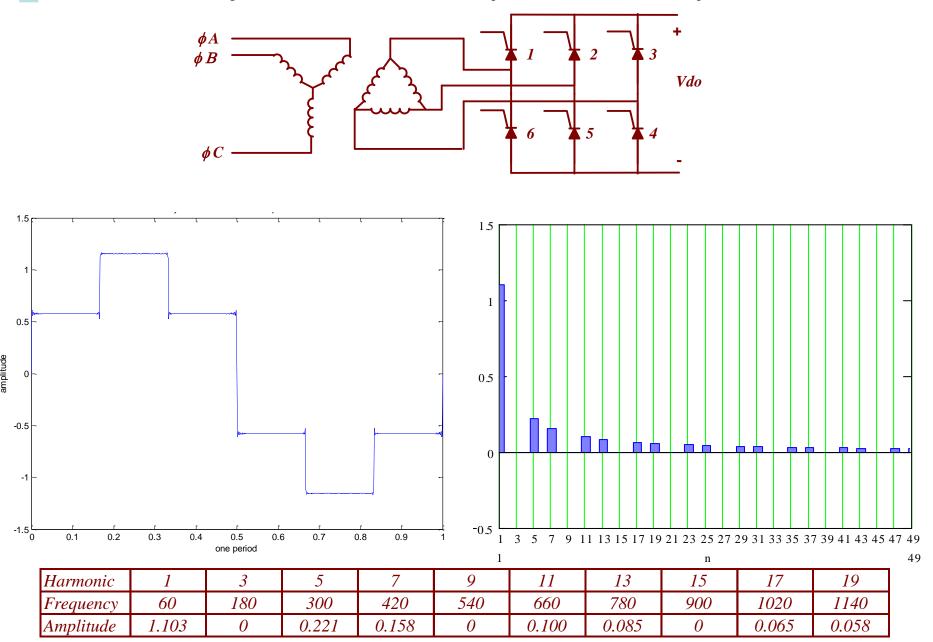
Section 5 - DC Power Supplies

Transformer Primer - Primary Current in the Wye-Delta

$$I_{A\Delta s}(t) = \frac{8I_L}{3n\pi} \sum_{n=1}^{\infty} \cos\frac{n\pi}{6} \sin\frac{n\pi}{2} \sin\frac{n\pi}{3} \sin\frac{2\pi nt}{T}$$

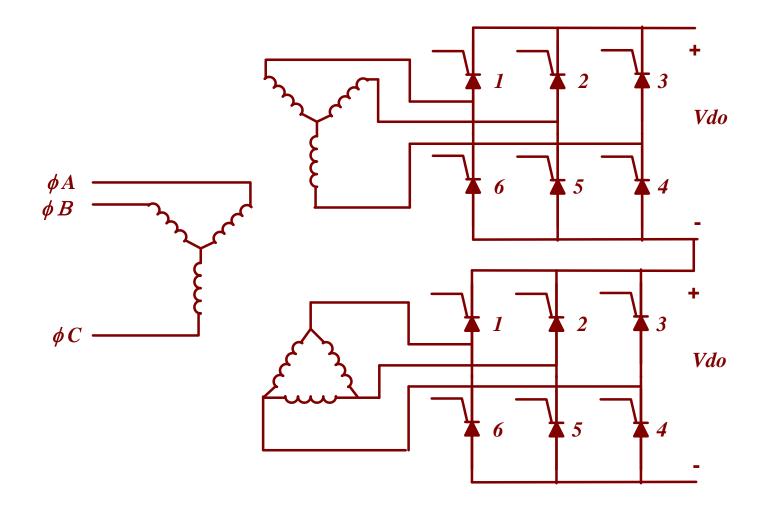
Note that multiples of the 2^{nd} and 3^{rd} harmonics are also suppressed.

The $\cos \frac{n\pi}{6}$ term does not introduce any extra zeros, but it


does contribute to the sign of the terms.

The non-vanishing terms are $n = 1, 5, 7, 11, \dots$, for which the magnitude is $\sqrt{3}/2$. Referred back to the primary, the current is

$$I_{A\Delta p}(t) = N_{Y\Delta} \frac{8I_L}{3n\pi} \sum_{n=1}^{\infty} \cos\frac{n\pi}{6} \sin\frac{n\pi}{2} \sin\frac{n\pi}{3} \sin\frac{2\pi nt}{T}$$
$$I_{A\Delta p}(t) = N_{YY} \frac{8\sqrt{3}I_L}{3n\pi} \sum_{n=1}^{\infty} \cos\frac{n\pi}{6} \sin\frac{n\pi}{2} \sin\frac{n\pi}{3} \sin\frac{2\pi nt}{T}$$


Section 5 - DC Power Supplies

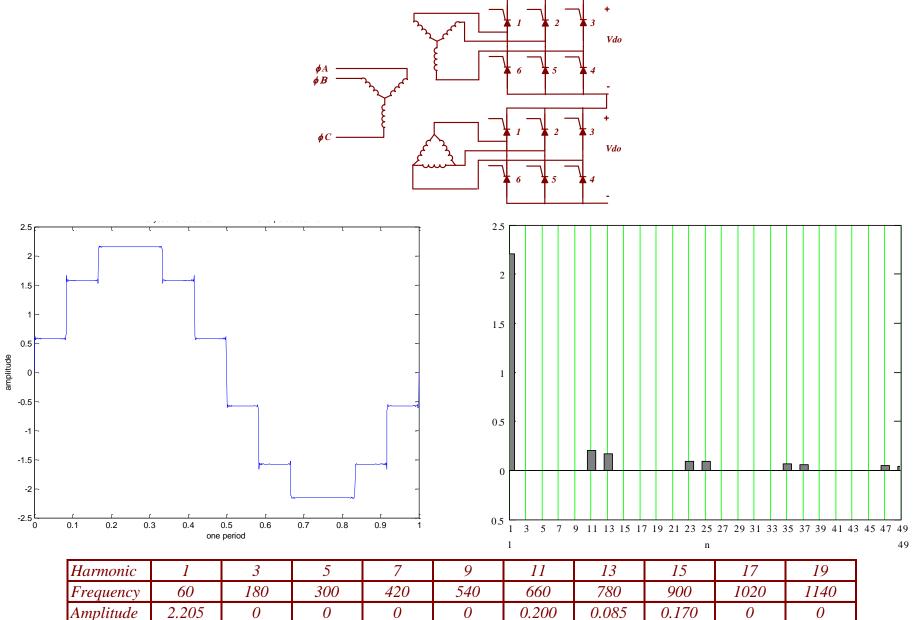
Transformer Primer - Primary Current in the Wye-Delta

June 2012

I Transformer Primer - Total Current (Primary Wye Current) in Wye-Wye-Delta

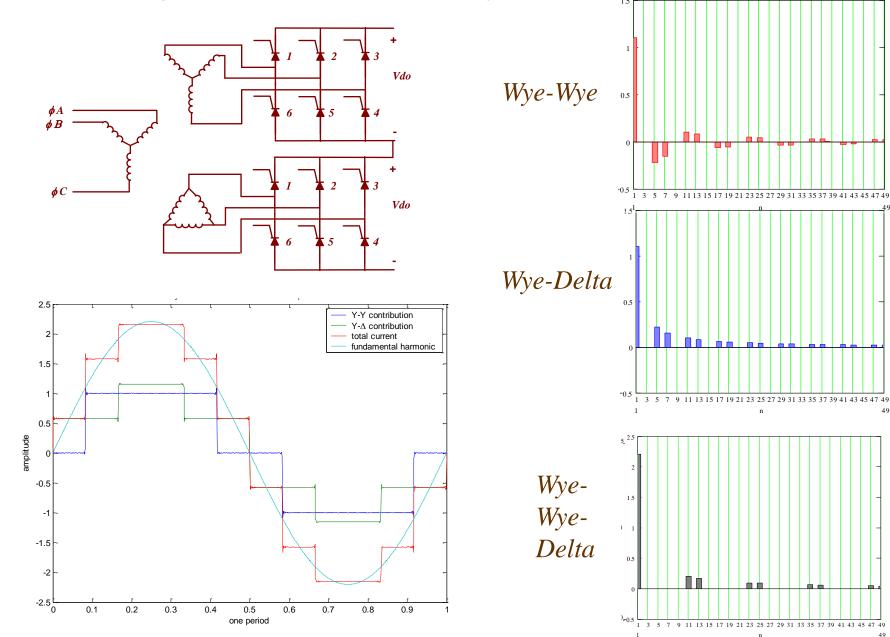
Transformer Primer - Total Primary Current in Wye-Wye-Delta

The total current in the A leg of the primary is the sum of these two terms. $I_{Ap}(t) = I_{ANYp}(t) + I_{A\Delta p}(t)$


The only non-vanishing terms in both of these series are n = 1, 5, 7, 11

and all other values of n which have the same phase

The values of
$$\cos \frac{n\pi}{6}$$
 for these n are $\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2}, -\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}$


The surviving terms in each series have the same magnitude, but half have different signs so that the only remaining harmonics in the total balanced 12 pulse bridge are $n = 1,11,13,23,25,35,\cdots$ with coefficient $N_{yy} \frac{4I_L}{n\pi}$

Section 5 - DC Power Supplies

Transformer Primer - Total Primary Current in Wye-Wye-Delta

Section 5 - DC Power Supplies

Transformer Primer - Standards

Standards for Power Rectifier Transformer

- 1) Pool-Cathode Mercury-Arc Rectifier Transformer ASA C57.18-1964
- 2) Practice for Semiconductor Power Rectifiers ANSI C34.2-1973
- 3) IEEE standards for Transformer and Inductors for Electronic power conversion Equipment ANSI/IEEE std 388-1992

Insulation Class Recommended for Rectifier Transformer.

- 1) Oil filled, 65 $^{\circ}$ C rise over ambient (paper oil insulation)
- 2) Dry type, Class B 80°C rise over ambient, (paper, varnish)
- 3) Dry type, Class H 150°C over ambient (fiberglass, epoxy)

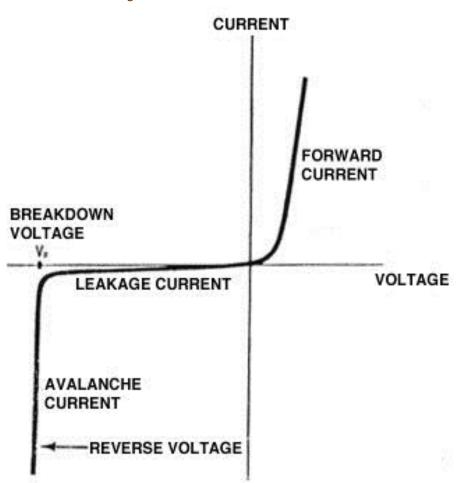
Phase Relationship and labeling

1) General requirements for distribution power and regulating transformers ANSI C57.12.00-1973

Transformer Primer - Problems

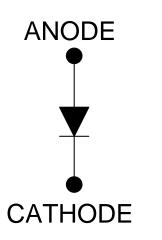
Low Frequency Transformers have been around a long time and designs are well established. There are a few problems related to rectifier operation that should be considered when using transformers;

1) Harmonic currents in the core and coils can result in excessive losses.


2) Presence of DC and/or second harmonic currents/ voltage can saturate the core resulting in more harmonics and excessive core hysteresis loss.

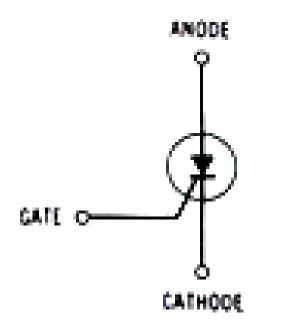
3) Short circuits are common in rectifiers resulting in high forces on the coils and the coil bracing resulting in coil faults.

4) Connection to the center of a wye can generate excessive third harmonic current resulting in voltage distortion and overheating.


5) The *fast switching voltages* of rectifiers under commutation can produce nonuniform voltage distribution on coil windings resulting in insulation failure.

Rectifiers - Diode Characteristics

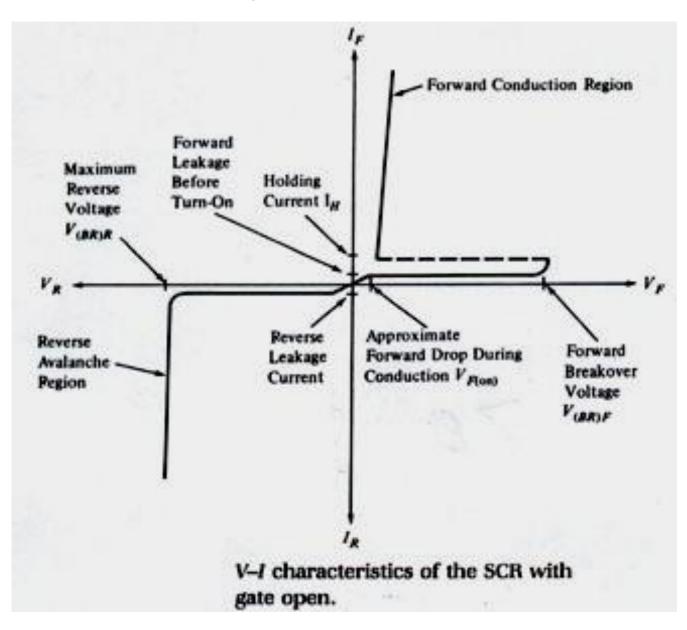
In the reverse direction, there is a small leakage current up until the reverse breakdown voltage is reached Forward voltage drop, V_f : a small current conduct in forward direction up to a threshold voltage, 0.3V for germanium and 0.7V for silicon


Rectifiers - Diode Considerations

Schematic representation

- Forward voltage drop, V_F or $V_{F(AV)}$
- Forward current, I_F or $I_{F(AV)}$
- Maximum reverse (blocking) voltage, V_R
- Average reverse (leakage) current, $I_{R(AV)}$
- Reverse recovery time, t_{rr}
- Peak surge current, I_{surge}
- Cooling (air, water, oil, other)
- Package style

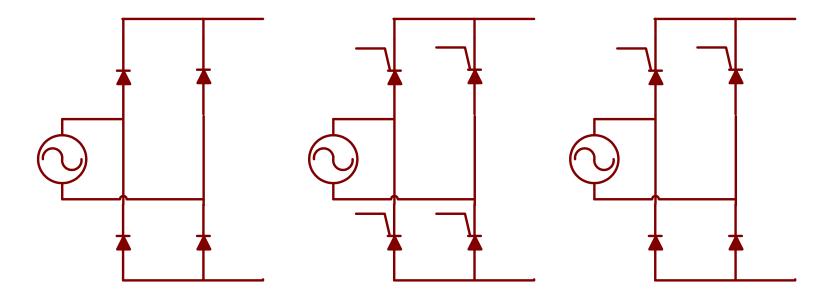
Rectifiers - Thyristors - Silicon Controlled Rectifier (SCR)

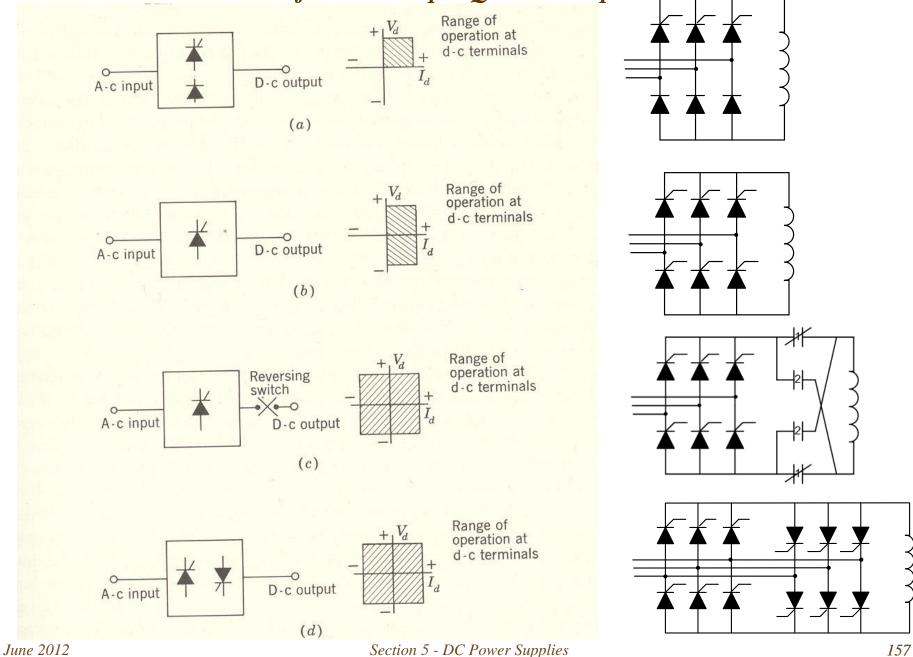


Schematic representation

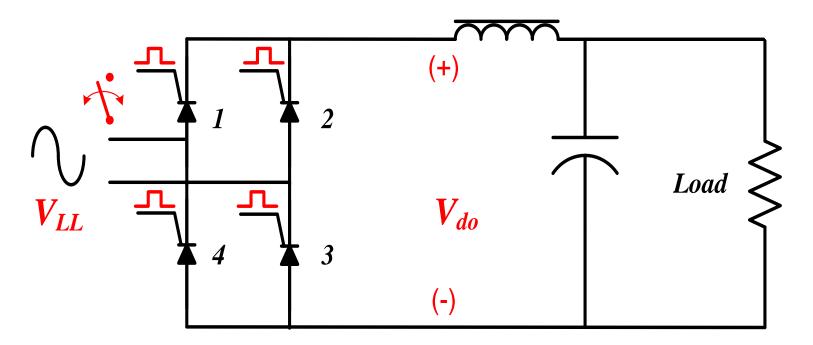
SCR properties

- It is simply a conventional rectifier controlled by a gate signal
- It is controlled from the off to on states by a signal applied to the gate
- It has a low forward resistance and a high reverse resistance
- It remains on once it is turned on even after removal of the gate signal
- The anode-cathode current must drop below the "holding" value in order to turn it off

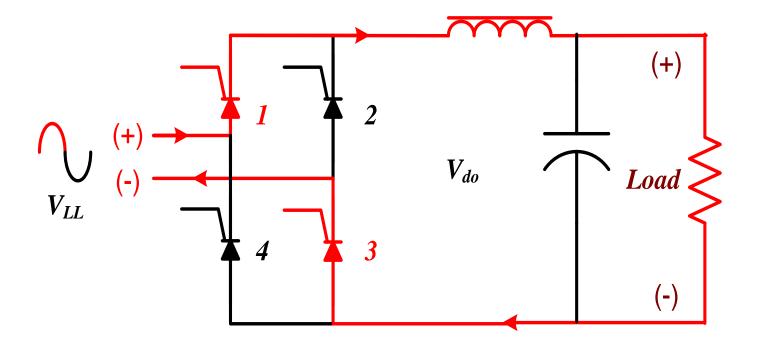

Rectifiers - SCR Characteristics


- Maximum forward current
- Reverse breakdown voltage
- Gate trigger voltage and current
- Minimum holding current, I_h
- Power dissipation
- Maximum reverse dv/dt
- Peak forward voltage

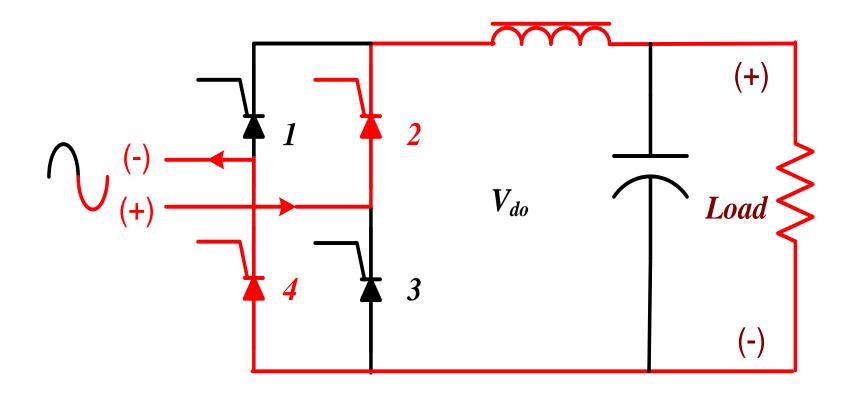
Rectifiers - General


- A rectifier converts ac voltage to dc voltage
 - Classifications
 - Uncontrolled rectifiers (diodes)
 - Fully Controlled rectifiers (all SCRs)
 - Semi-controlled rectifiers (SCRs and diodes)

Rectifiers - Multiple Quadrant Operation


Rectifiers - 1 ϕ Full Wave (q = 2 Pulse)

• $q \equiv$ the number of possible rectifier states


• SCR s are electronic switches

Rectifiers - 1ϕ **Full Wave** (q = 2**Pulse**)


State 1 : SCR s 1 - 3 On

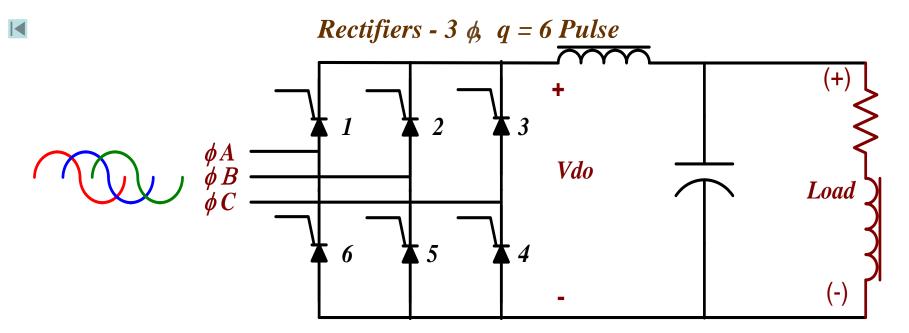
Rectifiers - 1 ϕ Full Wave (q = 2 Pulse)

State 2 : SCR s 2 - 4 On

Rectifiers - 1 ϕ Full Wave (q = 2 Pulse)

Rectifiers - 1 ϕ Full Wave (q = 2 Pulse) Line voltage 0 1-3 Conduction for $\alpha = 90$ 0 0 α π *Rectifier output voltage* V_{do} 0 Filter output voltage V_{do} $V_{do} = \frac{1}{T} \int_{-\infty}^{T} v_{LL}(t) dt = \frac{1}{T} \int_{-\infty}^{T} \sqrt{2} V_{LL} \sin \omega t \, dt = \frac{1}{\omega T} \int_{-\infty}^{\omega I} \sqrt{2} V_{LL} \sin \omega t \, d\omega t$ the SCR gate trigger retard angle range is $0 \le \alpha \le \pi$ $V_{do} = \frac{\sqrt{2} V_{LL}}{-} (1 + \cos \alpha)$ for resistive load

June 2012

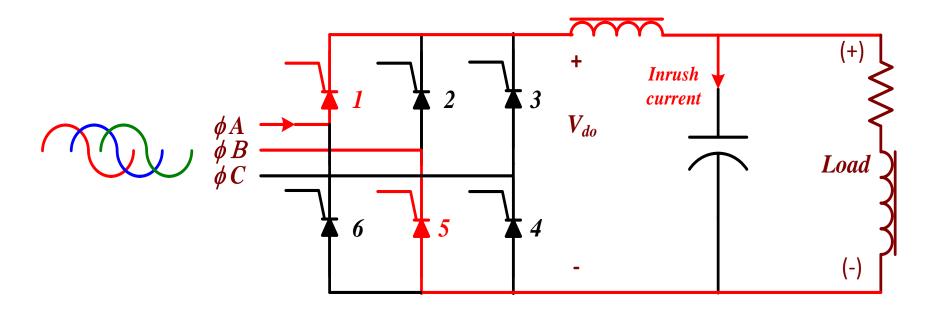

Rectifiers - 1 ϕ , Full Wave (q = 2 Pulse) Summary

- 2 pulse rectifier low input power factor, high output ripple
- Ripple frequency is 120 Hz (if input is 60 Hz)
- Large filter needed
- *Limited in use to power supplies < 2.5 kW*

$$V_{do} = \frac{1}{T} \int_{t}^{T} v_{LL}(t) dt = \frac{1}{T} \int_{t}^{T} \sqrt{2} V_{LL} \sin \omega t \, dt = \frac{1}{\omega T} \int_{\alpha}^{\omega T} \sqrt{2} V_{LL} \sin \omega t \, d\omega t$$

the SCR gate trigger retard angle range is $0 \le \alpha \le \pi$

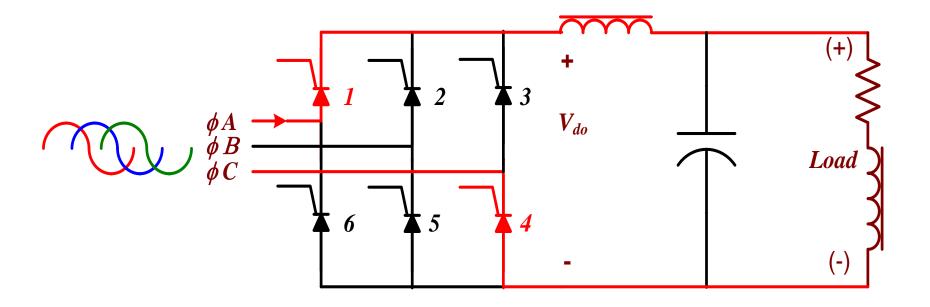
$$V_{do} = \frac{\sqrt{2} V_{LL}}{\pi} (1 + \cos \alpha)$$
 for resistive load



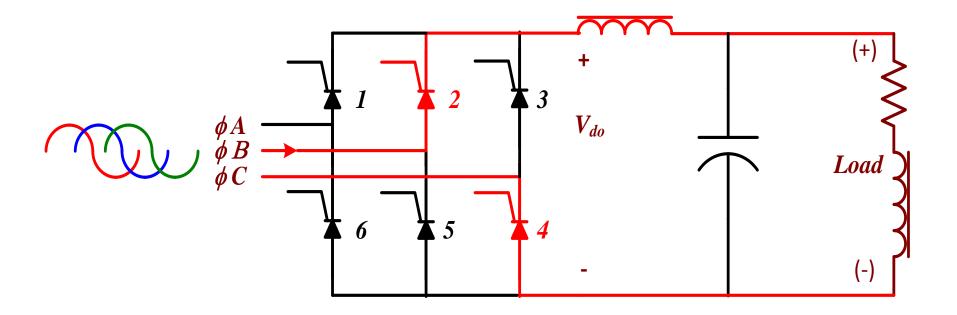
Assuming the American standard phase rotation of

$$V_{A-B} = |V| e^{j0}$$
 $V_{B-C} = |V| e^{-j120}$ $V_{C-A} = |V| e^{-j240}$

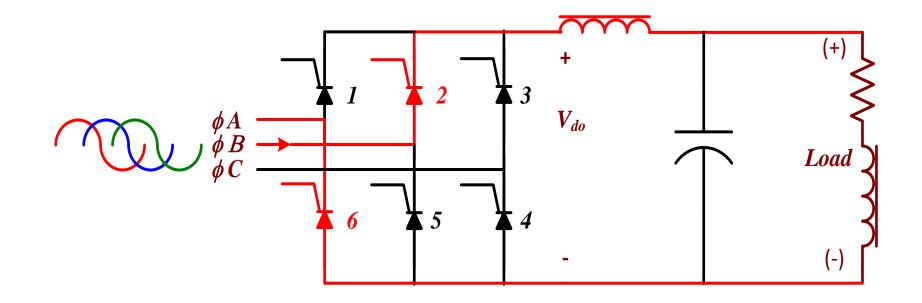
The thyristor firing sequence is: 1-5, 1-4, 2-4, 2-6, 3-6, 3-5 -120-240


V_{B-C}

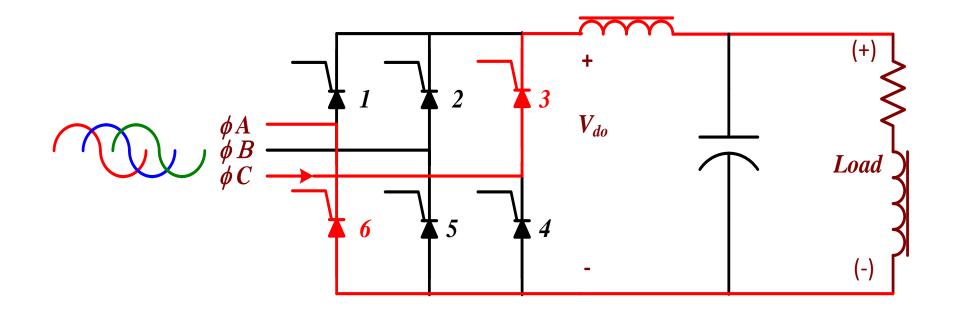
State 1: A-B (+) $SCR \ s \ 1 - 5 \ On$


Note: Phase SCRs from full retard to full forward slowly to bring the rectifier output voltage up slowly and reduce the capacitor inrush current

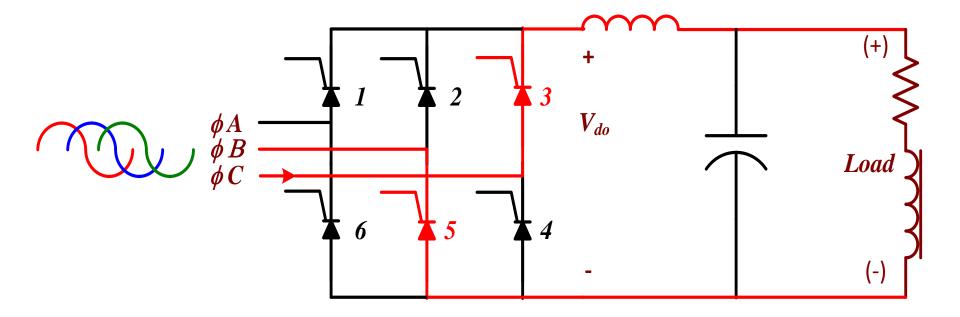
Rectifiers - 3ϕ , q = 6 Pulse


State 2 : C-A (-), 5 off, SCR s 1 – 4 On

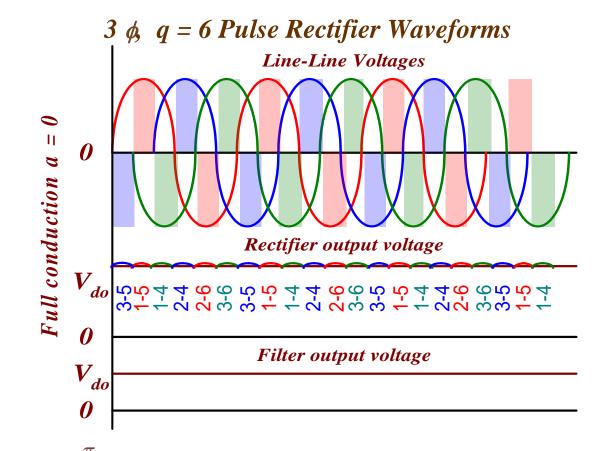
Rectifiers - 3ϕ , q = 6 Pulse


State 3 : B-C (+), 1 off, SCR s 2-4 On

3ϕ , q = 6 Pulse Rectifier


State 4 : A-B (-), 4 off, SCR s 2 – 6 On

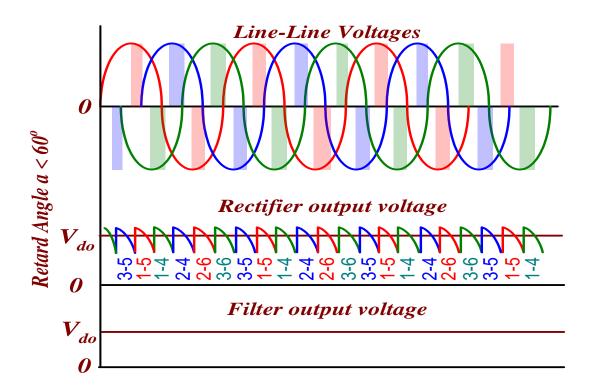
3ϕ , q = 6 Pulse Rectifier



State 5 : C-A (+), 2 off, SCR s 3 – 6 On

3ϕ , q = 6 Pulse Rectifier

State 6 : *B*-*C* (-), 6 *off*, *SCR s* 3 – 5 *On*

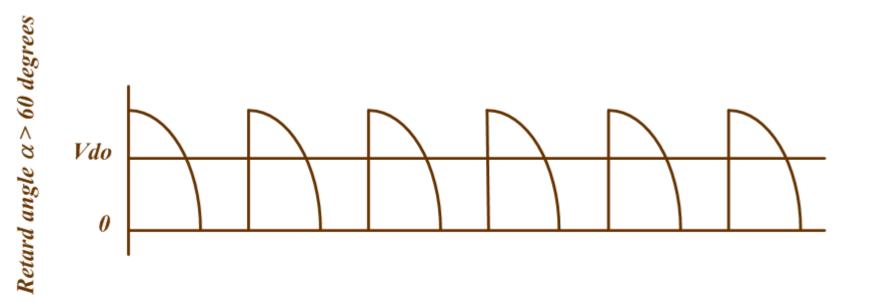


For $0 \le \alpha \le \frac{\pi}{3}$ where α is the gate trigger retard angle and conduction is continuous $V_{do} = \frac{3\sqrt{2}}{\pi} V_{LL} \cos \alpha$ For $\frac{\pi}{3} \le \alpha \le \frac{2\pi}{3}$ where conduction can be discontinuous $V_{do} = \frac{3\sqrt{2}}{\pi} V_{LL} (1 + \cos(\alpha + \frac{\pi}{3}))$ for resistive load

June 2012

Section 5 - DC Power Supplies

3ϕ , q = 6 Pulse Rectifier Waveforms



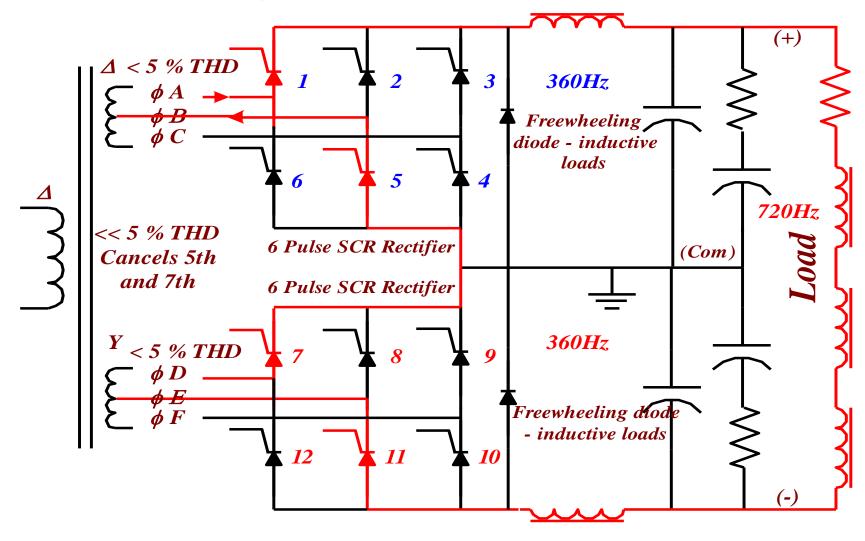
For $0 \le \alpha \le \frac{\pi}{3}$ where α is the gate trigger retard angle and conduction is continuous $V_{do} = \frac{3\sqrt{2}}{\pi} V_{LL} \cos \alpha$ For $\frac{\pi}{3} \le \alpha \le \frac{2\pi}{3}$ where conduction can be discontinuous $V_{do} = \frac{3\sqrt{2}}{\pi} V_{LL} (1 + \cos(\alpha + \frac{\pi}{3}))$ for resistive load

June 2012

Section 5 - DC Power Supplies

$3 \phi, q = 6$ Pulse Rectifier Waveforms

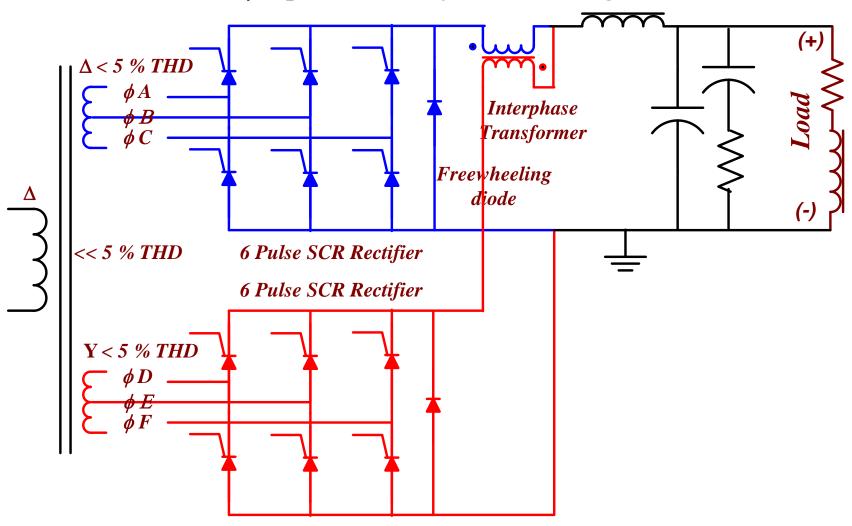
For $0 \le \alpha \le \frac{\pi}{3}$ where α is the gate trigger retard angle and conduction is continuous $V_{do} = \frac{3\sqrt{2}}{\pi} V_{LL} \cos \alpha$ For $\frac{\pi}{3} \le \alpha \le \frac{2\pi}{3}$ where conduction can be discontinuous $V_{do} = \frac{3\sqrt{2}}{\pi} V_{LL} (1 + \cos(\alpha + \frac{\pi}{3}))$ for resistive load


June 2012

Section 5 - DC Power Supplies

 3ϕ , q = 6 Pulse Rectifier Summary

- 6 pulse high input $PF \rightarrow 0.95$
- Use soft-start to limit filter capacitor inrush current.
- Output ripple frequency is 360 Hz for 60 Hz input
- Relatively low output ripple and easy to filter with small LC
- Limited to loads < 350 kW
- Diodes or SCRs are air or water-cooled depending upon load current


 6ϕ , q = 12 Pulse By Series Bridges

SCR sequence for 30^o lagging wye secondary

1-5, 7-11, 1-4, 7-10, 2-4, 8-10, 2-6, 8-12, 3-6, 9-12, 3-5, 9-11

 6ϕ , q = 12 Pulse By Parallel Bridges

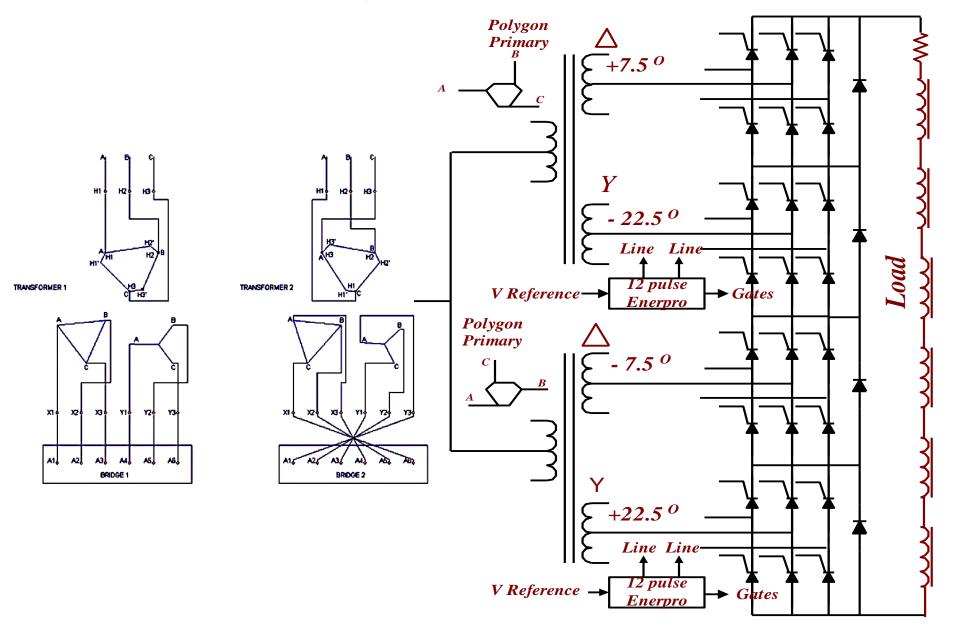
Transformer phases and SCR firing sequence are the same as shown for the series-connected bridges

6 ϕ , q = 12 Pulse Rectifiers - Summary

For Both Series And Parallel-Connected Bridges

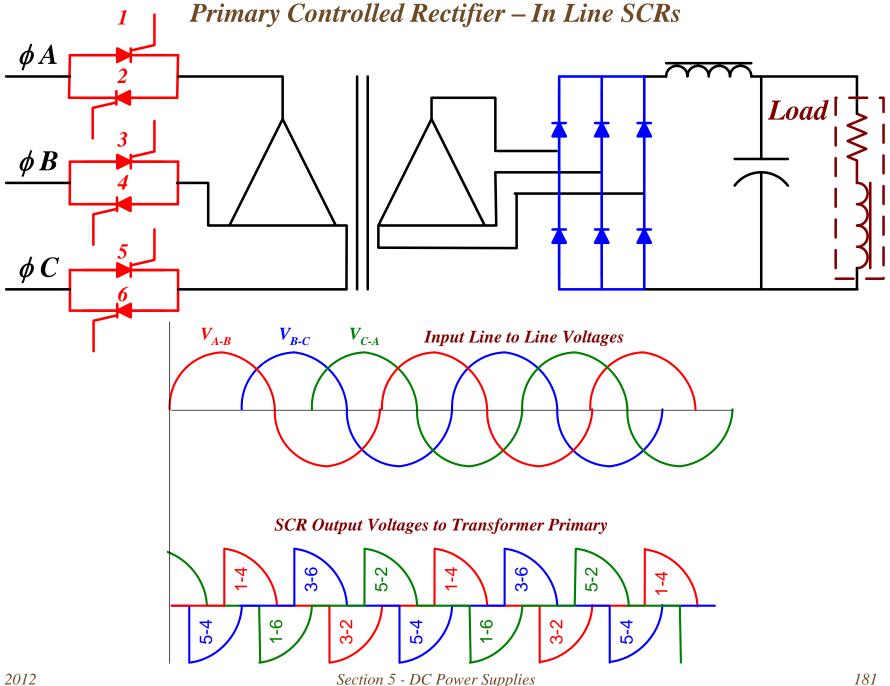
- Input transformer Δ primary, ΔY secondaries for 6 AC phases
- Δ Y secondaries are phase shifted 30°
- 5th and 7th harmonics virtually non-existent in input line, << 5 % THD of line voltage < 20 % THD of line current
- Very high input PF to 0.97
- Output ripple frequency is 720 Hz for 60 Hz input
- Use soft-start to limit filter capacitor inrush current
- Freewheeling diode for to allow lagging bridge to conduct
- For loads \geq 350 kW

6ϕ , q = 12 Pulse Rectifiers - Summary

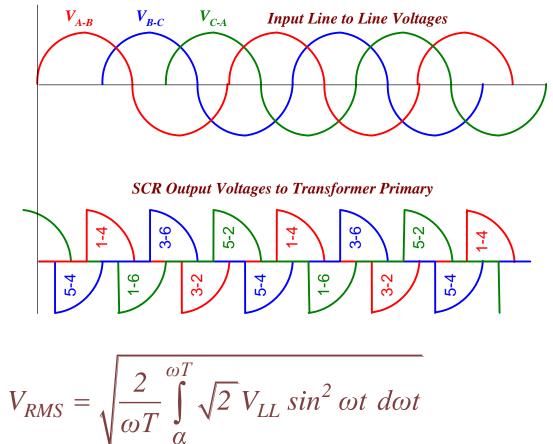

Series-connected bridges

• For high-voltage, low-current loads

Parallel-connected bridges

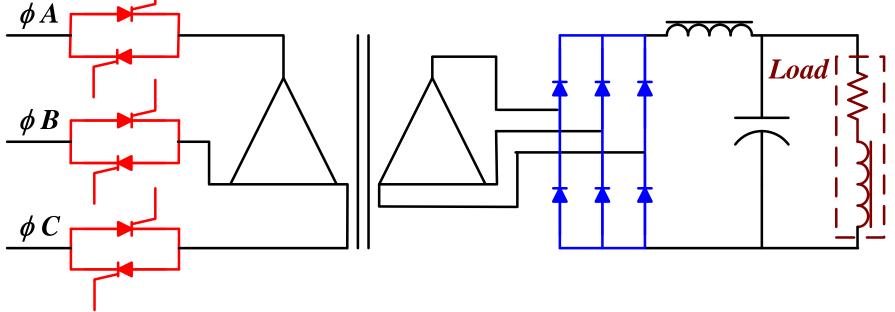

- For high-current, low-voltage loads \geq 350 kW.
- Inter-phase transformer needed for current sharing

12 ϕ , q = 24 Pulse Rectifier



12 ϕ , q = 24 Pulse Rectifier Summary

- Input transformer polygon primary to $+7.5^{\circ} \Delta Y$ secondaries for -30° shift
- Input transformer polygon primary to 7.5° Δ Y secondaries for +30° shift
- 15⁰ shift between the 4 sets of bridges
- For loads ≥ 1 MW DC or Pulsed


Primary Controlled Rectifier – In Line SCRs

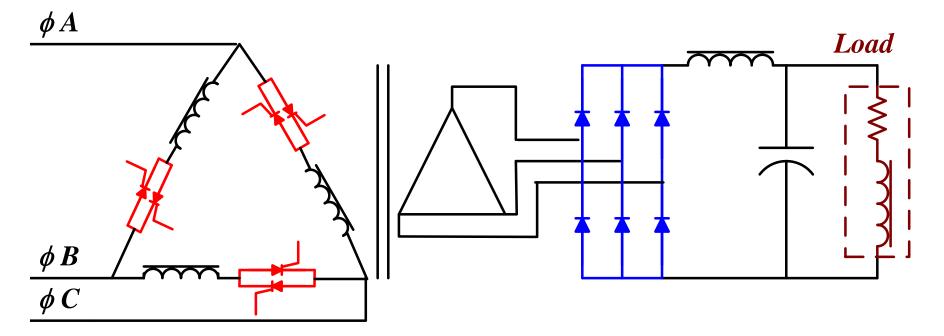
 $V_{do} = \frac{3\sqrt{2} V_{RMS}}{\pi} * N \quad where N is the transformer$

secondary to primary voltage ratio

Primary Controlled Rectifier – In Line SCRs

Advantage Compared To Secondary Control

• Keep SCR controls out of the HV and HV oil

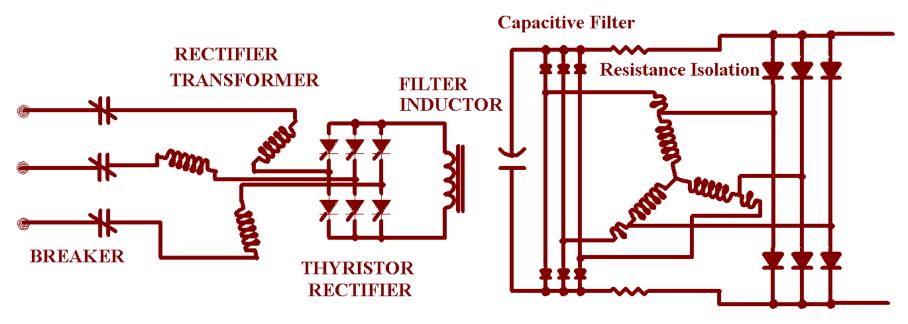

Disadvantage Compared To secondary Control

• Twice the semiconductors mean higher losses and lower efficiency

Similarities

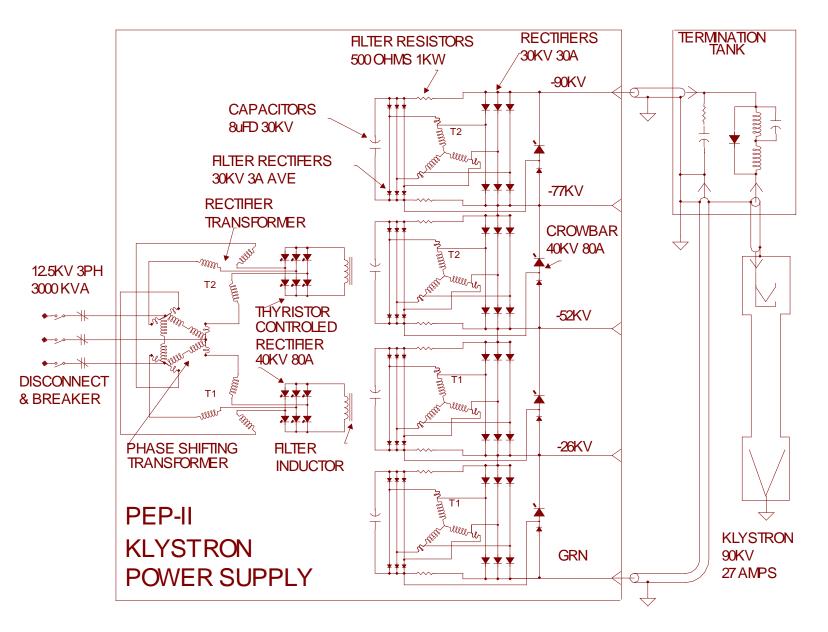
- *PF*
- Input / output harmonics
- Output ripple frequency

Primary Controlled Rectifier – In Delta SCRs

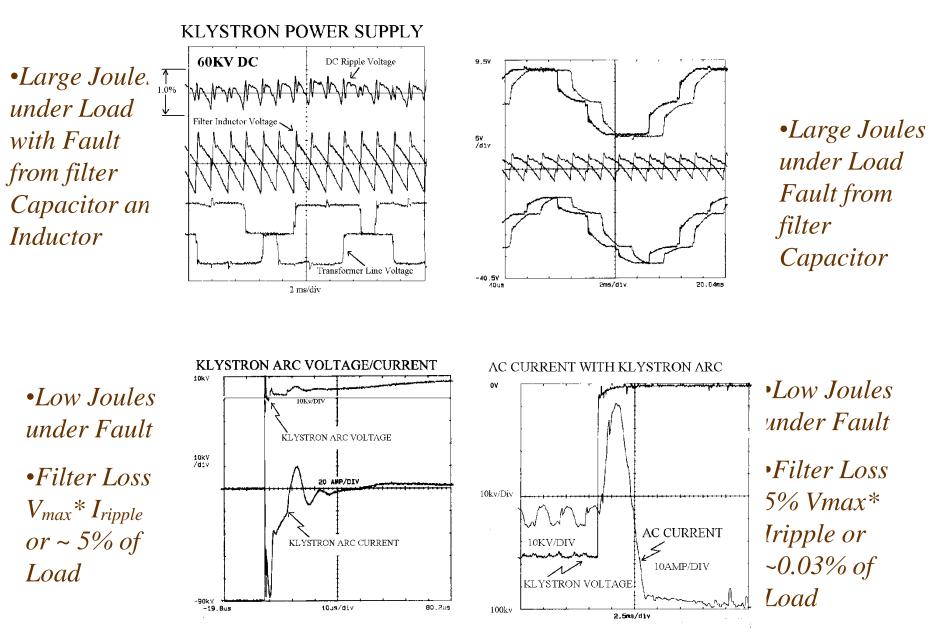

Advantage Compared To In Line SCRs • $\frac{1}{\sqrt{3}}$ lower SCR current and power (SCR on-voltage is constant) Disadvantage

• Transformer wiring more complex

Similarities

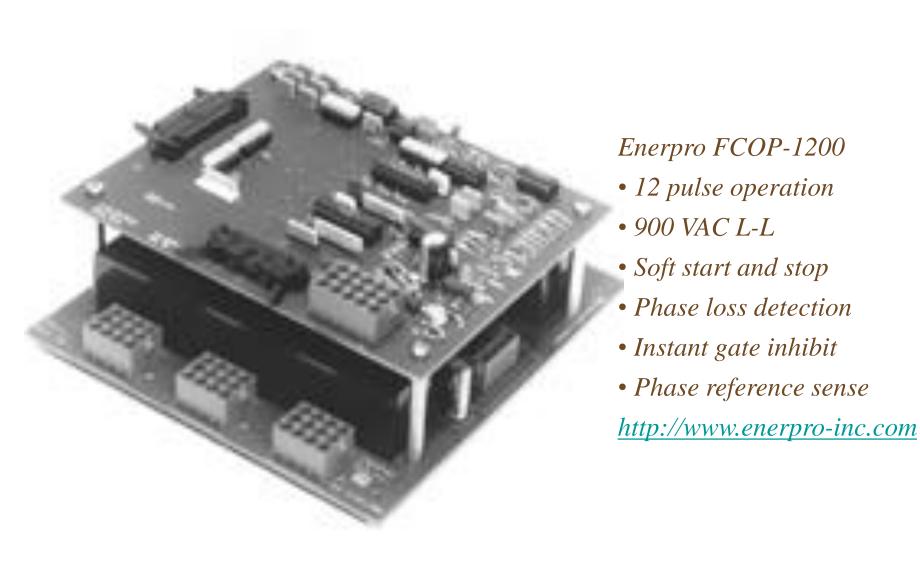

• Other characteristics similar to In Line SCR controller

6 Pulse SCR Star Point Rectifier

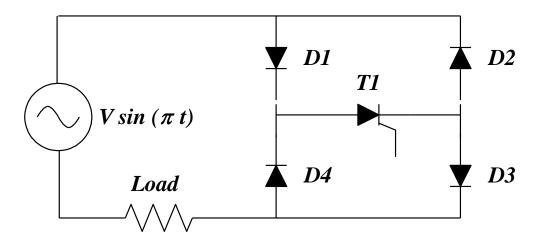


- Primary SCR in open wye with filter inductor in lower voltage primary
- *High voltage secondary with diodes and filter capacitor isolated from main load*
- Protected against secondary faults. High output impedance, capacitor bank isolated from load
- Secondary uses diodes only.

6 Phase SCR Star Point Rectifier with Isolated filter

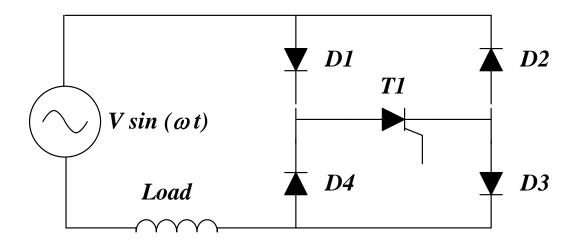


6 Phase SCR Star Point Rectifier



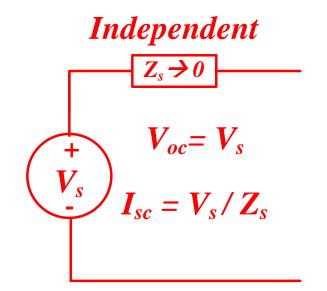
June 2012

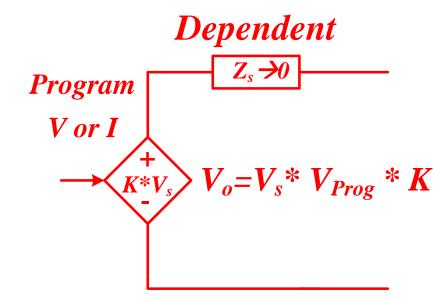
Rectifiers - SCR Gate Firing Boards


Rectifiers - Homework Problem #8

Assume ideal components in the phase-controlled circuit above. For a purely resistive load:

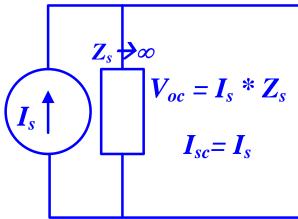
- A. Explain how the circuit operates
- B. Draw the load voltage waveform and determine the boundary conditions of the delay angle α
- C. Calculate the average load voltage and average load current as a function of α
- D. Find the RMS value of the load current.


Rectifiers - Homework Problem #9

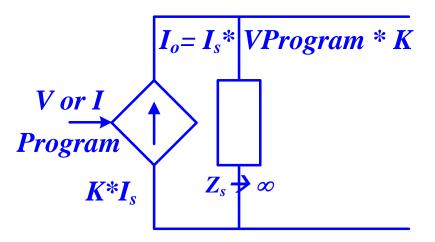

Assume ideal components in the phase-controlled circuit above. For a purely inductive load:

- A. Explain how the circuit operates.
- B. Draw the load voltage and load current waveforms and determine the boundary conditions of the delay angle α
- C. Calculate the average load voltage and average load current as a function of α
- D. Find the RMS value of the load current.

Thevenin Voltage Sources

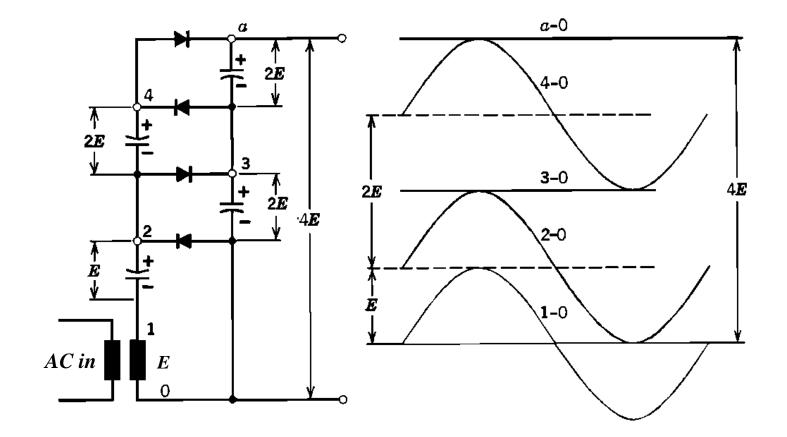

- Provides a constant output voltage regardless of the output current
- Fixed DC output voltage

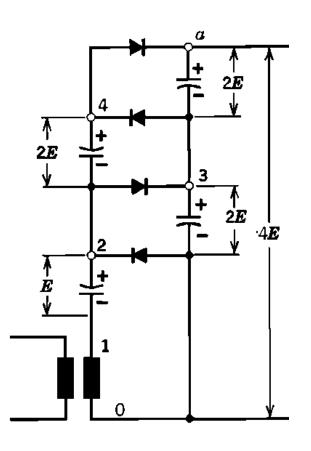
- Provides a constant output voltage regardless of the output current
- Continuously adjustable
- V_o dependent on $V_{Prog}(V_{Ref})$


Norton Current Sources

Independent

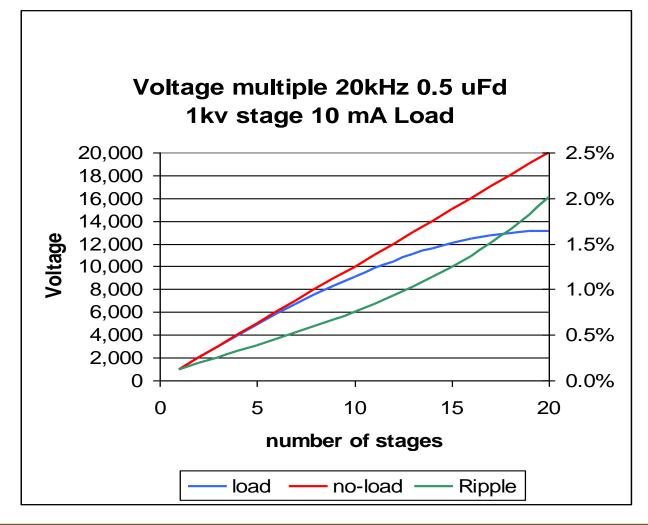
- Provides a constant output current regardless of the output voltage
- Fixed DC output current


Dependent


- Provides a constant output current regardless of the output voltage
- •Continuously adjustable
- I_o dependent on $V_{Prog}(V_{Ref})$

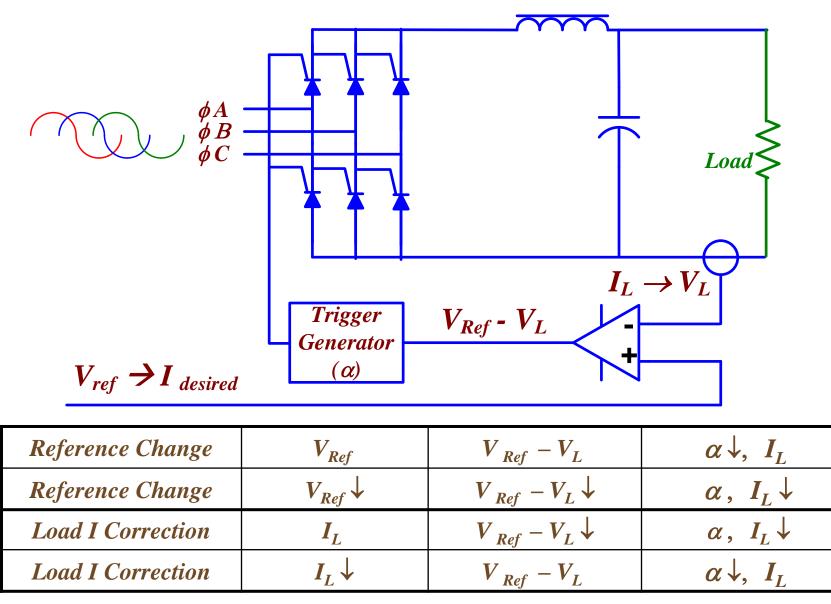
High Voltage Low Current DC supplies

Voltage Multipliers, Cockroft Walton or Cascade Supplies

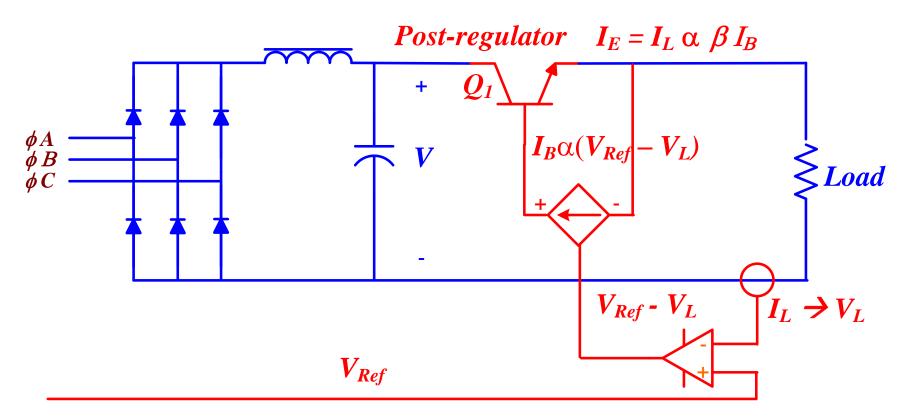


High Voltage Low Current DC supplies

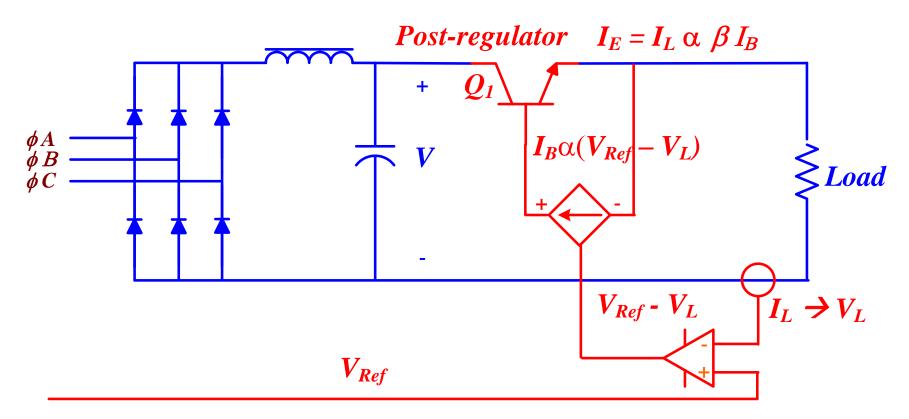
- Voltage multipliers or cascaded supplies
- Electron beam gun supplies and deflector supplies
- Half-wave, full-wave, three-phase, or six phase
- Capacitor / rectifier arranged to couple AC voltage through the capacitor after being charged by DC from the rectifier
- 20kV to 1,000 kV, 0 to 10 mA DC
- AC high frequency drive ~ 5 kHz to 50 kHz
- Advantages simple, reliable, inexpensive
- Disadvantages- low output power, poor regulation high output ripple, high output Z, 1st stage draws high current


High Voltage Multiplier DC supplies

•Disadvantages: *Poor regulation*


 $E_{drop} = (I_{load} / (f^*C)) * (2 / 3 * n^3 + n^2 / 2 - n/6)$ Large ripple $E_{ripple} = (I_{load}/(f * C))*n*(n+1)/2$

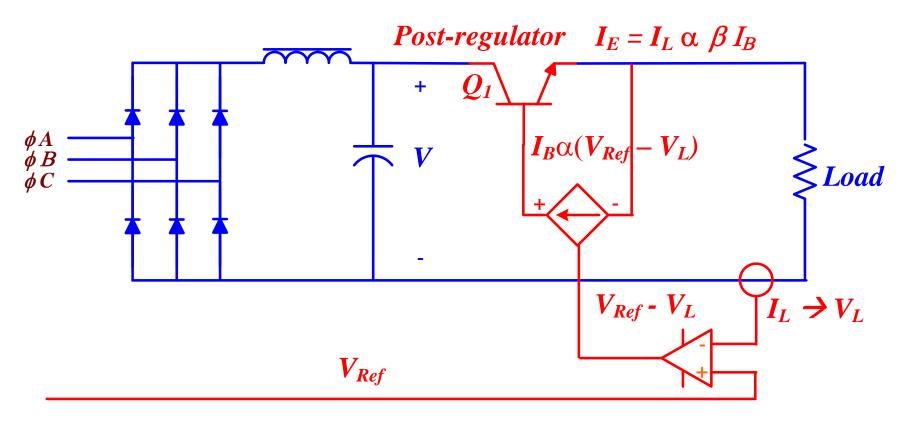
SCR Rectifier / Regulator Current Source


Disadvantage: Line commutated, low bandwidth, some fast changes not regulatedJune 2012Section 5 - DC Power Supplies196

Diode Rectifier With Linear Post-Regulator To Improve Response

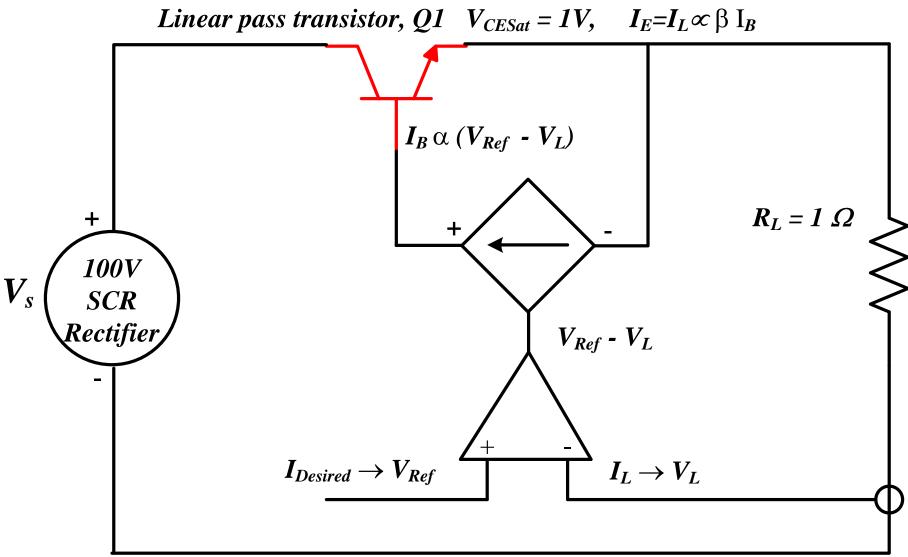
Reference Change	V _{Ref}	$I_B \alpha V_{Ref} - V_L$	$I_E = I_L$
Reference Change	$V_{Ref} \downarrow$	$I_B \alpha V_{Ref} - V_L \downarrow$	$I_E = I_L \downarrow$
Load I Correction	IL	$I_B \alpha V_{Ref} - V_L \downarrow$	$I_E = I_L \downarrow$
Load I Correction	$I_L \downarrow$	$I_B \alpha V_{Ref} - V_L$	$I_E = I_L$

Diode Rectifier With Linear Post-Regulator To Improve Response


Regulation occurs by changing the transistor Q1 resistance

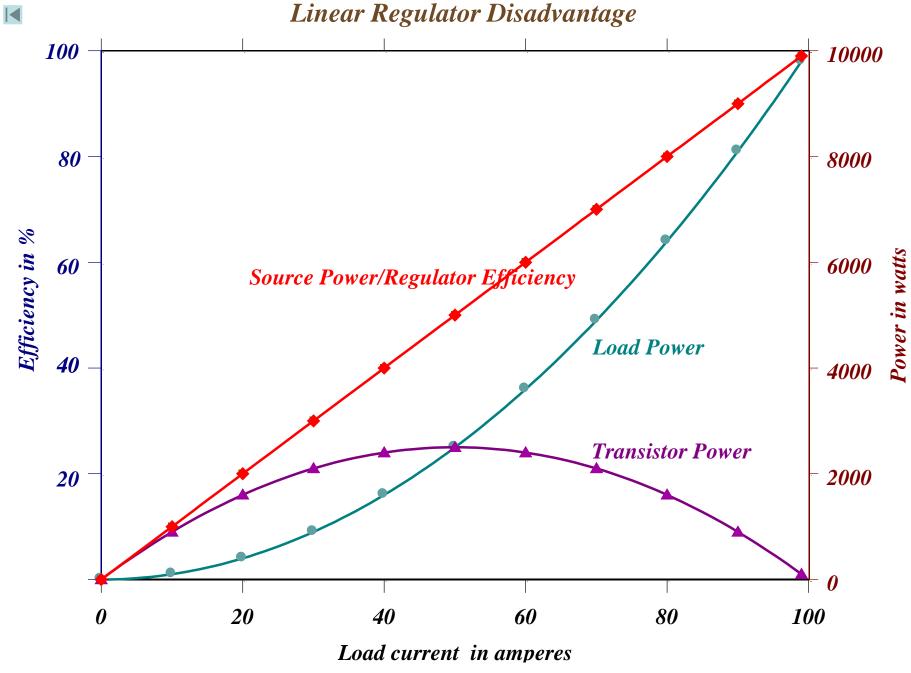
$$R_{Q1} = \frac{V_{CE}}{I_E} = \frac{V - V_L}{I_L}$$

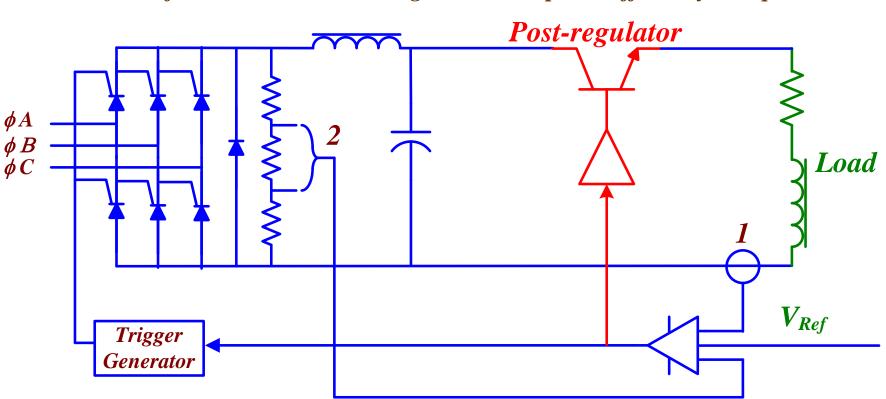
$$V \text{ is constant, so if } I_L \uparrow, V_L \uparrow, V - V_L \downarrow, R_{Q1} \downarrow$$


$$if I_L \downarrow, V_L \downarrow, V - V_L \uparrow, R_{Q1} \uparrow$$

Diode Rectifier With Linear Post-Regulator To Improve Response

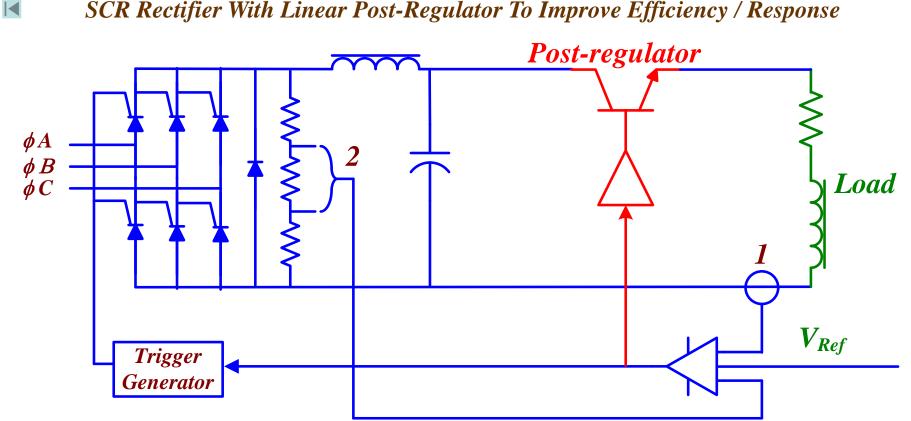
- Output I sensed and deviations due to programming, load or other changes are corrected by changing the resistance of the post-regulator.
- Broader bandwidth than line-commutated type
- Very inefficient topology, except when full output is required


Linear Regulator Disadvantage

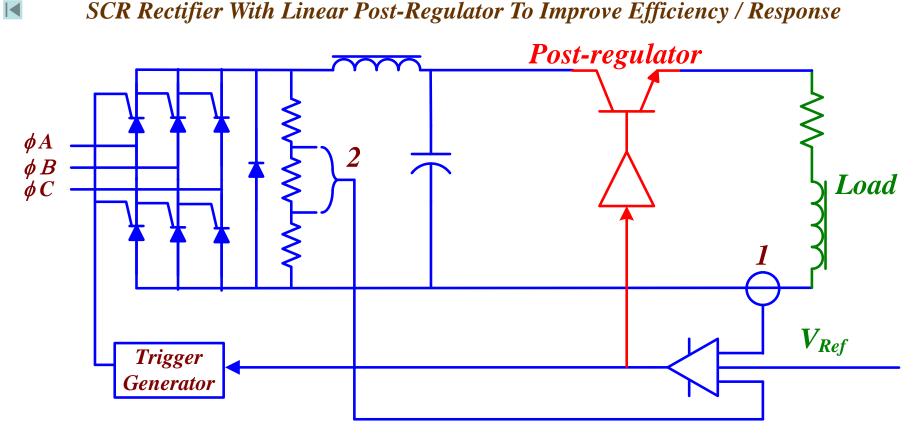

Linear Regulator Disadvantage *Linear pass transistor, Q1* $V_{CESat} = IV$, $I_E = I_L \propto \beta I_B$ $I_B \alpha (V_{Ref} - V_L)$ $R_L = 1 \Omega$ +100V V. SCR Rectifier $V_{Ref} - V_L$ $I_L \rightarrow V_L$ $I_{Desired} \rightarrow V_{Ref}$

 $V_{S} = 100V \qquad I_{L} = 0 \rightarrow 99A \qquad V_{Q1} = V_{S} - V_{L}$ $I_{S} = I_{L} \qquad V_{L} = I_{L} * R_{L} \qquad P_{Q1} = V_{Q1} * I_{Q1}$ $P_{S} = V_{S} * I_{S} \qquad P_{L} = V_{L} * I_{L} \qquad Eff = \frac{P_{L}}{P_{S}}$

		Linear Regulator Disadvantage								
	Load Amperes I _L = I Desired	Load Volts $V_L = I_L * R_L$	Load Watts $P_L = V_L * I_L$	$\begin{array}{c} QI \ Volts \\ V_{QI}=V_S - V_L \end{array}$	Q1 Amperes I _{Q1} =I _L	$QI Watts P_{QI}=V_{QI}*I_{QI}$	Source Volts V _S =100	Source Amperes I _S =I _l	Source Watts P _S =V _S * I _S	% Efficiency Eff=P _L / P _S
	0	0	0	100	0	0	100	0	0	0
	10	10	100	90	10	900	100	10	1000	10
	20	20	400	80	20	1600	100	20	2000	20
	30	30	900	70	30	2100	100	30	3000	30
	40	40	1600	60	40	2400	100	40	4000	40
	50	50	2500	50	50	2500	100	50	5000	50
	60	60	3600	40	60	2400	100	60	6000	60
	70	70	4900	30	70	2100	100	70	7000	70
	80	80	6400	20	80	1600	100	80	8000	80
	90	90	8100	10	90	900	100	90	9000	90
	99	99	9801	1	99	99	100	99	9900	99



Section 5 - DC Power Supplies

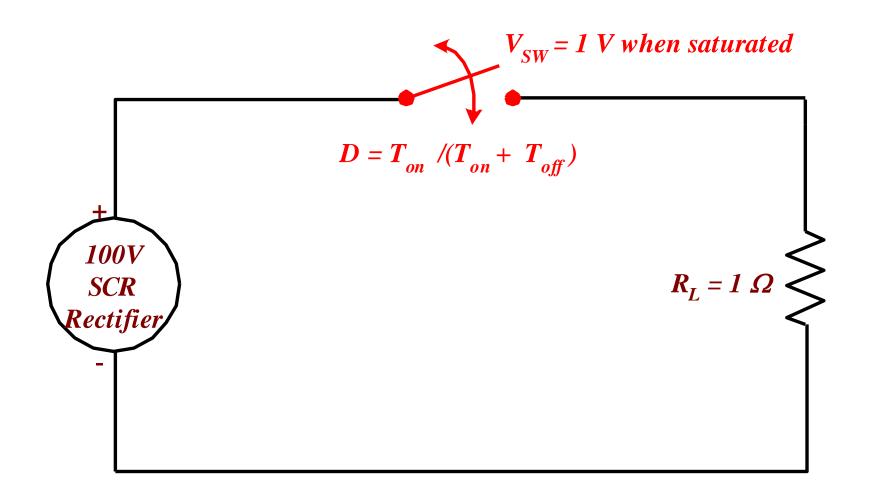


SCR Rectifier With Linear Post-Regulator To Improve Efficiency / Response

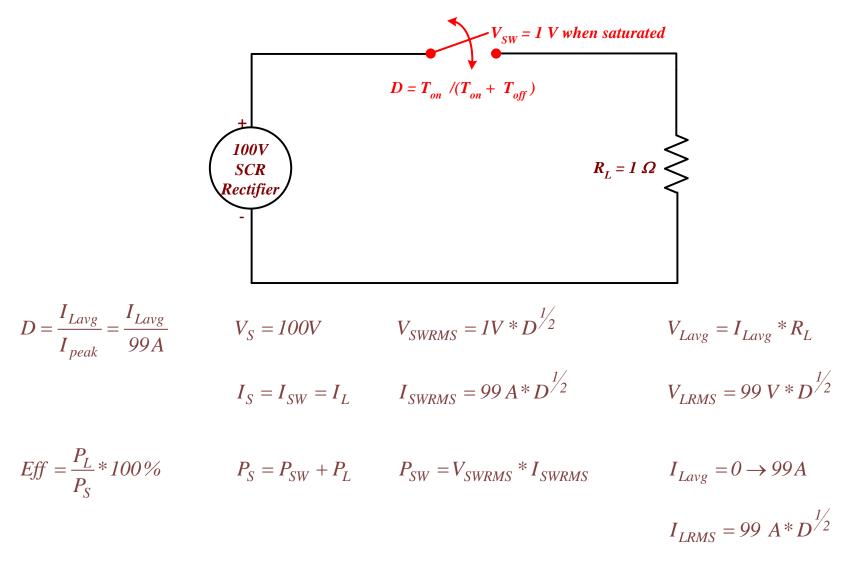
- SCRs full on for full output
- SCRs phased back for lower outputs to improve efficiency.
- Limited range regulation is done by the post-regulator

- 1. Output I sensed. Deviations due to load or other changes are corrected by SCR rectifier and post-regulator.
- 2. Rectifier V_0 is sensed. Slow line changes corrected by BW-limited SCRs. Fast transients corrected by high BW post-regulator
- 3. Bipolar transistor V_{CE} is monitored. If V_{CE} and/or $V_{CE}*I_E$ exceeds a safe value, SCR firing is advanced and rectifier V_0 is increased accordingly

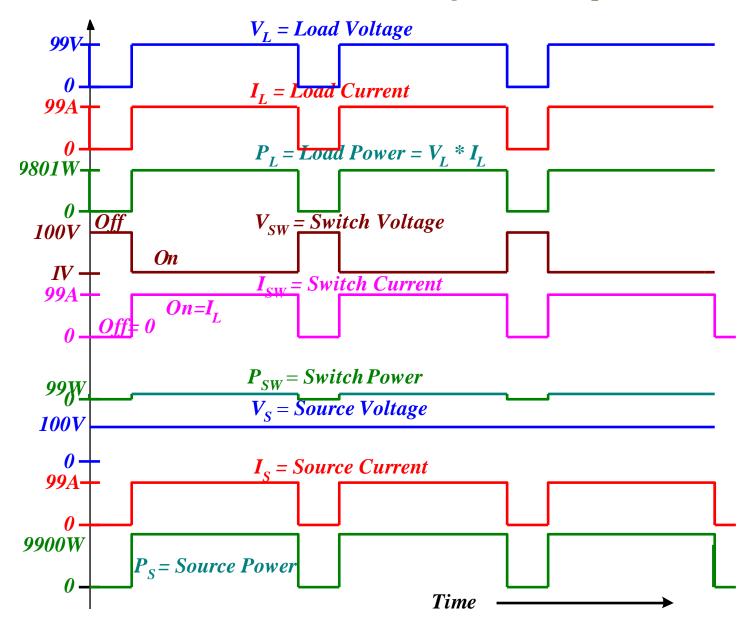
Disadvantages


- Large output changes cannot be accommodated by post-regulator. Requires retardation of SCR rectifier pulses to improve efficiency
- Low power factor when SCR gate firing is retarded ($V_{load} < < V_{line}$)
- Implementation of 2 control loops is complex

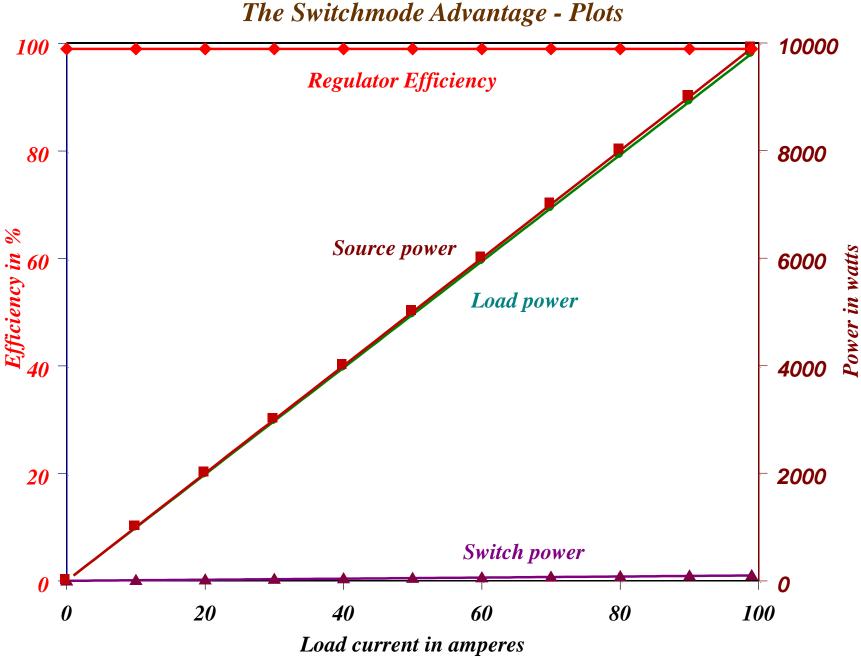
The Present – Switchmode Power Supplies Circa 1990 - Present


Recalling The Recent Past					
Topology	Disadvantages				
SCRs for rectification and regulation	 Low power factor High AC line harmonic distortion Narrow bandwidth Slow transient response 				
SCRs for rectification and gross regulation Fine regulation by post linear transistors	 Low power factor when line V ≠ load V High AC line harmonic distortion Complex control loops 				

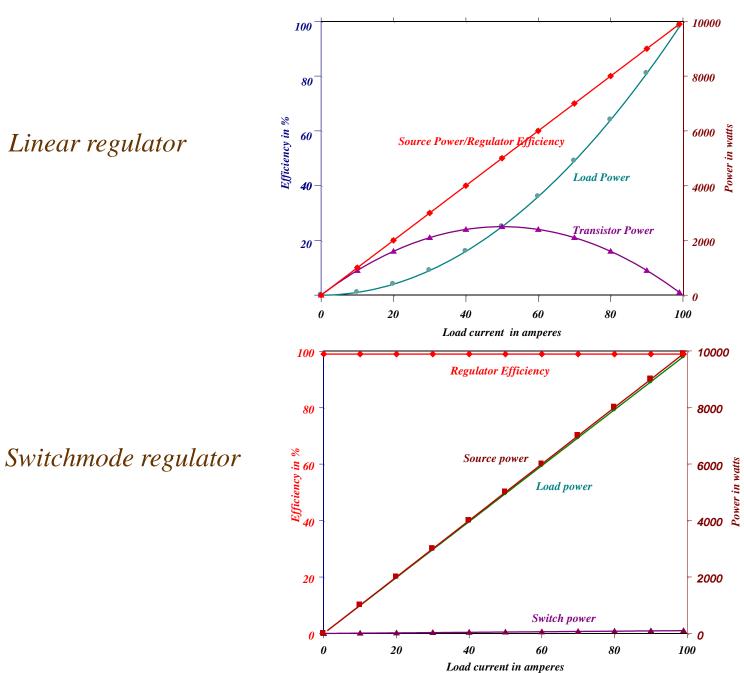
The Present Popular Solution							
Topology	Advantages						
• SCRs (or diodes) for rectification	• Rectifier SCRs or diodes are full on – hence high power factor (> 0.9) possible						
(switch-mode inverters) for	• High PF means low AC line harmonic distortion (< 5% V, < 25 % I)						
regulation	• Fast (10 kHz to 100 kHz) switching means wide bandwidth (> 100 s of Hz), fast transient response (microseconds)						
	• Fast switching means more corrections per unit time – better output stability						
	• Simple control loops compared to SCR rectifier/post-regulator combination						
	• Fast switching, high frequency operation for electrically and physically smaller transformers and filter components						


The Present Popular Solution (Continued)						
Topology	Disadvantages					
• SCRs (or diodes) for rectification	• High speed, fast-edge switching can generate conducted and radiated electromagnetic interference (EMI)					
• High speed switches (switch-mode inverters) for regulation						

The Switchmode Advantage



The Switchmode Advantage - Waveshapes



The Switchmode Advantage - Calculations

Duty Factor=Lavg/ Ipeak	Average Load V V _{Lavg} = I _{Lavg} * R _L	Load Volts RMS V _{Lrms} =99V*D^0.5	Load Amps RMS IL ^{ms=} 99A*D^0.5	Load Power P _{Lavg} = V _{Lrms} * I _{lrms}	Switch Volts RMS Vswms = IV * D^0.5	Switch Amps RMS I _{SWrms} =99 * D^0.5	Switch Power Pswavg = Vswrms * Iswrms	Source Power Ps = P _{Lrms} + Pswrms	% Efficiency Eff= PL / Ps * 100%
0	0	0	0	0	0.00	0.0	0	0	NA
0.101	10	31	31	990	0.32	31.5	10	1000	99
0.202	20	44	44	1980	0.45	44.5	20	2000	99
0.303	30	54	54	2970	0.55	54.5	30	3000	99
0.404	40	63	63	3960	0.64	62.9	40	4000	99
0.505	50	70	70	4950	0.71	70.4	50	5000	99
0.606	60	77	77	5940	0.78	77.1	60	6000	99
0.707	70	83	83	6930	0.84	83.2	70	7000	99
0.808	80	89	89	7920	0.90	89.0	80	8000	99
0.909	90	94	94	8910	0.95	94.4	90	9000	99
1	99	99	99	9801	1.00	99.0	99	9900	99
	0 0.101 0.202 0.303 0.404 0.505 0.606 0.707 0.808 0.909	0 0 0.101 10 0.202 20 0.303 30 0.404 40 0.505 50 0.606 60 0.707 70 0.808 80 0.909 90	0 0 0 0.101 10 31 0.202 20 44 0.303 30 54 0.404 40 63 0.505 50 70 0.606 60 77 0.707 70 83 0.808 80 89 0.909 90 94	00000.1011031310.2022044440.3033054540.4044063630.5055070700.6066077770.7077083830.8088089890.909909494	LoDO 0 0 0 0 0 0 0 0 0 0 0 0.101 10 31 31 990 0.202 20 44 44 1980 0.303 30 54 54 2970 0.404 40 63 63 3960 0.505 50 70 70 4950 0.606 60 77 77 5940 0.707 70 83 83 6930 0.808 80 89 89 7920 0.909 90 94 94 8910	I = 1 $V = 1$ <	u_{1} u_{2} u_{3} <	O O	H_{1} H_{2} <

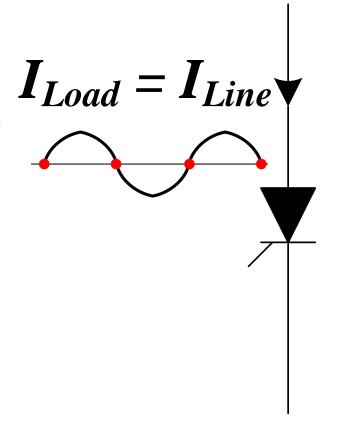
Section 5 - DC Power Supplies

June 2012

Section 5 - DC Power Supplies

SCR Regulation Vs Switchmode Regulation

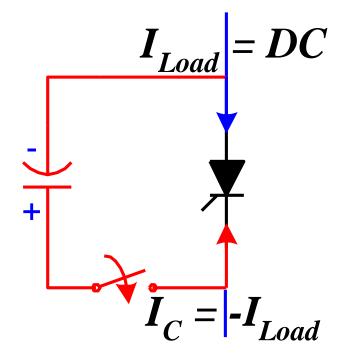
	SCR	Switchmode
Efficiency	Low at low load, high at full load	High, whether low or high load
Operating frequency	60 Hz	10 kHz to 1,000 kHz
Transient Response	Tens of milliseconds	Tens of microseconds
Short-term-stability	100s of ppm	10s of ppm
Input filter	Large	Smaller, HF regulator provides supplemental filtering
Isolation/Line-matching transformer	Large and upstream of the rectifiers	Smaller because of high frequency. Downstream of the regulator
Output filter	None	High frequency ripple = smaller size
Power factor	Low when output is low	Always high
Line distortion	High when output is low	Always low
EMI	High when output is low	High, but higher frequency, easier to filter


Linear Vs. Switchmode–Advantage Summary

Linear	Switchmode
Output current/voltage is adjusted by varying pass transistor resistance	Output current/voltage is adjusted by varying switch duty factor
Transistor voltage and current are in phase so transistor power loss is high	Switch voltage and current are out of phase so switch power is low
Efficiency is dependent upon the output operating point and is maximum at 100 % load	Efficiency is high and relatively constant

Regulating Switch Candidates

Line Commutated Switches


- *Typically thyristor (4 element) family devices SCRs, Triacs*
- Employ natural current zero occurs each 1/2 cycle for turnoff
- Slow, tied to 60Hz line and no turnoff control
- Not suitable as fast switch

Regulating Switch Candidates

Force Commutated

- Typically SCRs, Triacs
- Artificial current zero is manufactured by precharged capacitor $I_c = -I_{Load}$
- Complex and power-consuming charging and discharging circuits for capacitor
- Not suitable approach for fast switches

Regulating Switch Candidates

┿

Self Commutated

- Devices have the ability to turn on or turn off by the application of a forward or reverse bias to the control elements (gate emitter)
- Typically Bipolar Junction Transistors (BJTs), Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) or Insulated Gate Bipolar Junction Transistors (IGBTs)
- Only self-commutated switches used in modern switchmode power supplies

Self-Commutated Device	Bipolar Junction Transistor (BJT)	Metal Oxide Field Effect Transistor (MOSFET)	Insulated Gate Bipolar Transistor (IGBT)
Symbol		G S	G
Available Ratings	$600 \text{ V}, 10 \rightarrow 100 \text{ A}$	$150 \text{ V}, 10 \rightarrow 600 \text{ A}$	600 V, $10 \rightarrow 800 A$
	1000V, $10 \rightarrow 100A$	$600 \text{ V, } 10 \rightarrow 100 \text{ A}$	1200V, $10 \rightarrow 2400A$
		$1200V, 10 \rightarrow 100A$	1700V, 50 \rightarrow 2400A
			$3300V$, $200 \rightarrow 1500A$
			$6500V, 200 \rightarrow 800A$
Switching Speed	$DC \le fs \le 2 \ kHz$	$DC \le fs \le 1,000 \ kHz$	$DC \le fs \le 20 \ kHz$
Vce or Vds f(Vge/Vgs, Ic/Id)	$0.5 V \rightarrow 1.5 V$	$1.5 V \rightarrow 6 V$	$1.0 \rightarrow 3.0V$
Conduction Loss (Vce*Ic) or (Vds*Id)	Lowest	Highest	Reasonable
Control Mode	Current	Voltage	Voltage

Insulated Gate Bipolar Transistor (IGBT) Technology

IGBT

- Used in vast majority of switchmode power supplies, except MOSFETs for corrector / trim bipolars
- Voltage controlled device faster than BJT
- *MOSFET faster, but V_{DS} too large*
- 20 kHz for PWM

- Robust, failure rate < 50 FITs
- Commercially available since 1990

IGBT Availability		
600V	$10 \rightarrow 800A$	
1200V	$10 \rightarrow 2400A$	
1600 / 1700V	$50 \rightarrow 2400A$	
2500/3300V	$200 \rightarrow 1500A$	
4500/6500V	$200 \rightarrow 800A$	
Available as 6-pack, half-bridge, single switch		

June 2012

Manufacturers of IGBTs and IGBT Gate Drivers

ABB	http://www.abbsem.com/english/igbt.htm
Concept Technology	http://www.igbt-driver.com/
Collmer Semiconductor	http://www.collmer.com/
Eupec	http://www.eupec.com
International Rectifier	http://www.irf.com
Intersil	http://www.intersil.com/
IXYS	http://www.ixys.net
Mitsubishi	http://www.mitsubishichips.com/
Powerex	http://www.pwrx.com
Semikron	http://www.semikron.com
Toshiba	http://www.toshiba.com/
Westcode	http://www.westcode.com/

Topologies - Switchmode Power Supplies

- There are many topologies, but most are combinations of the types that will be discussed here.
- Each topology contains a unique set of design trade-offs Voltage stresses on the switches
 Chopped versus smooth input and output currents
 Utilization of the transformer windings
- Choosing the best topology requires a study of Input and output voltage ranges

Current ranges

Cost versus performance, size and weight

Two Broad Categories

Flyback Converters

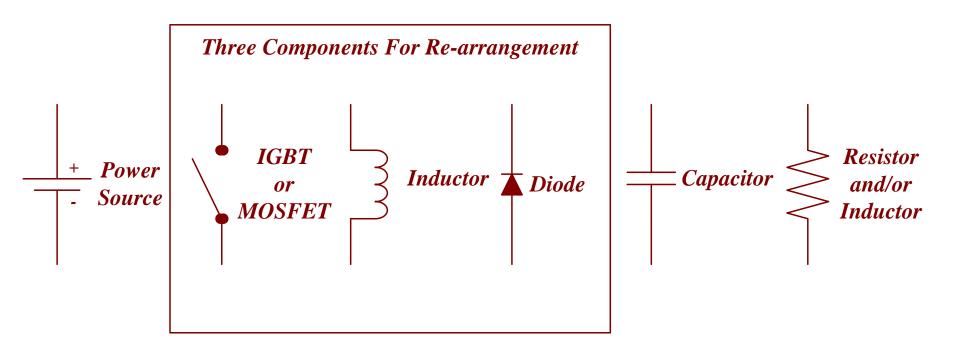
- The line-to-load matching/isolation transformer doubles as the output filter choke
- Advantage reduction of one major component
- Disadvantage constrained to low power applications. Not employed in accelerator power supplies

Forward Converters

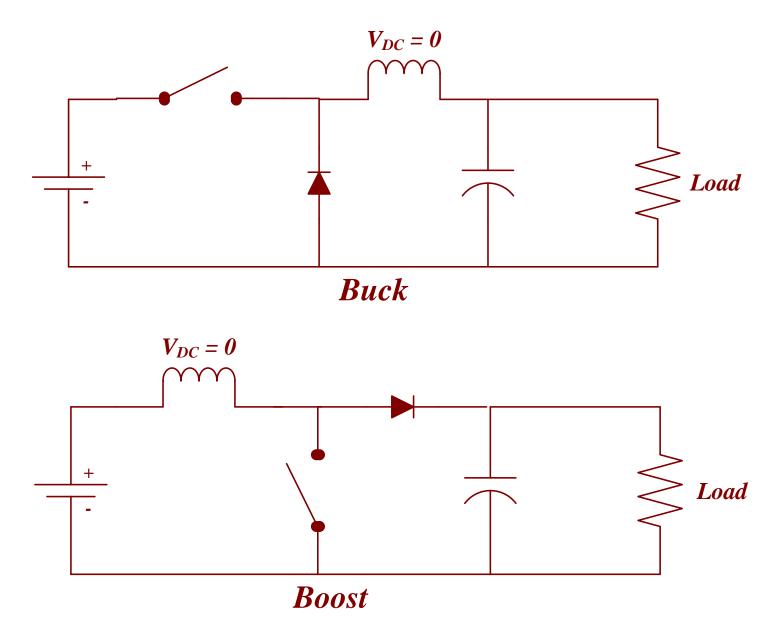
- The line-to-load matching/isolation transformer is separate from the output filter choke
- May be used in low and high power systems. Used in the vast majority of accelerator power supplies
- Disadvantage the increased cost and space associated with a separate transformer and choke

Topologies - Switchmode Topologies

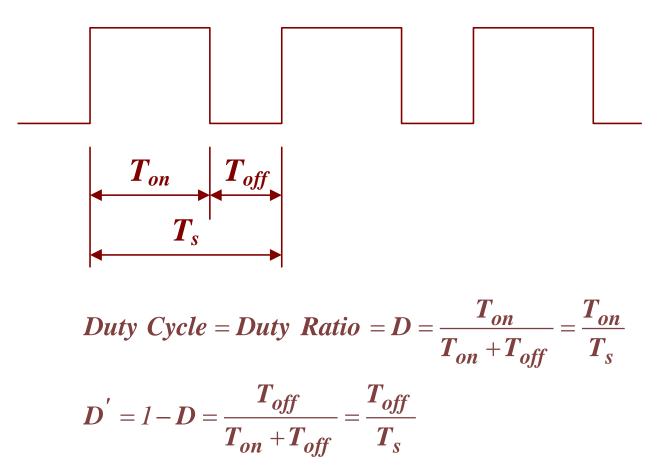
Typical Forward Converters Listed In Order Of Increasing Use

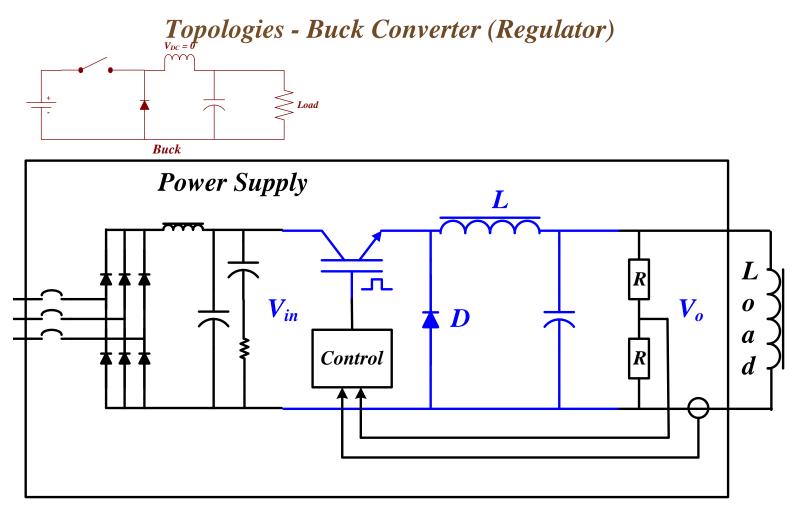

- Half-bridge Converter
- Boost Regulator
- Buck Regulator
- Full-bridge Converter

Typical Forward Converters Listed in Order of Increasing Complexity

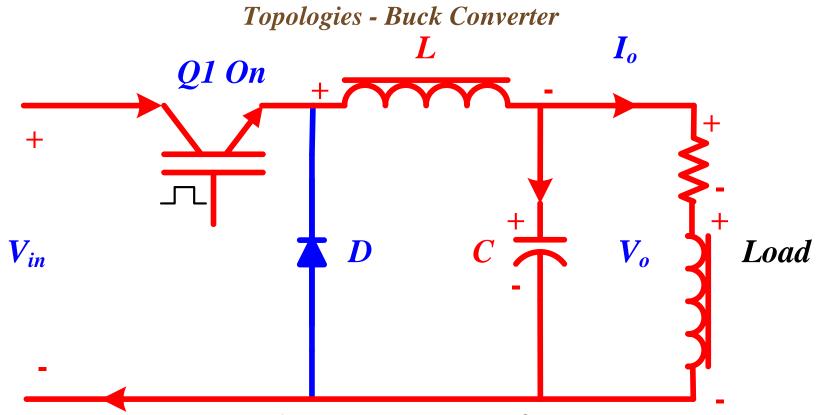

- Buck Regulator
- Boost Regulator
- Half-bridge Converter
- Full-bridge Converter

Switchmode Topologies

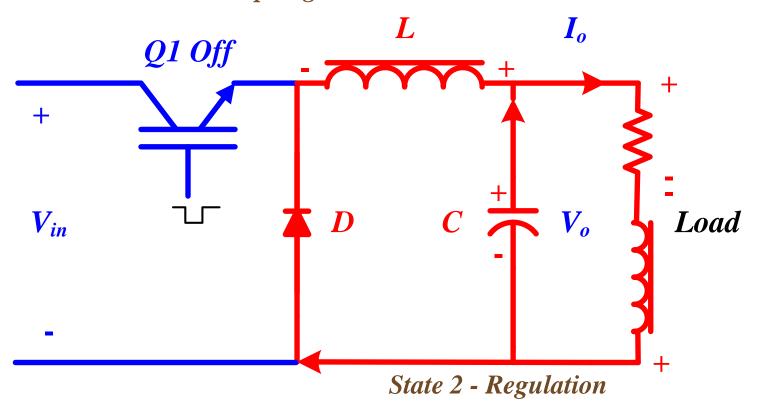

Basic switchmode tool kit



Most fundamental switchmode converter topologies are constructed by rearranging the three components

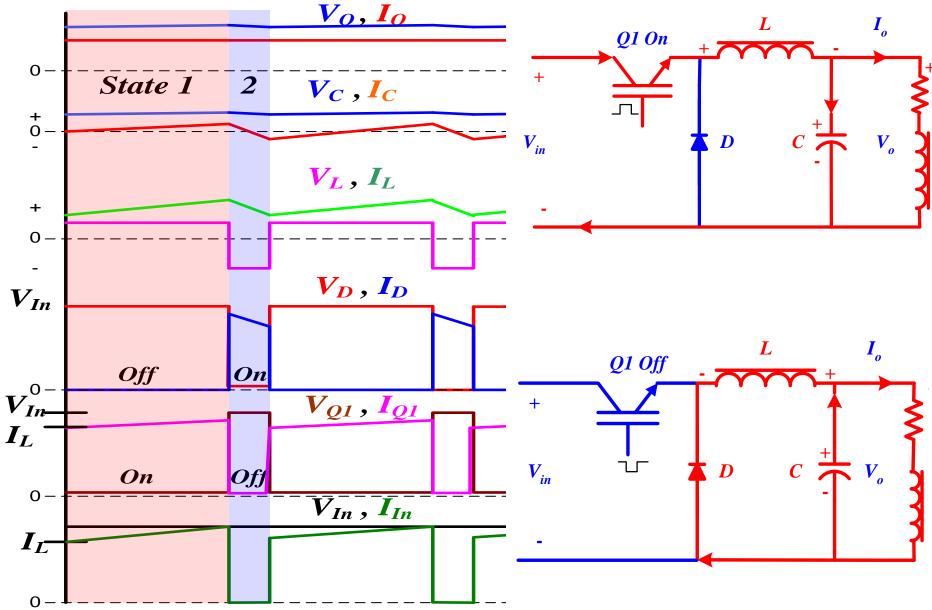

Definition of the Pulse Width Modulated (PWM) Waveform

- Used in the majority of switchmode power supplies
- Bucks the input voltage down to a lower voltage
- Perhaps the simplest of all
- Input current discontinuous (chopped) output current smooth

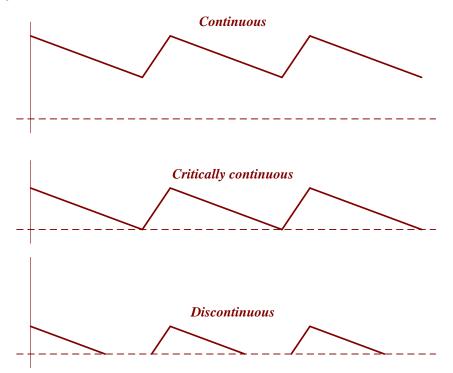

Section 5 - DC Power Supplies

State 1 – Power Transfer

- Switching device Q1 turned on by square wave drive circuit with controlled on-to-off ratio (duty factor, D)
- $V_{in} V_o$ impressed across L
- Current in L increases linearly
- Capacitor C charges to Vo


Topologies - Buck Converter

- Switching device Q1 turns off
- Voltage across L reverses: Vo impressed across L
- Diode D turns on
- Current in L decreases linearly
- C discharges into the Load


Section 5 - DC Power Supplies

Topologies - Buck Converter Waveforms

Topologies - Buck Converter Conduction

Buck converter inductor current can be continuous, critically continuous or discontinuous

Discontinuous current is caused by:

- Too light a load
- Too small an inductor
- Too small filter capacitor
- Discontinuous difficult to control output and output $\neq D^*$ Vin

Topologies - Buck Converter

Summary

- Output polarity is the same as the input polarity
- In steady-state L volt-seconds with Q1 on = volt-seconds with Q1 off

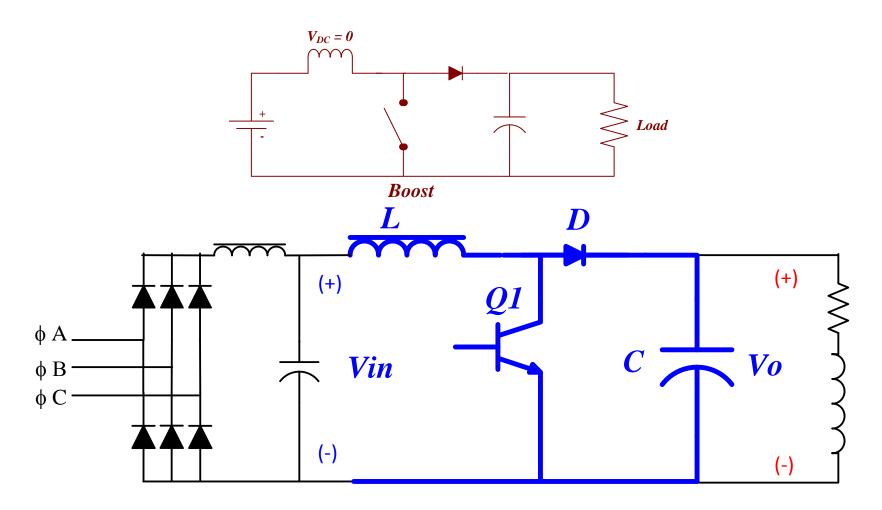
$$(V_{In} - V_O) * t_{on} = (V_O * t_{off})$$

$$V_{O} = V_{In} * t_{on} / (t_{on} + t_{off}) = V_{In} * D$$

- Output voltage is always less than the input voltage because $D \leq 1$
- Switch duty factor (D) range 0 to 0.95
- Output voltage is not related to load current so output impedance is very low (approximates a true voltage source)

An Advantage

• Few components, 1 switch – simple circuit, high reliability if not overstressed

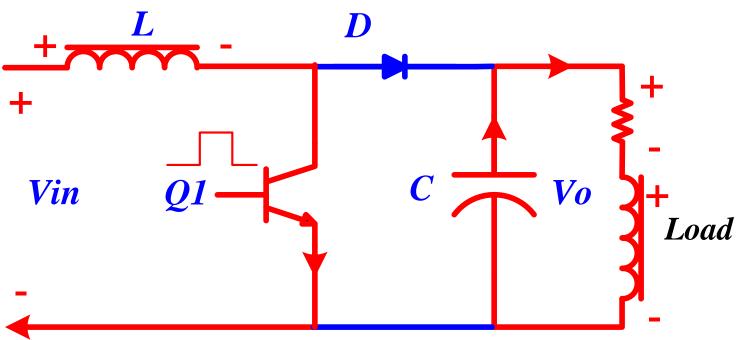

Disadvantages

- Output is DC and unipolar so no chance of high-frequency transformer or bipolar output
- Low frequency transformer must be used in front of the Buck for isolation and to match the line voltage to the load voltage

Application

• Used very widely in accelerator power systems, typically for large power supplies (perhaps ≥ 350 kW and used in conjunction with a 12-pulse rectifier with 6-phase transformer)

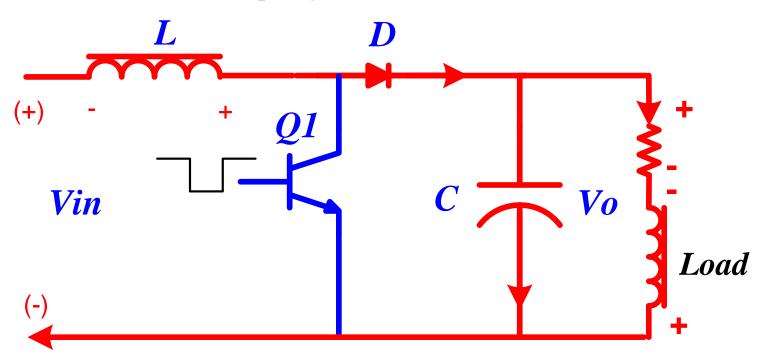
Topologies - Boost Converter



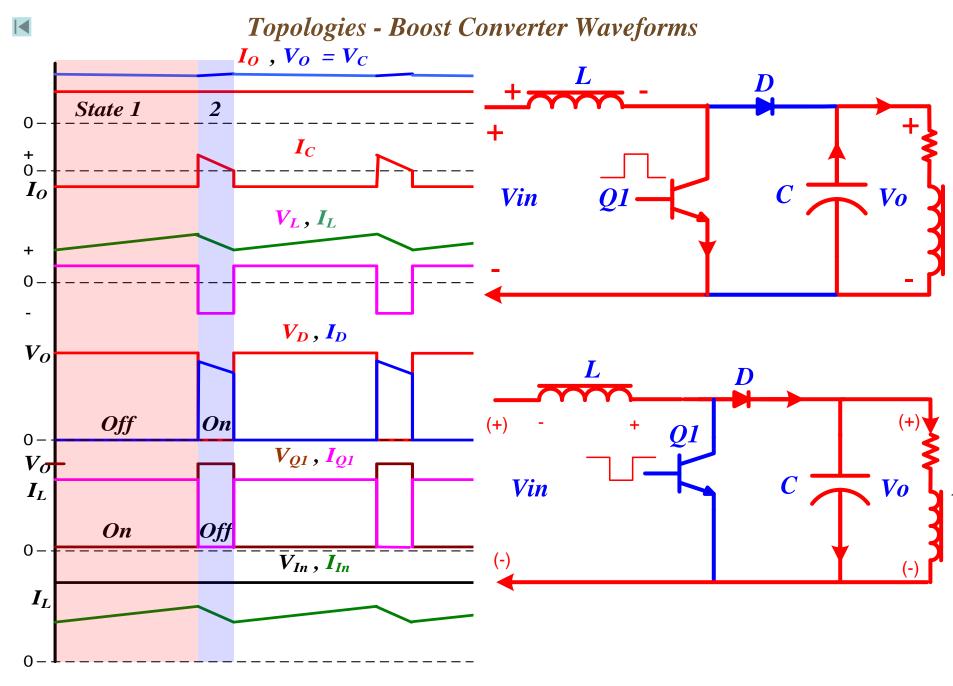
• Boosts the input voltage to a higher output voltage

• Input current is smooth (continuous) – output current is discontinuous (chopped)

Section 5 - DC Power Supplies


Topologies - Boost Converter

State 1 – Power Transfer


- Switching device Q1 turned on by square wave drive circuit with controlled on-to-off ratio (duty factor, D)
- V_{in} impressed across L
- Current in L increases linearly in forward direction
- Diode D is reversed biased (open)
- Capacitor C discharges into the load Section 5 - DC Power Supplies

Topologies - Boost Converter

State 2 - Regulation

- Q1 turned off. L polarity reverses.
- $V_O = V_{In} + V_L$, $V_L = V_O V_{In}$
- $V_O > V_{In}$, L current decreases linearly
- Diode D is forward biased (closed)
- Capacitor C is recharged

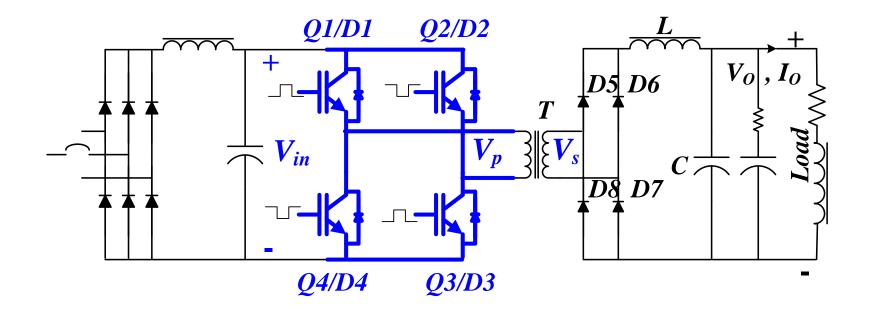
Topologies - Boost Converter

Summary

- Output polarity is the same as the input polarity
- In steady-state, L volt-seconds with Q1 on = volt-seconds with Q1 off

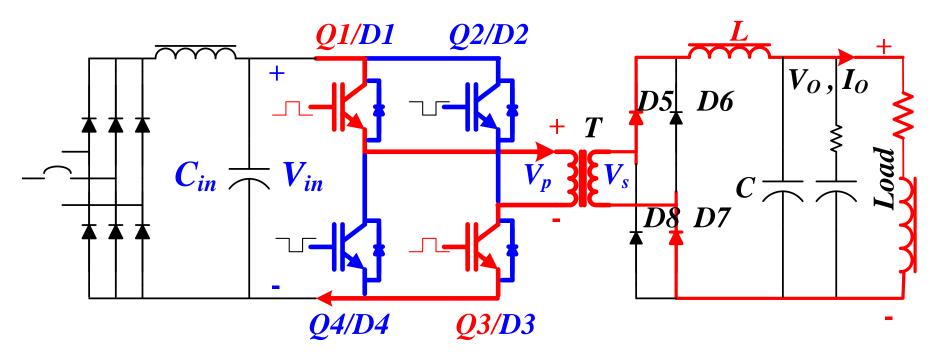
$$V_{In} * t_{on} = (V_O - V_{In}) * t_{off}$$
$$V_O = V_{In} * (t_{on} + t_{off}) / t_{off}$$
$$V_O = V_{In} / (1 - D)$$

- Output voltage is always greater than the input voltage because $D \leq 1$
- *IGBT* duty factor (D) range 0 to 0.95
- Limitation of D yielding greater output voltage is the limitation on the input current through the inductor and diode
- Output voltage is not related to load current so output impedance is very low (approximates a true voltage source).


Some Advantages

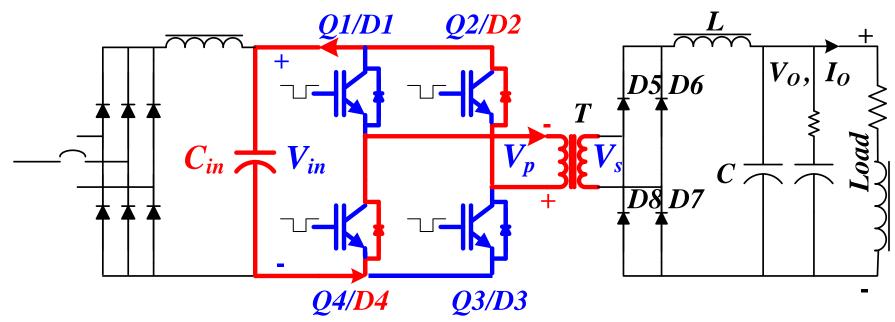
- Few components, 1 switch simple circuit, high reliability if not overstressed
- Input current is always continuous, so smaller input filter capacitor needed

Some Disadvantages


- Capacitor C current is always discontinuous so a much larger output capacitor is needed for same output ripple voltage
- Output is DC and unipolar so no chance of high-frequency transformer or bipolar output
- Low frequency transformer must be used in front of the Boost for isolation and to match the line voltage to the load voltage
- Minimum output voltage equal input voltage

Topologies - Full-Bridge Converter

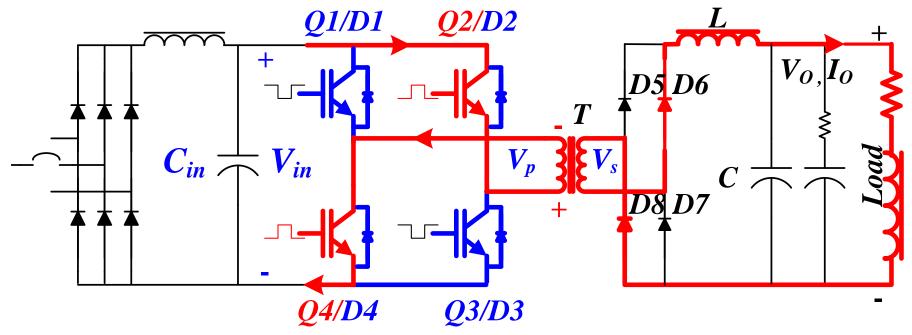
- Full wave rectifier, output ripple is multiples of the input frequency
- Equal in popularity to buck topology for high-power converters
- Used when line and load voltages are not matched
- *Voltage stress on switches = input voltage*
- Good transformer utilization, power is transmitted on both half-cycles


■ Topologies - Full-Bridge Converter Switching – Q1 and Q3 On , Q2 and Q4 Off

State 1 - Power

- Power is derived from the input rectifier and slugs of energy from C_{in}
- Q1 and Q3 are closed. Current flows through Q1 and the primary winding of T and Q3
- A voltage (V_{in}) is developed across the primary winding of T. A similar voltage is $(V_{in} *N)$ is developed across the secondary winding of T
- The secondary voltage causes rectifiers D5 and D7 to conduct current

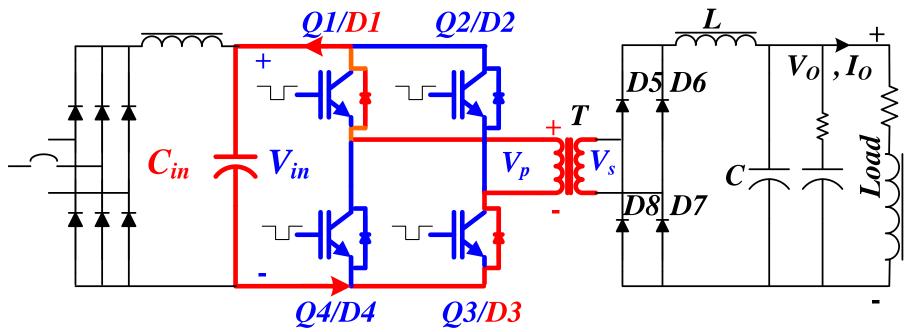
Topologies - Full-Bridge Converter Switching – Q1, Q2, Q3 and Q4 Off


State 2 - Power Off

• Q1 and Q3 are turned off. All switches are off

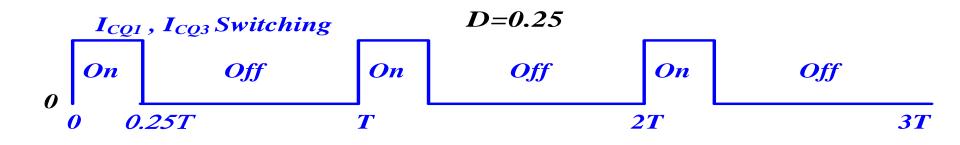
- C_{in} recharges
- The transformer primary current flows in the same direction but the voltage reverses polarity. This causes D2 and D4 to conduct. Stored leakage inductance energy is returned to the input filter capacitor. The transformer current decays to zero.
- The secondary rectifiers D5, D6, D7 and D8 are all off

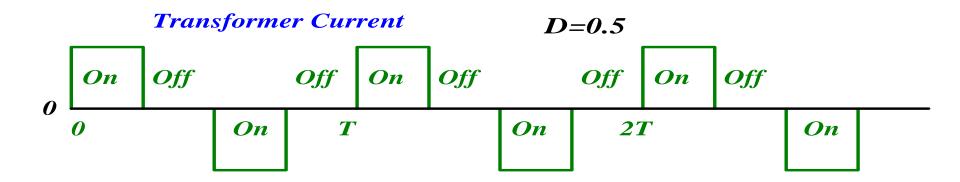
Section 5 - DC Power Supplies


■ Topologies - Full-Bridge Converter Switching – Q2 and Q4 On, Q1 and Q3 Off

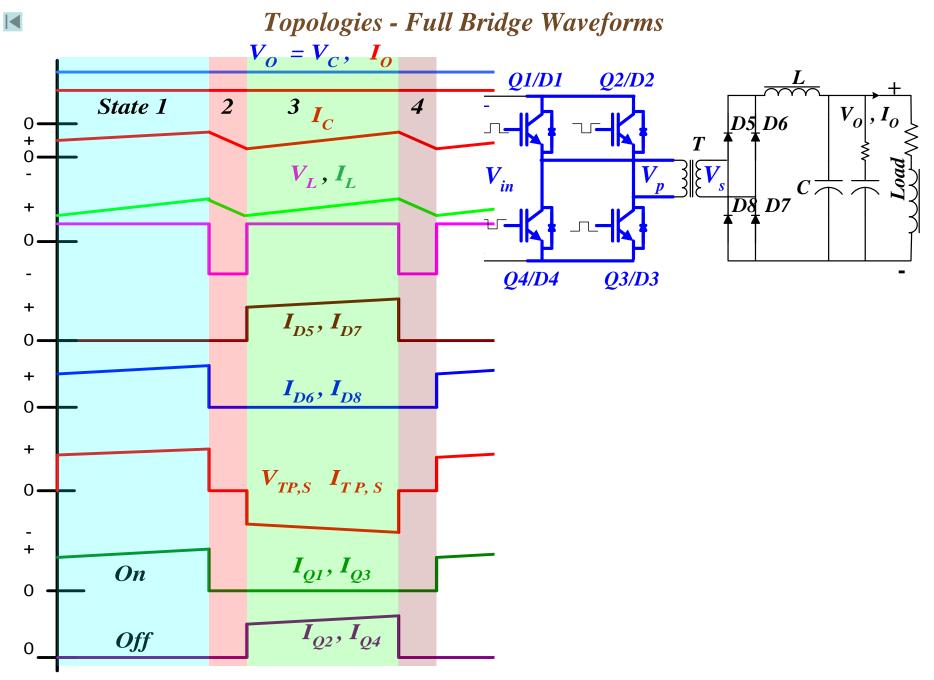
State 3 - Power

- Power is derived from the input rectifier and slugs of energy from C_{in}
- Q2 and Q4 are closed and current flows through Q2, the primary winding of T and Q4
- A voltage (V_{in}) is developed across the primary winding of T. A similar voltage (Vin*N) is developed across the secondary winding of T
- The secondary voltage causes rectifiers D6 and D8 to conduct current




State 4 – Power Off

- Q2 and Q4 are turned off. All switches are off
- C_{in} recharges
- The current in the transformer primary flows in the same direction but the voltage reverses polarity. This causes D1 and D3 to conduct. Stored leakage inductance energy is returned to the input filter capacitor. The transformer current goes to zero.


• The secondary rectifiers D5, D6, D7 and D8 all turn off June 2012 Section 5 - DC Power Supplies

Section 5 - DC Power Supplies

Topologies - Full Bridge Waveforms

- Some inductive energy can be recovered to recharge input filter C_{in}
- Same pulses applied to Q1 & Q3 and the same, but 180^o delayed, pulses are applied to Q2 & Q4
- Switching sequence is Q1 & Q3 are turned on, then turned off after providing the required ON time
- After delay (to account for finite switch turn off and turn on), Q2 & Q4 are turned on. After providing the required ON time, Q2 & Q4 are turned off.
- Sequence repeats
- *Q1* and *Q4* or *Q2* and *Q3* are never turned on together
- Only the leading edge (or trailing) edge of the gating and current pulse move
- Symmetrical +/- pulse obtained. Must be rectified to provide a DC output
- The output ripple is twice the switching frequency

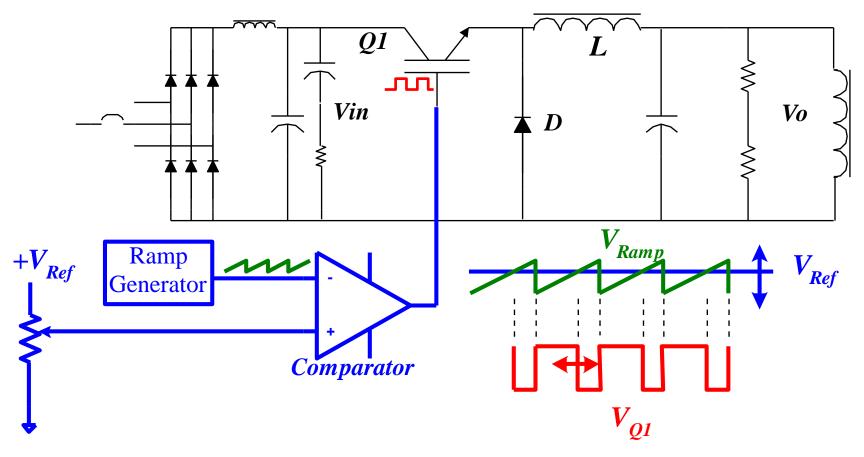
Topologies - Full Bridge Converter

Advantages

- Simple primary winding needed for the main transformer, driven to the full supply voltage in both directions
- Power switches operate under extremely well-defined conditions. The maximum stress voltage will not exceed the supply line voltage under any conditions.
- Positive clamping by 4 energy recovery diodes suppresses voltage transients that normally would have been generated by the leakage inductances.
- The input filter capacitor C_{in} is relatively small
- Modest part count for high reliability.
- Can be used with or without line-to-load matching transformer
- Transformer matches the load to the input line.
- With transformer unipolar output, without transformer, used for bipolar operation
- Capable of high power output (500 kW)

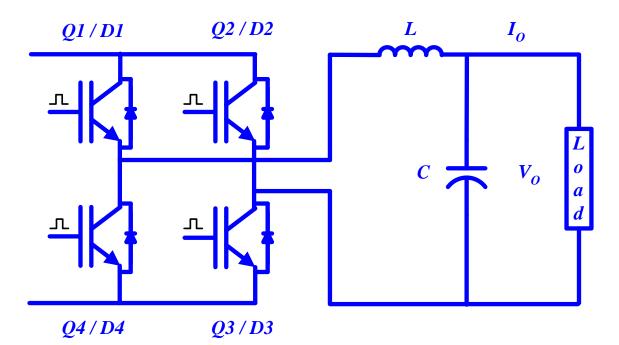
Topologies - Full Bridge Converter

Disadvantage


• Four (4) switches are required, and since 2 switches operate in series, the effective saturated on-state power loss is somewhat greater than in the 2 switch, half-bridge case. In high voltage, off-line switching systems, these losses are acceptably small.

Topologies - Summary of 3 Forward Converters

Converter Type	Topology	V_o	Po	Transformer	Output Type
Buck	1 switch	$V_o = V_{in} * D$	Any	Not possible	Unipolar
Boost	1 switch	$V_o = V_{in} / (1 - D)$	I _{in} limits Po	Not possible	Unipolar
Full Bridge	4 switches Minor switch losses	$V_o = V_{in} * D * n$	Any	Possible	Unipolar/ bipolar


Pulse Width Modulation (PWM) Techniques

Pulse Width Modulation

V _{Ref}	V_{Ref} - $V_{Ramp} = V_{Q1}$ pulse width	V_O
$V_{Ref} \downarrow$	V_{Ref} - $V_{Ramp} = V_{Q1}$ pulse width \downarrow	$V_o \downarrow$

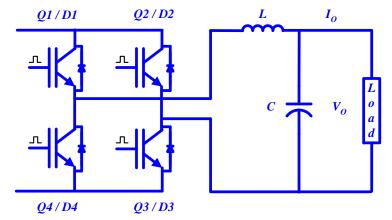
PWM - Bipolar Bridge

PWM - Bipolar Bridge

B

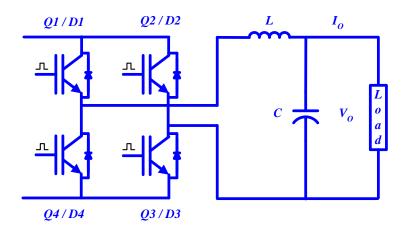
Firefox *					
BiRa Systems Inc Inno	Luccu de			6 m	
	w.bira.com/products/bipolar_power	supply/index.php		☆ - C 3 - birs	
НОМЕ	OUR PRODUCTS	OUR PROJECTS	CUSTOMIZE	SUPPORT	CONTACT
Home / Products / B	Bipolar Corrector Magnet Powe	r Supplies			
MCOR Modules		BiPolar Corre	ector Magnet Pow	er Supplies	
12 Amp Module		Up to 16 channel	ls @ 12amps and up to	8 channels @ 30amps in	n 6U =
30 Amp Module		- Over 1,000 Units I	In Operation Globally	The second	
Our Products		Modular Design For Reliable Operation Lab Standard Analog Control & Monitoring			
CompactRIO Access BiGEN Power Suppli Bipolar Power Supp	i <u>es</u>			we de senter - 1	
Compact FieldPoint. PXL Modules CAMAC/NIM Cooling Units	Accessories	The MCOR 12 system is a 16-channel precision magnet driver, capable of providing bi-polar output currents in the range from -12A to +12A. The MCOR 30 system is an 8-channel precision magnet driver, capable of providing bi-polar output currents in the range from -30A to +30A. The output current can be adjusted smoothly through zero. A single, unregulated bulk power supply provides the main DC power for the entire crate. The MCOR system employs a modular architecture, so that any individual channel is serviceable without disturbing the operation of adjacent channels in the same crate. This feature significantly improves the overall availability of the accelerator, since in most cases the beam lattice can tolerate the loss of a single corrector and continue to operate, but could not handle the loss of an entire crate of correctors during the from effort.			nel precision magnet to +30A. The output er supply provides the nitecture, so that any channels in the same r, since in most cases
		MCOR Modules			
		MCOR 2/6/9/12			
			ustomized to provide maxi e can fit in a single 6U VME	mum outputs of 2 amps, 6 an style crate.	mps, 9 amps, and 12
		MCOR 30			
	D₂	Each module can provid crate.	de a maximum output 30 <mark>a</mark> n	nps. Up to 8 of these can fit in	a single 6U VME style
		System Crate			
		modules or 8 MCOR30	modules. A crate can hous	ate. Each crate can house up e both MCOR2/6/9/12 and MC will share the same input volta	OR 30 modules but it
		View MCOR Crate Manu	ual		

http://www.bira.com

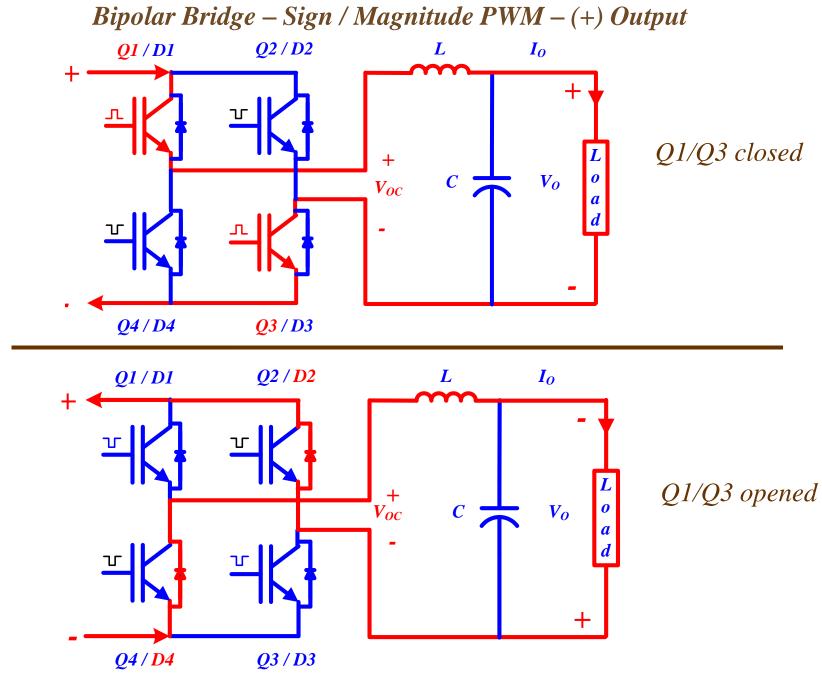

PWM - Bipolar Bridge

Generalities

- Diagonal switching
- Two PWMs are usually employed
- Switches Q1 and Q3 are the + output leg
- Switches Q2 and Q4 are the output leg
- An output rectifier is not required
- Since the output desired DC, but contains + and components, a nonpolarized output filter capacitor must be used
- 2 and 4 quadrant operation is possible

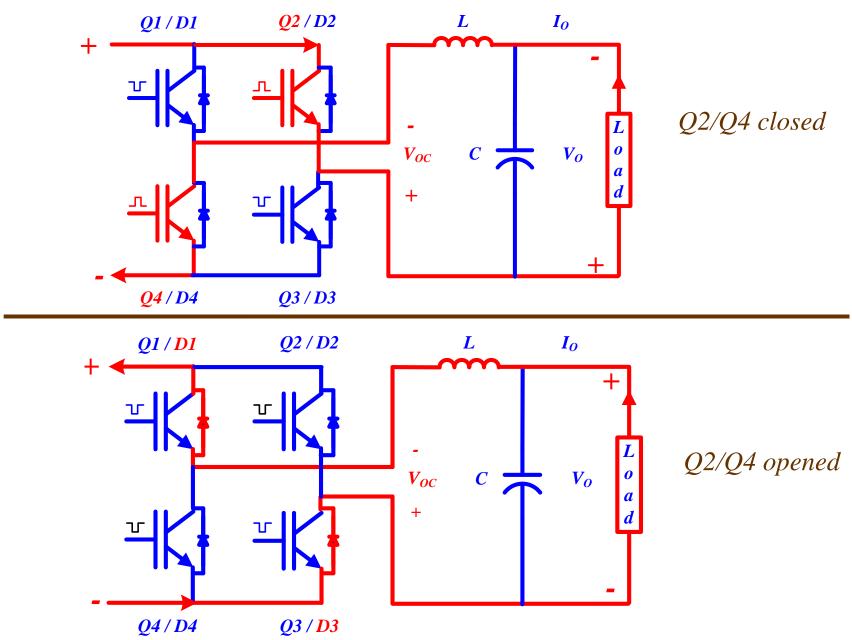

PWM - Bipolar Bridge

Two types of PWM

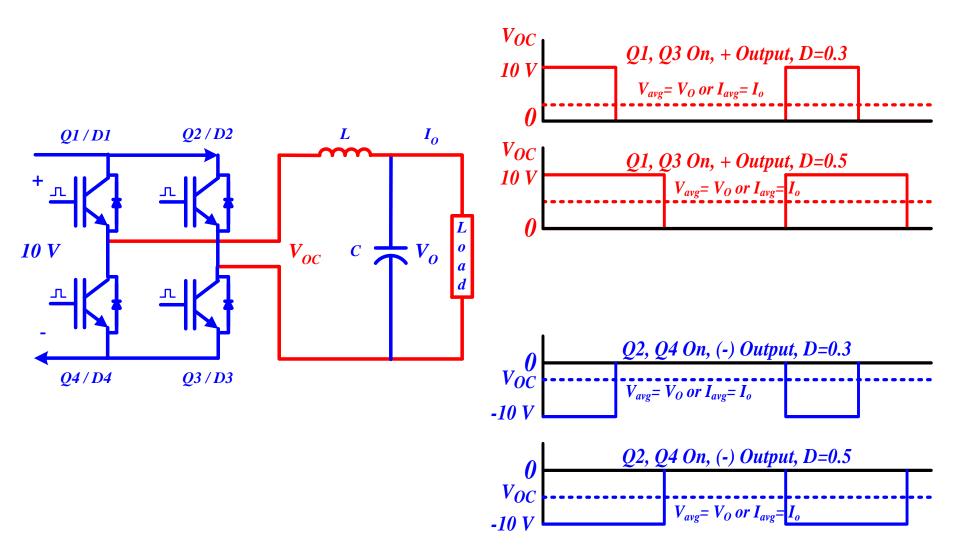

- Sign/magnitude in which the sign of the reference signal determines which pair of switches to turn on and the magnitude determines the pulse duration/duty factor
- "50/50" scheme in which there are 2 separate, complimentary PWM signals

PWM - Bipolar Bridge – Sign / Magnitude PWM

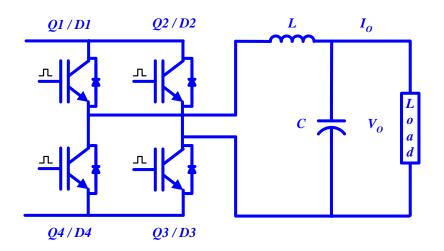
Reference Signal	Q1/Q3 D	Q2/Q4 D
0	Off	Off
+25%	0.25	Off
+50%	0.50	Off
+75%	0.75	Off
+100%	1.00	Off
-25%	Off	0.25
-50%	Off	0.50
-75%	Off	0.75
-100%	Off	1.00



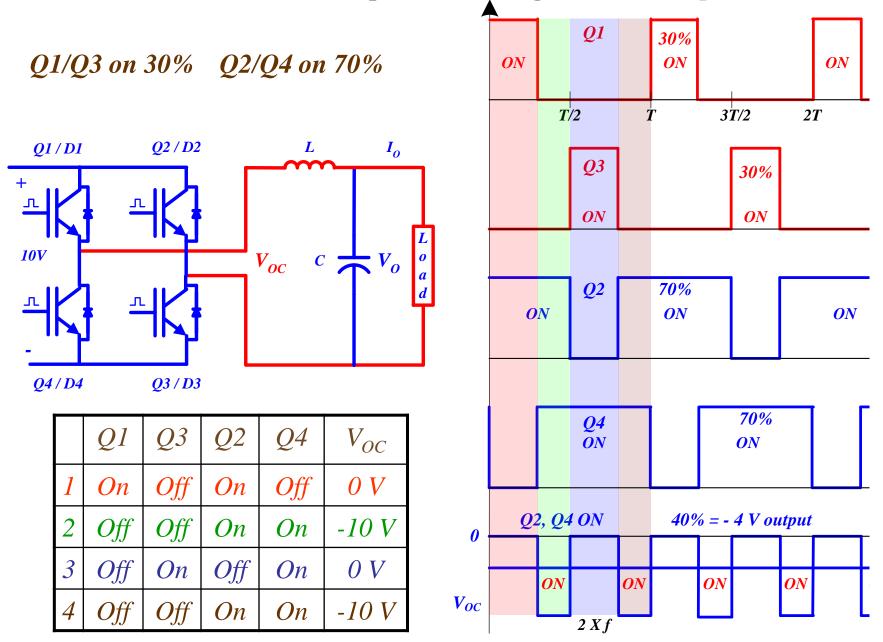
- Switch only one leg at a time
- The 2 switches in the active leg switch on and off together


Section 5 - DC Power Supplies

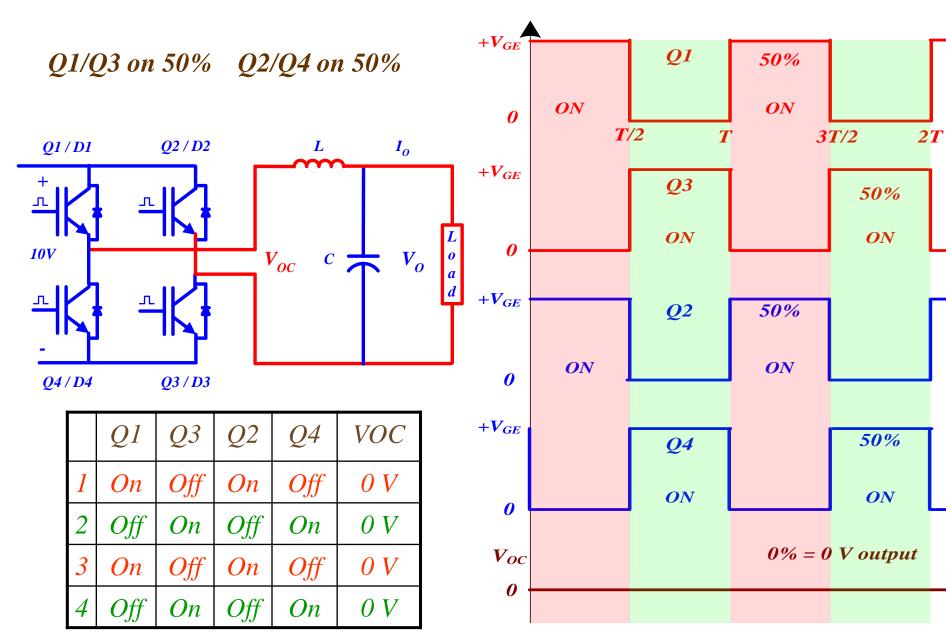
Bipolar Bridge – Sign / Magnitude PWM – (-) Output

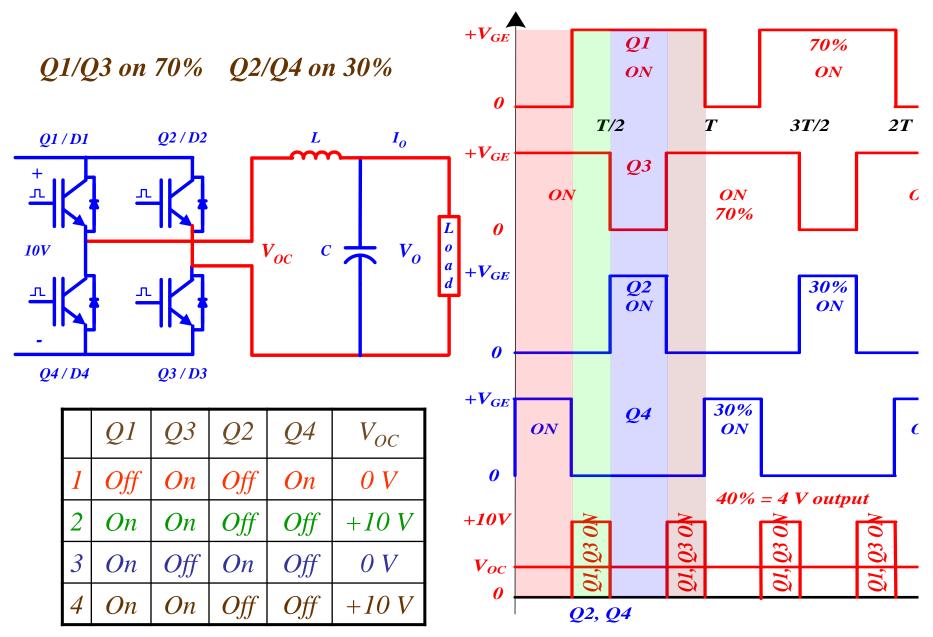

Section 5 - DC Power Supplies

Bipolar Bridge – Sign / Magnitude PWM - Waveforms


"50/50" Bipolar PWM

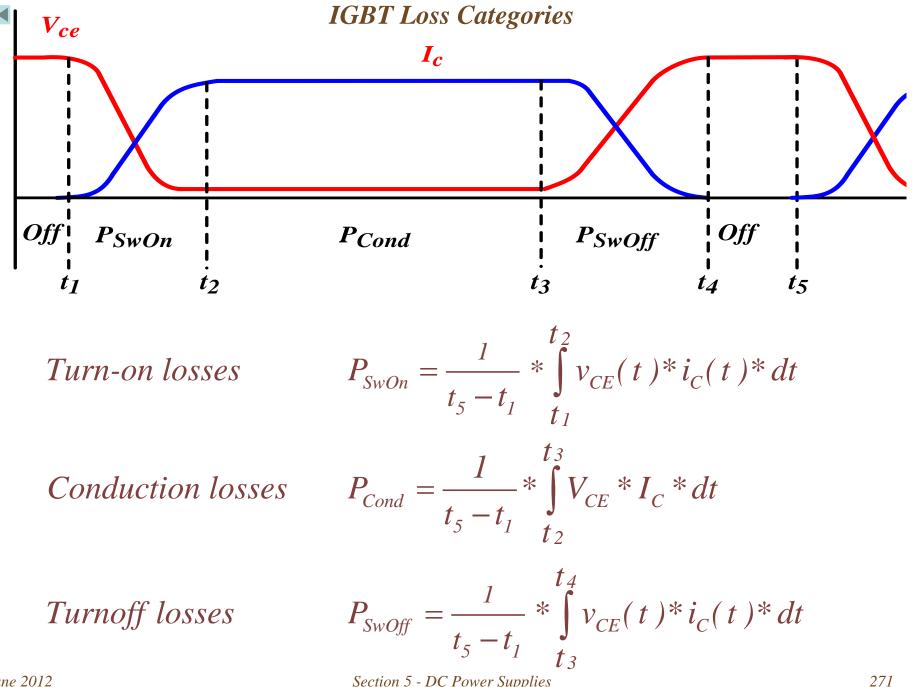
Desired Output Reference Signal	Q1/Q3D	Q2/Q4 D
-100%	0.0%	100.0%
-75%	12.5%	87.5%
-50%	25.0%	75.0%
-25%	37.5%	62.5%
0%	50.0%	50.0%
25%	62.5%	37.5%
50%	75.0%	25.0%
75%	87.5%	12.5%
100%	100.0%	0.0%




- Both bridge legs are always active
- *Q1/Q3* (+) *bridge*
- *Q2/Q4* (-) *bridge*
- Q1/Q3 180 ⁰ phase shifted
- Q2/Q4 180 ⁰ phase shifted
- Q1 is complement of Q4
- Q2 is complement of Q3

PWM - "50/50" Bipolar Switching For - 4 V Output

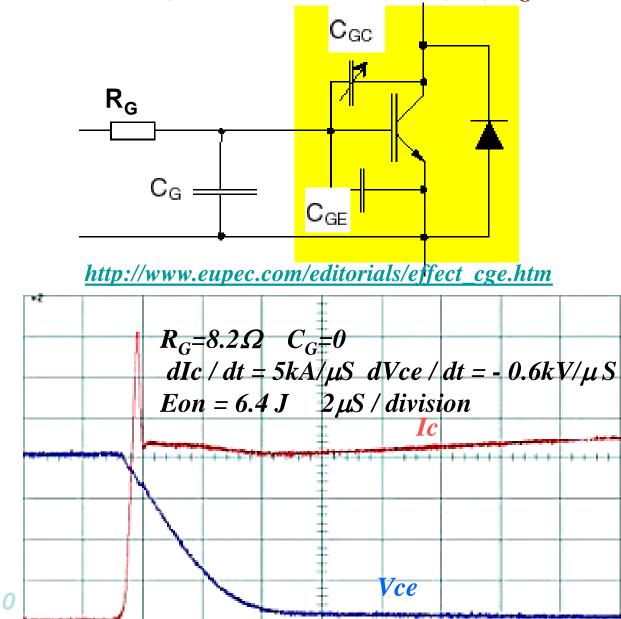
PWM - "50/50" Bipolar Switching For 0 V Output



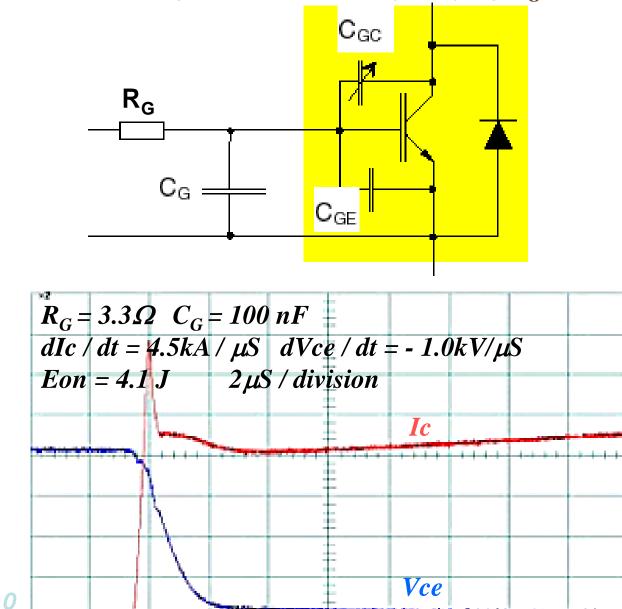
PWM - Bipolar PS PWM Strategies Compared

PWM Type	Advantages	Disadvantages
Sign/Magnitude		Zero crossing transitions are discontinuous
"50/50"	Output voltage pulse 2X the switching frequency. Easier to filter Smoothest transitions through zero.	

Conducting and Switching Losses

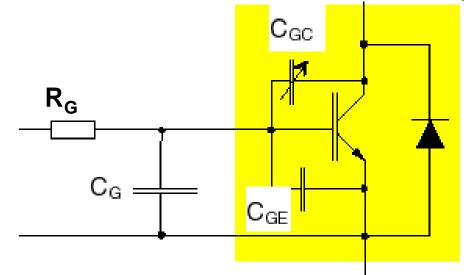

Section 5 - DC Power Supplies

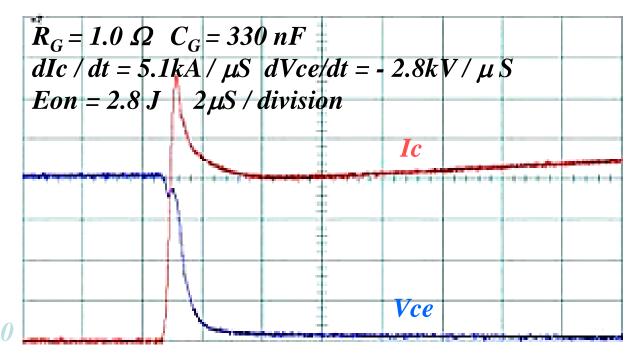
June 2012


Reduce losses for greater efficiency and:

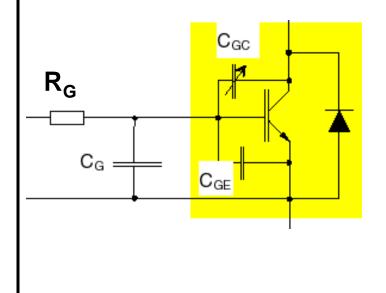
- Smaller AC distribution system
- Less heat load into cooling water system
- Less heat into buildings and building HVAC
- Reduce IGBT dissipation

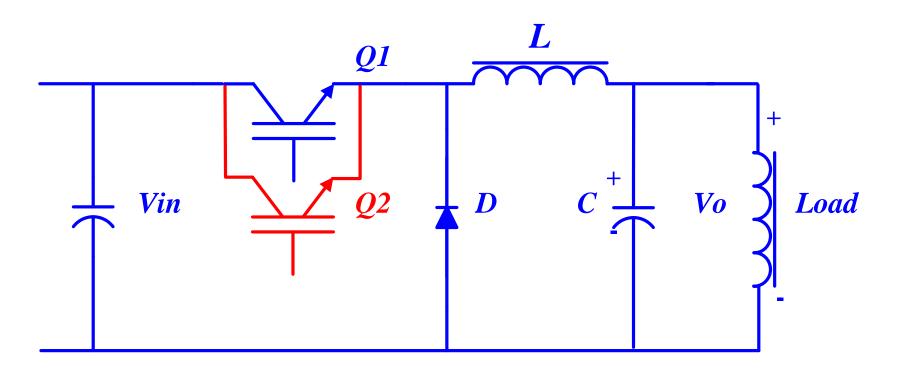
Reducing Turn On Losses By Varying R_G




Reducing Turn On Losses By Varying R_G

Section 5 - DC Power Supplies


Reducing Turn On Losses By Varying R_G



Reducing Turn On Losses By Varying R_G

Case	R _G	dV _{CE} / dt	E _{On}
1	8.2 <i>Q</i>	- 0.6 kV / μ S	6.4 J
2	3.3 Q	- 1.0 kV / μ S	4.1 J
3	1.0 Ω	- 2.8 kV / μ S	2.8 J

- $P_{Diss} \propto 1 dV_{CE} / dt$
- dV_{CE} / dt is controlled via R_G
- Lower losses but possibly increased EMI because of faster dV_{CE} / dt

- If the current rating of a single switch is insufficient (conduction loss is too great), add another switch in parallel.
- There are then 2 ways to switch Q1 and Q2, switch them ON and OFF together or stagger their On and OFF times

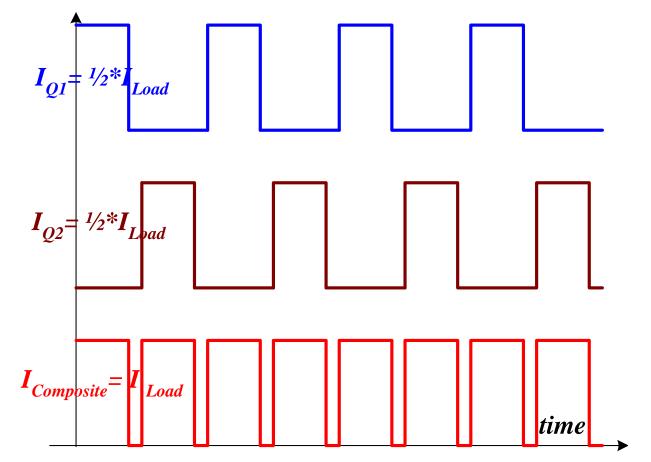
Conduction Loss Reduction By Simultaneous Switching of Q1 and Q2

$$I_{QI} = \frac{1}{2} * I_{L_{qad}}$$

$$I_{Q2} = \frac{1}{2} * I_{L_{bad}}$$

$$I_{composite} = I_{Load}$$

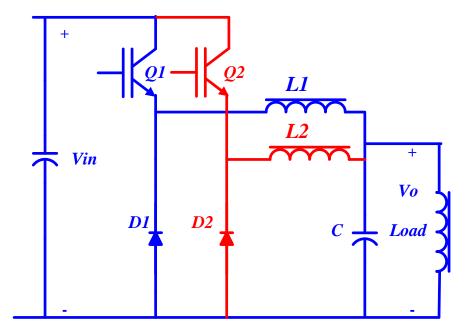
$$I_{composite} = I_{Load}$$


$$I_{RMS2Sw-EaSw} = V_{RMS-1Sw}$$

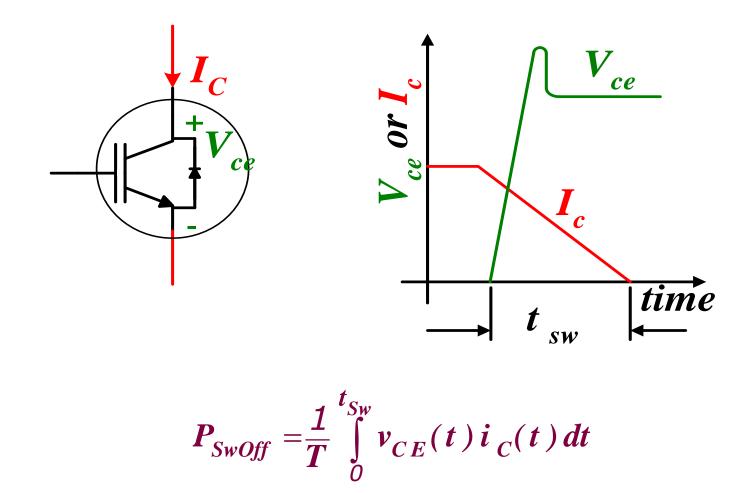
$$I_{RMS2Sw-EaSw} = \frac{1}{2} * I_{RMS-1Sw}$$

$$P_{Ave1Sw} = V_{RMS1Sw} * I_{RMS1Sw}$$

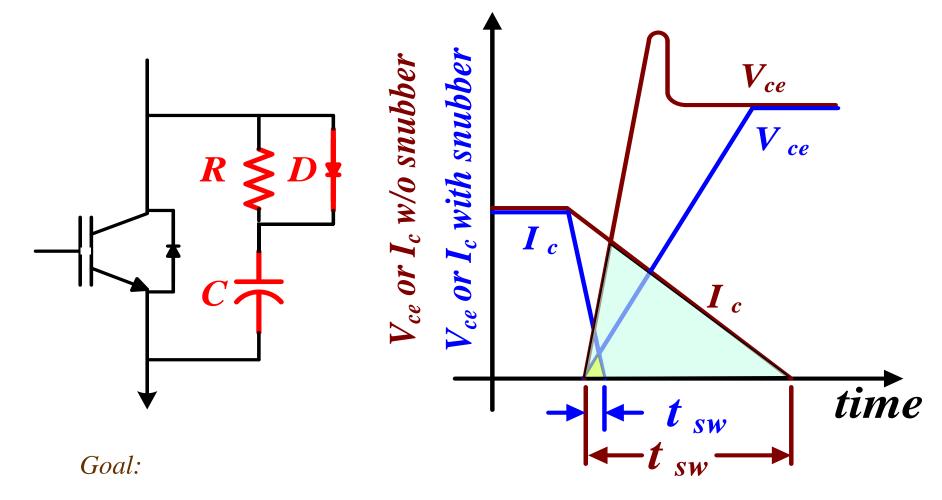
$$P_{Ave2Sw-EaSw} = V_{RMS1Sw} * \frac{1}{2} I_{RMS1Sw} = \frac{1}{2} * P_{Ave1Sw}$$
The composite frequency is the same as in Q1 and Q2


Conducted Loss Reduction By Staggered Switching of Q1 and Q2

• Duty factor is each switch is halved

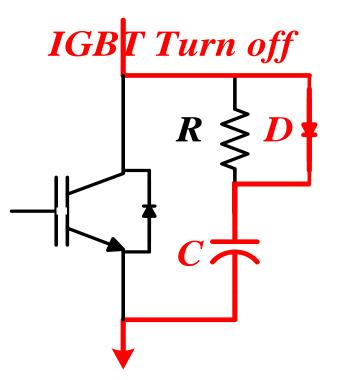

- P_{ave} in each switch is 1/2 that of the single switch case
- The composite frequency is twice that of Q1 and Q2

Conducted Loss Reduction By Paralleled Buck Regulators

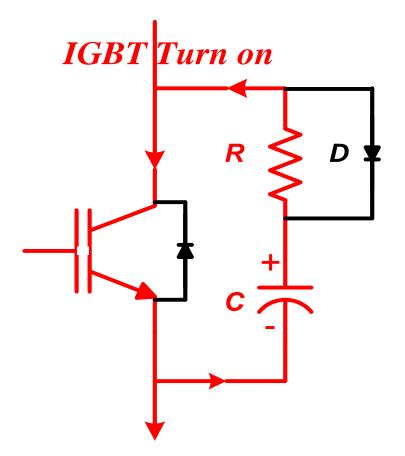


Features:

- A second switch Q1 is added.
- Q1 and Q2 are staggered switched
- D2 is added, L2 is added
- Current in D1, D2 is 1/2 the load current
- Current in L1, L2 is 1/2 the load current
- L1, L2 energy 1/4 that of single inductor since $E=1/2 * L * I^2$

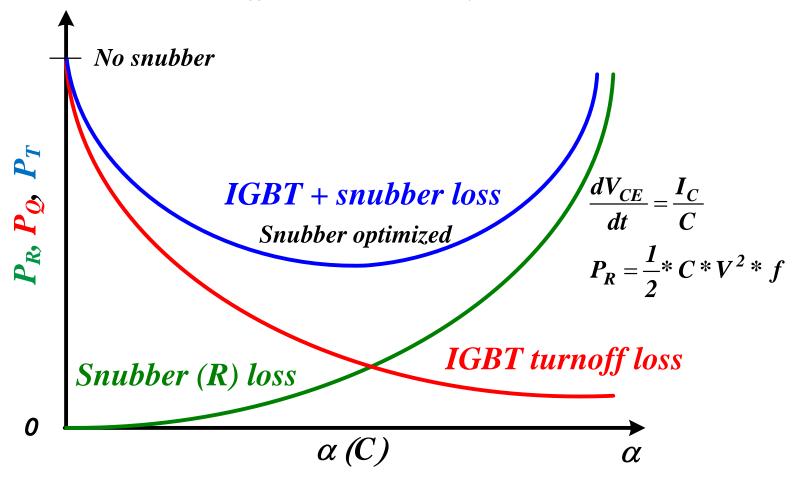


Switch Turnoff Loss Reduction By RCD Snubber



- To increase the rate of decay of I_C during turnoff
- To decrease the rate of V_{CE} build up during turnoff
- To realize goal, add a resistor R, capacitor C, diode D snubber network

Switch Turnoff Loss Reduction By RCD Snubber



- When the IGBT turns off, current commutates out of the IGBT into the capacitor, C via the diode D
- This aids fast I _C current decay
- C becomes linearly charged to the bus voltage
- dV_{CE} / dt inversely proportional to C this slows V_{CE} recovery

• When the IGBT turns on, the capacitor C, discharges through R and the IGBT

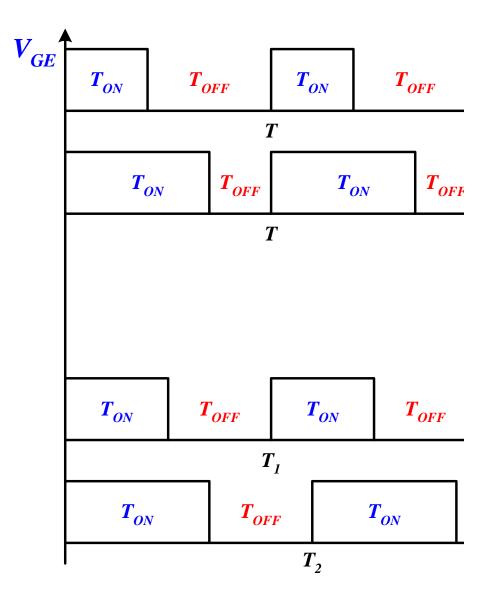
Switch Turnoff Loss Reduction By RCD Snubber

- Small $C = fast \, dV_{CE}/dt$, V appears with current still in the IGBT, have IGBT loss
- Large C means slow dV_{CE}/dt , current gone before voltage buildup but the resistor losses are high
- When the snubber circuit is optimized, the IGBT turnoff loss with snubber + snubber loss < IGBT loss w/o snubber !

Design criteria

- *R* must limit discharge I through IGBT to < IGBT rating
- $P_R \ge E_C / T = 1/2 C V^2 f$
- C ripple current rating $\geq \Sigma$ (ave charge + ave discharge currents)
- C must appreciably discharge each cycle, so R C < minimum expected IGBT on time
- D has to be rated to hold off the bus voltage and carry peak capacitor charging current

Note: Turn-on losses in the latest IGBTs have been reduced so that snubber circuits are no longer required in most applications

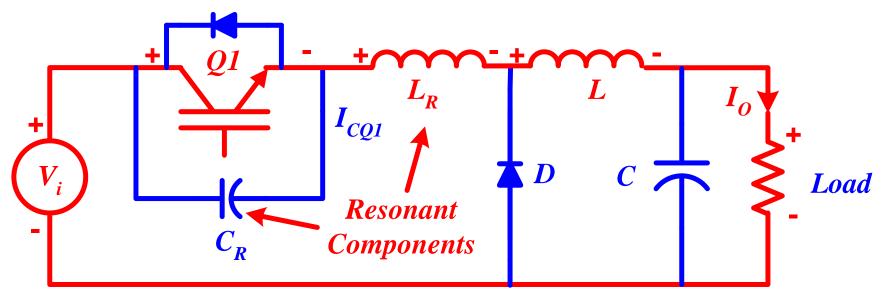

Resonant Switching Attractions

- Drastically reduce switch turn-on and turn-off losses
- Almost loss-less switching allows higher switching frequencies
- *Reduce the electromagnetic interference (EMI) associated with pulse width modulation (PWM)*

Two Resonant Switching Methods

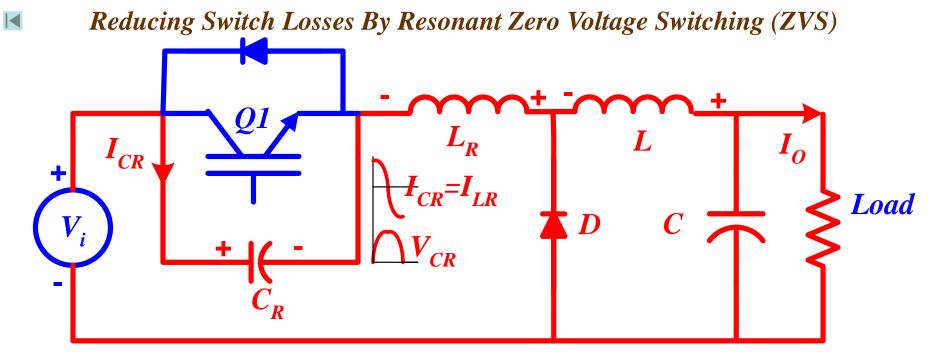
- Zero current switching (ZCS)
- Zero voltage switching (ZVS)
- ZVS prevalent as disadvantages in ZCS
- Lets examine ZVS

Reducing Switch Losses By Resonant Switching


Fixed Frequency Switching

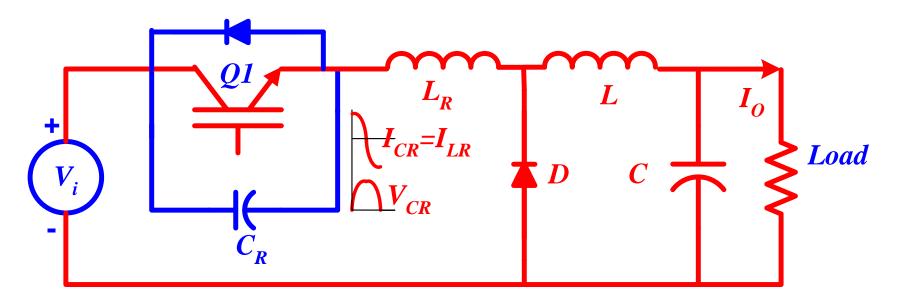
• T_{on} and T_{off} vary

ZVS Resonant Mode Switching

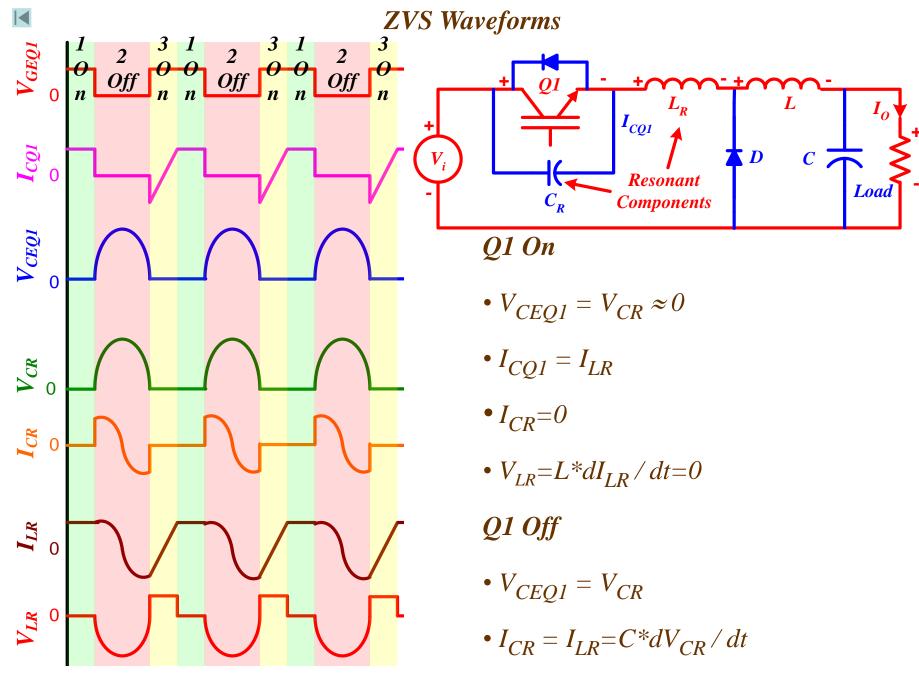

- Frequency varies
- T_{on} varies
- T_{off} fixed to accommodate resonant circuit
- Conversion frequency inversely proportional to load current

Reducing Switch Losses By Resonant Zero Voltage Switching (ZVS)

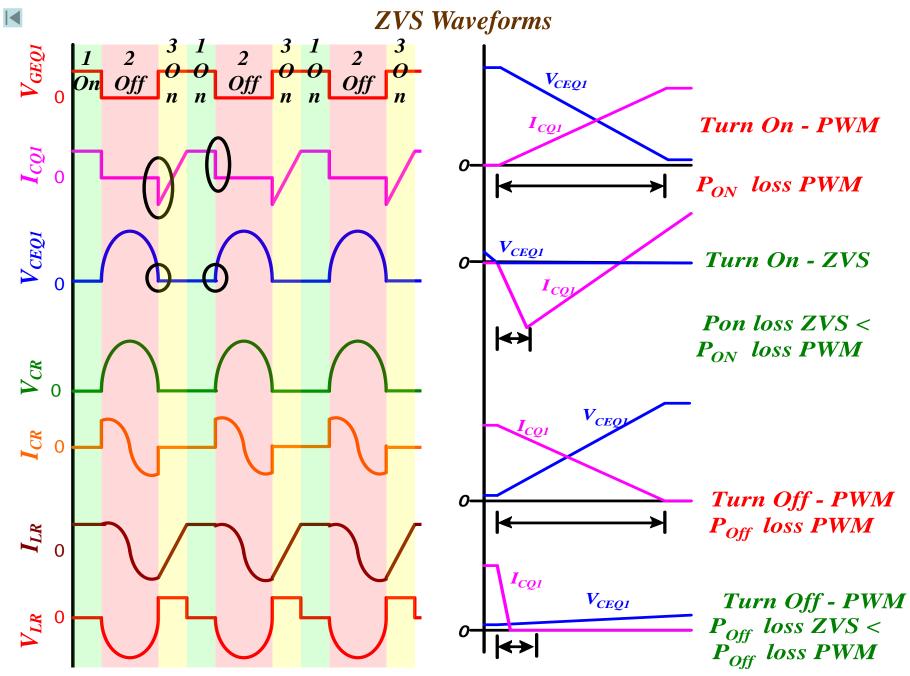
Time Interval 1


- Q1 has been closed and is carrying load current. D and C do not have current flow in this steady-state condition.
- $V_{CR}=0$ and $I_{CR}=0$ as it has been sinusoidally discharged
- Note that $V_{CR} = V_{CEQ1}$ and $I_{CQ1} = I_{LR}$

Time Interval 2


- Q1 is opened. Diode D conducts
- Current commutates (rushes) into C_R
- C_R charges and discharges sinusoidally with frequency determined by C_R and L_R . 1/2 sine wave occurs
- V_{CR} is sine wave , I_{CR} is cosine wave = $C dV_{CR} / dt$
- $V_{CEQ1} = V_{CR}$
- $I_{CR} = I_{LR}$

Reducing Switch Losses By Resonant Zero Voltage Switching (ZVS)



Time Interval 3

- When V_{CR} discharges to $0 (V_{CEQ1}=0)$, Q1 is re-closed.
- $I_{CQ1} = I_{LR}$
- There is a linear current buildup in Q1 due to L_R and L

Section 5 - DC Power Supplies

Section 5 - DC Power Supplies

High Frequency Inductors and Transformers

Low and High Frequency Transformers Compared

	Low frequency	High frequency
Standards	Well defined by ANSI, IEEE, NEMA and UL	Not as well defined Insulation standard followed
Operation	60 Hz Sine wave 3 phase	10 kHz to 100 kHz Square wave – transformers Triangular wave – inductors Single phase
Core material	3 to 100 mil laminations of steel or Fe	0.5 to 3 mil laminations of Fe or Si-Fe Powdered Fe Powdered ferrites, Ni-Zn, Mn-Zn
Winding material	Single-strand Cu wire Layer or bobbin-wound	Multi-strand Cu Litz wire Cu foil, layer wound

Low and High Frequency Transformers Compared

The power rating of a transformer is dependent upon the kollowing factors $V * A = K_1 * K_2 * f * A_C * A_E * J * B_M$

where

$$V * A = power rating of the transformer (V*A)$$

$$K_{1} = waveshape factor (sine or square wave)$$

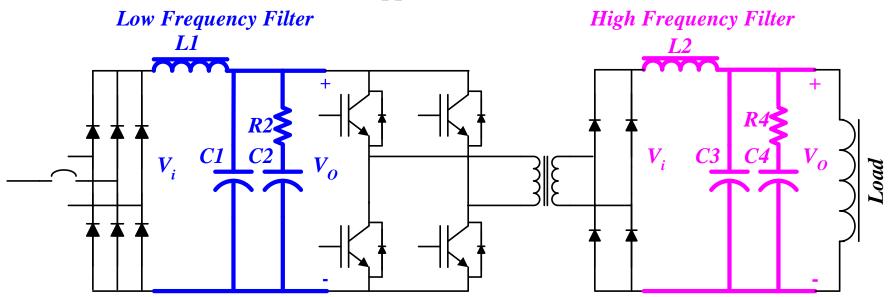
$$K_{2} = copper fill factor (0 to 1)$$

$$f = excitation frequency (Hz)$$

$$A_{C} = core area (m^{2})$$

$$A_{E} = winding area (m^{2})$$

$$J = conductor current density \left(\frac{A}{m^{2}}\right)$$


$$B_{M} = peak flux density \left(\frac{Wb}{m^{2}}\right) \qquad where a Weber = 1*volt*sec$$
The transformer area product = $A_{C} * A_{E} \propto \frac{V*A}{B_{M}*f*J}$

	An example of a 10kVA, 480V : 208V Transformer At 60Hz the volume and weight would be									
f	f ratio to 60Hz	Volume (in ³)	Volume ratio to 60Hz	Weight (lb)	Weight ratio to 60Hz					
60 Hz	1	18 X 18 X 18 = 5832 (in ³)	1	100	1					
20 kHz	333	6H X 5.25W X 3.37D 118 (in ³)	1 / 50	5	1 / 20					

- Inductance
- Ripple current frequency
- Peak current
- RMS value of AC current
- DC current
- Saturation DC current
- *Resonant frequency (an order of magnitude > ripple frequency)*

Ripple Filters

Ripple Filters

Low Frequency	High Frequency
Pass DC – reject $f > 60$ Hz	Pass DC – reject f > switching frequency
Large L1 to reduce On inrush & high PF	Large L2 to reduce inrush and prevent discontinuous current
R2 C2 for "critical" damping	R4 C4 for "critical" damping

Domains and Transfer Functions

Time Domain $y(t) = f(t) \otimes x(t)$ *where* \otimes *implies the convolution operation*

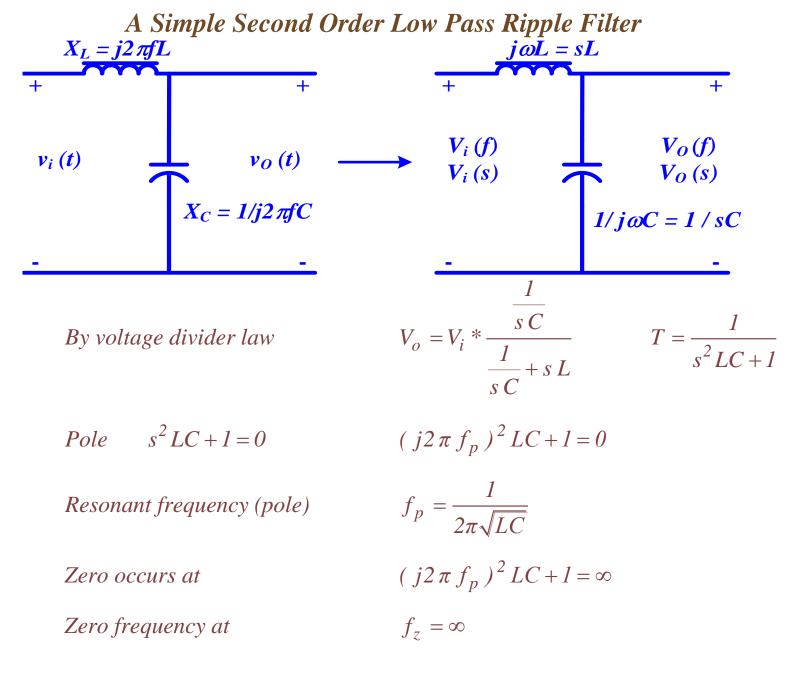
• Difficult computations, particularly transient calculations, requires solution of differential or difference equations

Frequency Domain Y(f) = F(f) * X(f) where * implies multiplication

• Easier computations, all calculations for steady-state or transient conditions that look algebraic in nature.

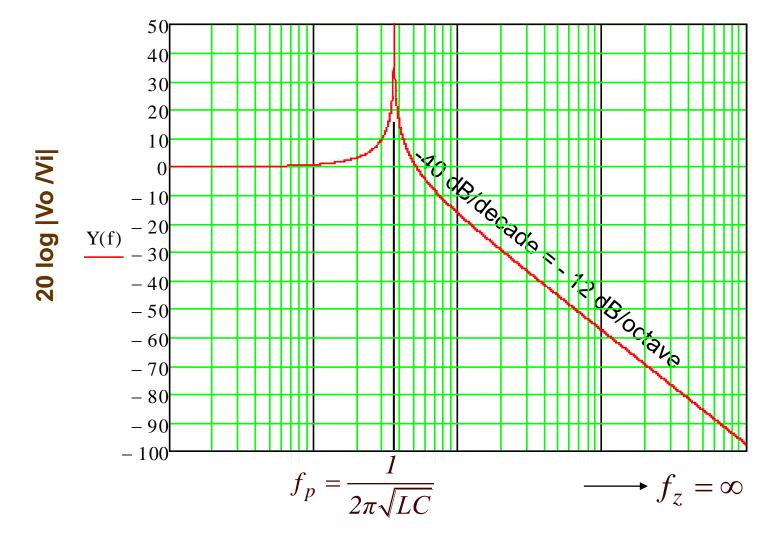
Transfer Function

- Relates the output response of a circuit/system to the input stimulus
- Form is T(f) = Y(f) / X(f) where X(f) is the input stimulus and Y(f) is the output response Y(f) = X(f) * T(f)


"s", Poles and Zeros

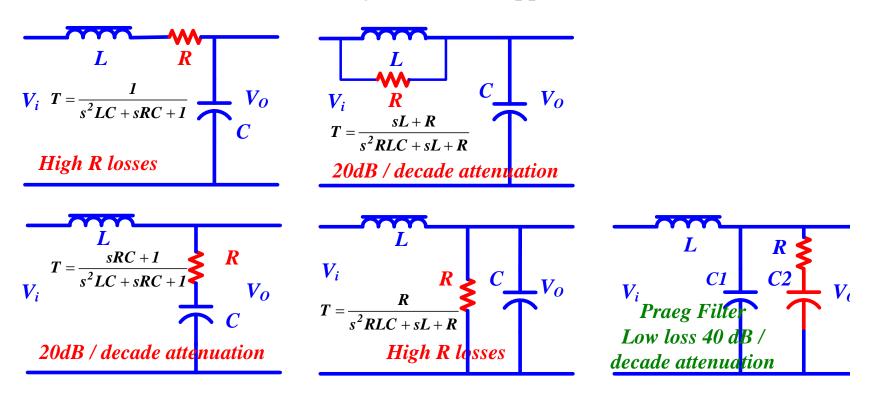
The "s" Operator

- *s is used in the frequency domain and in La Place analysis*
- $s = j \omega = j 2 \pi f$ $j = \sqrt{-1}$


Poles and Zeros

- Zero = 0 $Pole = \infty$
- Zeros occur at frequencies that cause the transfer function to go to zero. Transfer function = 0 is caused by a zero numerator and or an infinite denominator T(s)=0/X(s)=0 or $T(s)=Y(s)/\infty=0$
- Poles occur at frequencies that cause the transfer function to become infinite. Transfer function = ∞ is caused by an infinite numerator or a zero denominator $T(s) = \infty / X(s) = \infty$ or $T(s) = Y(s) / 0 = \infty$

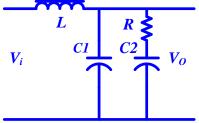
Section 5 - DC Power Supplies


A Simple Low Pass Filter

- Resonant frequency (pole) at f p will cause problems !
- $At f = \infty$, the output goes asymptotically to zero

Section 5 - DC Power Supplies

The Praeg Low Pass Ripple Filter


Why important:

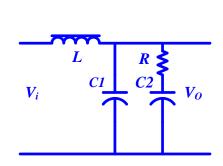
- Used as low and high frequency filters in virtually every power supply
- Provides the filtering of the previous 2^{nd} order filter
- Essentially critical damped
- No DC current in R, C2

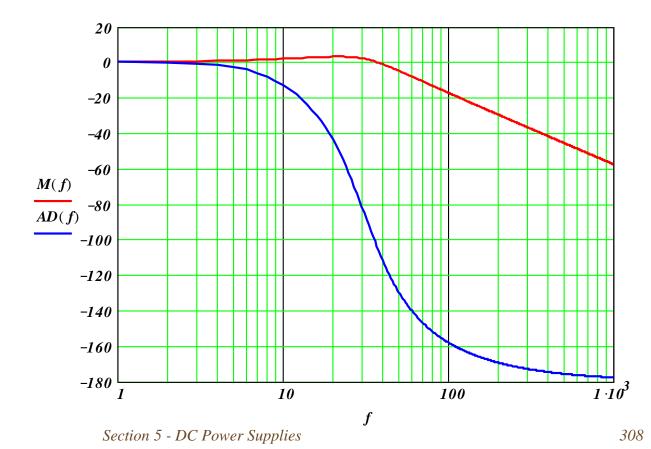
The Praeg Low Pass Ripple Filter

Component Selection Criteria

- L and C1 must be chosen to yield the desired breakpoint frequency (1/10 of the ripple frequency for 40 dB attenuation)
- C1 and C2 must rated for the rectifier working and surge voltages
- C1 and C2 must be rated to carry the ripple current at the rectifier output frequency and at the switching frequency
- L must be large enough to offset the leading PF introduced by main filter capacitor, C1
- L must be large enough to limit the inrush current caused by rapid charge of C1 during power supply turn-on to an acceptable level
- L must be rated to carry the DC load current without overheating or saturating
- $C2 \ge 5 * C1$
- $R = (L / C1)^{1/2}$

The Praeg Low Pass Ripple Filter




Section 5 - DC Power Supplies

360 Hz Praeg Filter

 $f \coloneqq 1 \cdot H_{Z}, 2 \cdot H_{Z} \dots 1000 \cdot H_{Z} \qquad \underset{(f)}{\overset{s}{=}} j \cdot 2 \cdot \pi \cdot f \qquad \underset{(f)}{\overset{t}{=}} 1 \cdot 5 \cdot 10^{-3} \cdot H \qquad f_{r} \coloneqq 36 \cdot H_{Z} \qquad C_{1} \coloneqq \frac{1}{4\pi^{2} \cdot L \cdot f_{r}^{2}} \qquad C_{1} \equiv 0.0130 F$ $R_{\text{M}} \coloneqq \sqrt{\frac{L}{C_{1}}} \qquad R \equiv 0.34 \Omega \qquad C_{2} \coloneqq 5 \cdot C_{1} \qquad C_{2} \equiv 0.065 F$ $T_{\text{M}}(f) \coloneqq \frac{s(f) \cdot R \cdot C_{2} + 1}{s(f)^{3} \cdot R \cdot L \cdot C_{1} \cdot C_{2} + s(f)^{2} \cdot L \cdot (C_{1} + C_{2}) + s(f) \cdot R \cdot C_{2} + 1} \qquad M(f) \coloneqq 20 \cdot \log(|T(f)|) \qquad AR(f) \coloneqq \arg(T(f))$

 $AD(f) \coloneqq AR(f) \cdot 57.3$

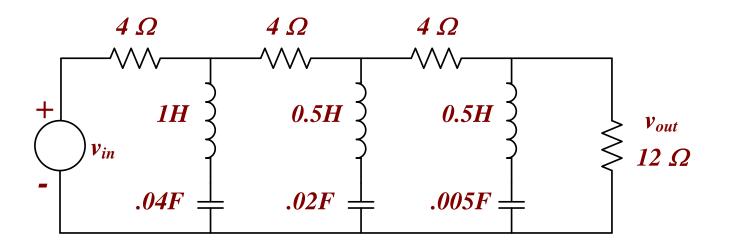
36 kHz Praeg Filter

$f := 10 \cdot Hz, 20 \cdot Hz \dots 100000 \cdot Hz s(f) := j \cdot 2 \cdot \pi \cdot f$	$L \coloneqq 1.5 \cdot 10^{-5} \cdot H$	$C_1 \coloneqq 0.$	00013·F	$f_r \coloneqq \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C_1}}$
$R := \sqrt{\frac{L}{C_1}} \qquad \qquad R = 0.34 \Omega \qquad \qquad C_2 := 5 \cdot C_1$	$C_2 = 6.5 \times$	$10^{-4}F$		$f_r = 3604 Hz$
$T(f) := \frac{s(f) \cdot \mathbf{R} \cdot \mathbf{C}_2 + 1}{s(f)^3 \cdot \mathbf{R} \cdot \mathbf{L} \cdot \mathbf{C}_1 \cdot \mathbf{C}_2 + s(f)^2 \cdot \mathbf{L} \cdot \left(\mathbf{C}_1 + \mathbf{C}_2\right) + 1}$	$-s(f) \cdot \mathbf{R} \cdot \mathbf{C}_2 + 1$	$M(f) \coloneqq 20$	log(T(f))	$AR(f) \coloneqq arg(T(f))$ $AD(f) \coloneqq AR(f) \cdot 57.3$
$ \begin{array}{c} -2 \\ -4 \\ -4 \\ -6 \\ \underline{M(f)} \\ -8 \\ -10 \\ -12 \\ -14 \\ -16 \\ -18 \\ \end{array} $		1.10 ³	1·10 ⁶	
<i>June 2012 S</i>	Section 5 - DC Power	[•] Supplies		309

Higher Frequency Operation Means a Smaller Filter

$$f_{r1} = \frac{l}{2\pi\sqrt{LC}}$$

$$Let f_{r2} = n f_{r1} = \frac{n}{2\pi\sqrt{LC}}$$


$$nf_{r1} = \frac{1}{2\pi\sqrt{\frac{L}{n}\frac{C}{n}}}$$

L is smaller by the factor n

C is smaller by the factor n

Homework Problem # 10

Given the circuit below:

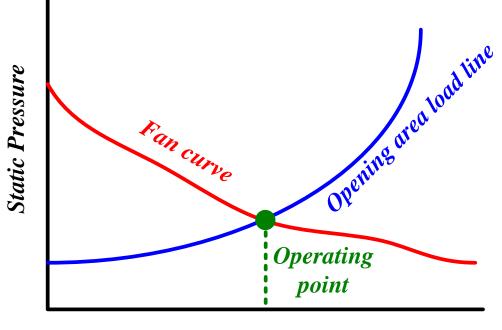
$$H(j\omega) = \frac{V_{out}(j\omega)}{V_{in}(j\omega)}$$

•*Remember that* $s=j\omega$

Sketch $|H(j\omega)|$ versus ω

Other Design Considerations And Power Supply Costs

- Other Design Considerations Heat Loading Into Building AirAll equipment = $\sum P_{switchgear} + P_{transformer} + P_{AC \ cables} + P_{PS} + P_{DC \ cables}$ Switchgear effiency $\geq 98\%$ Switchgear losses = $P_O * (\frac{1 Eff}{Eff})$
 - Transformer efficiency $\geq 97\%$ Transformer losses = $P_O * (\frac{I Eff}{Eff})$


•
$$P_{AC \ cables} = \sum_{j} i_{RMS}^2 * \frac{R}{ft} * Length$$

• Power supply losses =
$$\sum_{j} (P_{in j} - P_{out j})$$

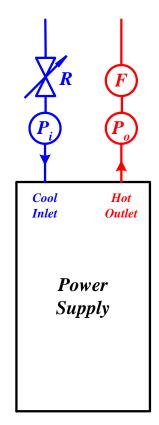
•
$$P_{DC}$$
 output cable = $\sum_{i} i_{DC}^2 * \frac{R}{ft} * Length$

Other Design Considerations - Rack Cooling

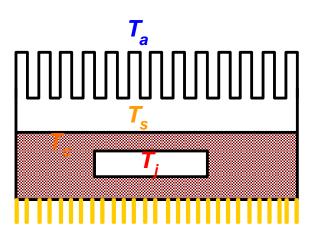
- Thermal radiation from rack surface
- *Electronics maximum 50C inside rack*
- *Max rise in rack* = $50C T_{ambient max}$
- Size openings, back pressure drops $Bp = (CFM / (k*Opening Area))^2$
- Fan vs load curve junction is operating flow point

Air Flow (CFM)

Other Design Considerations - Heat Loading Into Building Water


Power supply heat loss to water = \sum electrical losses of all water-cooled components Heat lost (dissipated) by PS water cooled components = Heat gained by cooling water system

$$Q = M^* c^* \Delta T \qquad cal = gm^* \frac{cal}{gm^* {}^{O}C} * \left({}^{O}C_{Outlet} - {}^{O}C_{Inlet} \right)$$


$$q = m * c * \Delta T \qquad watt = gpm * \frac{264 watt}{gpm * {}^{O}C} * \left({}^{O}C_{Outlet} - {}^{O}C_{Inlet} \right)$$

Usually the power loss and the inlet and maximum allowable outlet temperatures are known. The mechanical group will usually ask for an estimate of the water flow requirements. So solving for the flow yields

$$m = \frac{q}{c * \Delta T} = \frac{watt}{\frac{264 watt}{gpm * {}^{O}C}} * \left({}^{O}C_{Outlet} - {}^{O}C_{Inlet} \right)$$

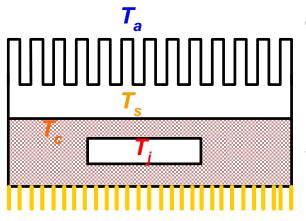
The system pressure drop is $\Delta P = \sum_{i} P_{i}$



Electrical -Thermal Equivalence – Device Cooling Calculations

Q = Power that can be removed by the air or cooling water (W) T_j = Device junction temperature (^{O}C) T_c = Device case temperature (^{O}C)

 T_s = Heatsink temperature (^{O}C)

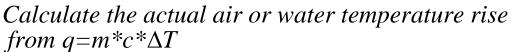


 $T_a = Ambient \ air \ or \ cooling \ water \ inlet \ temperature \ (^{\circ}C)$ $\theta_{jc} = junction \ to \ case \ thermal \ resistance \ (^{\circ}C / W)$

 θ_{cs} = case to heatsink thermal resistance (PC / W)

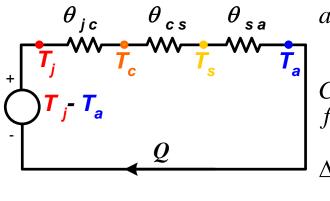
 θ_{sa} = Heatsink to ambient air or cooling water thermal resistance (${}^{O}C / W$)

Electrical - Thermal Equivalence – Device Cooling Calculations


Calculate
$$Q = \frac{T_j - T_a}{\theta_{jc} + \theta_{cs} + \theta_{sa}}$$

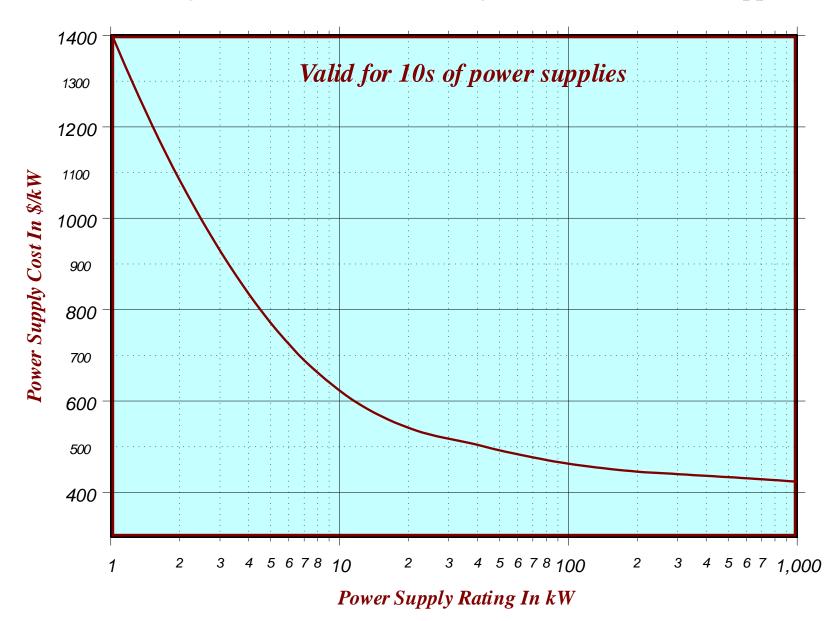
If calculated Q > q

Q is heat that can be pulled out of the ambient air or cooling water


q is the power disspiated by the device

then all of the device dissipation will be removed by the air or water

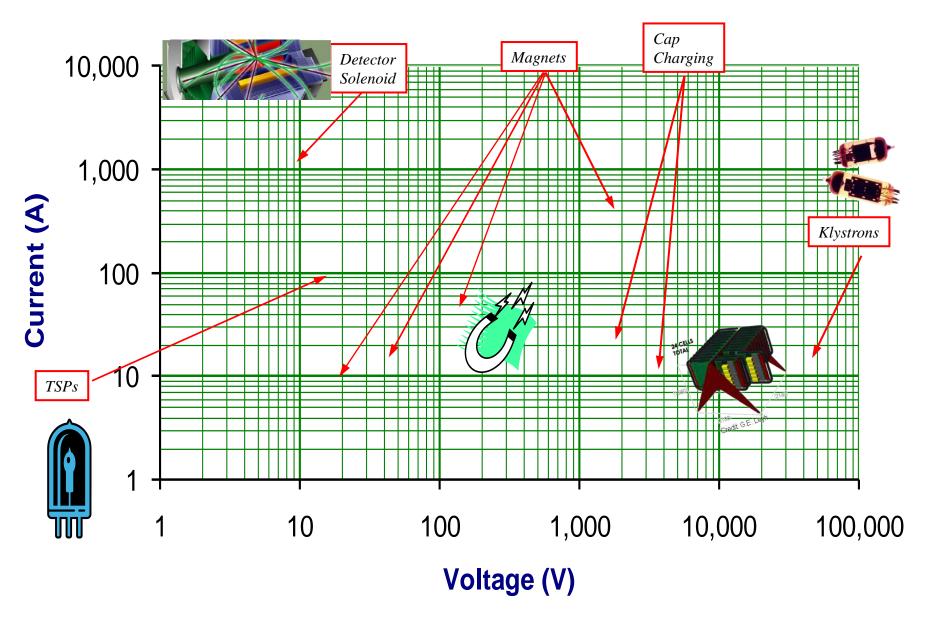
$$\Delta T = \frac{q}{m^* c} = \frac{watts}{gpm^* \frac{264watt}{gpm^* {}^{O}C}}$$


 $\Delta T \leq$ the maximum allowable temperature rise

Power Output Vs Mounting / Input Voltage / Cooling Considerations

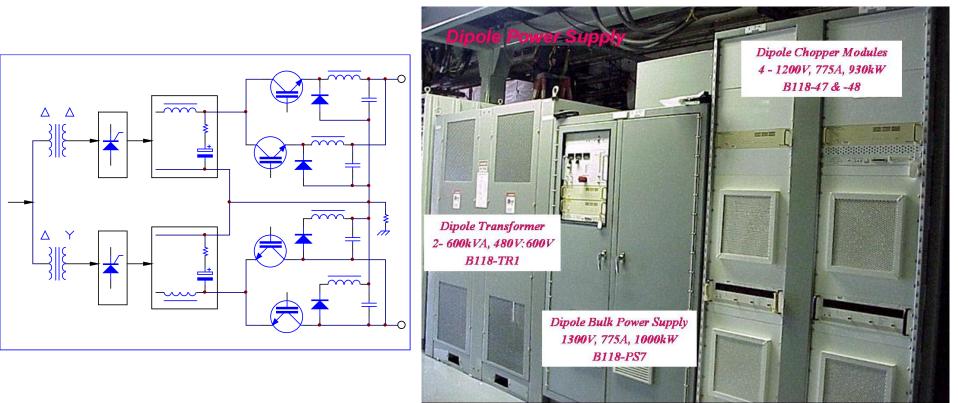
	Input AC (V)		Cabinet		Cooling			
Power Output	1 ¢ 120	3 ¢ 208	3 ¢ 480	3 ø 4160	RM	FS	AC	WC
< 2 <i>kW</i>	X				X		X	
$2 kW \rightarrow 5 kW$		X			X		X	
$> 5 \ kW \rightarrow 40 \ kW$			X		X		X	
$> 40 \ kW \rightarrow 100 \ kW$			X			X	X	
$> 100 \ kW \rightarrow 1 \ MW$			X			X	X	X
> 1 MW				X		X	X	X
RM = Rt AC = At					= Frees C = Water		·	

Other Design Considerations - Cost Of Switchmode Power Supplies


Section 5 - DC Power Supplies

Other Design Considerations - Homework Problem #11

A 100kW power supply is 80% efficient. Approximately 50% of the power supply heat loss is removed by cooling water.


- How much heat is dissipated to building air and how much heat is removed by the water system.
- Calculate the water flow rate needed to limit the water temperature rise to 8°C maximum.

Typical DC Power Supply Ratings for Accelerators

DC Power Supplies in Particle Accelerators <u>PEP-II and SPEAR3 Dipole Power Supplies</u>

- 1200 VDC, 800 Amperes, 960 KW
- Powers largest magnet string at Spear3, 36 ring bend magnets in series
- *Requires 50 PPM (full scale) current regulation, 0.1% voltage regulation*
- Requires 600 VAC, 6-Phase AC Input

Section 5 - DC Power Supplies

DC Power Supplies in Particle Accelerators

Storage Ring of the Diamond Project

- The power converter comprises of 8 paralleled modules
- Each module is a non-isolated step down PWM switching regulator operating at a fixed frequency of 2 kHz.
- IGBT devices are used as the switching element
- The 8 PWM drives are phase shifted by 360/8° to achieve a 16 kHz output ripple frequency
- 1 quadrant operation

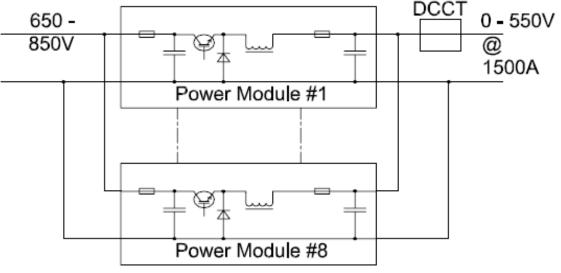


Figure 1: Dipole Converter Topology.

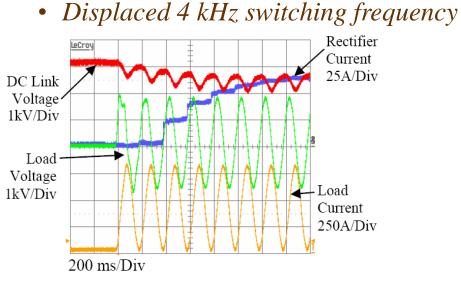
DC Power Supplies in Particle Accelerators

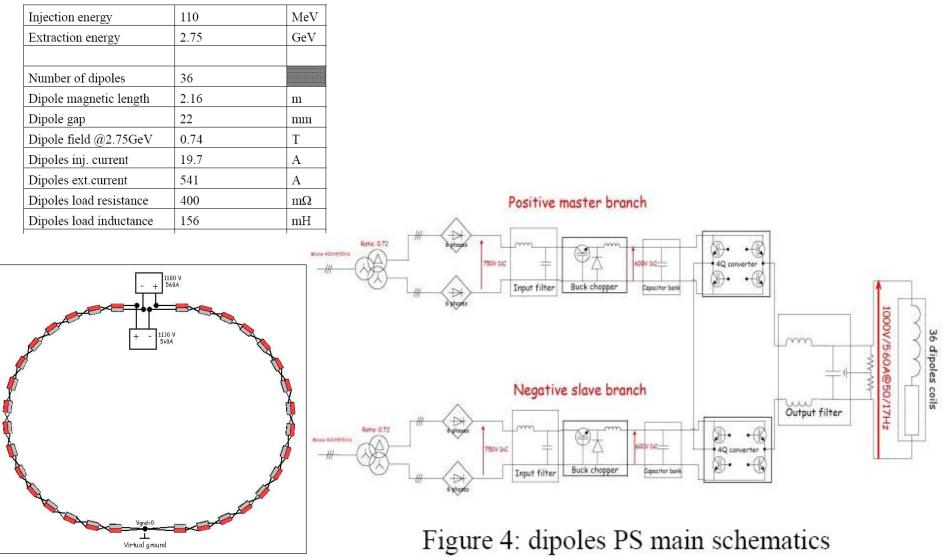
Diamond Booster Magnet Power Converters

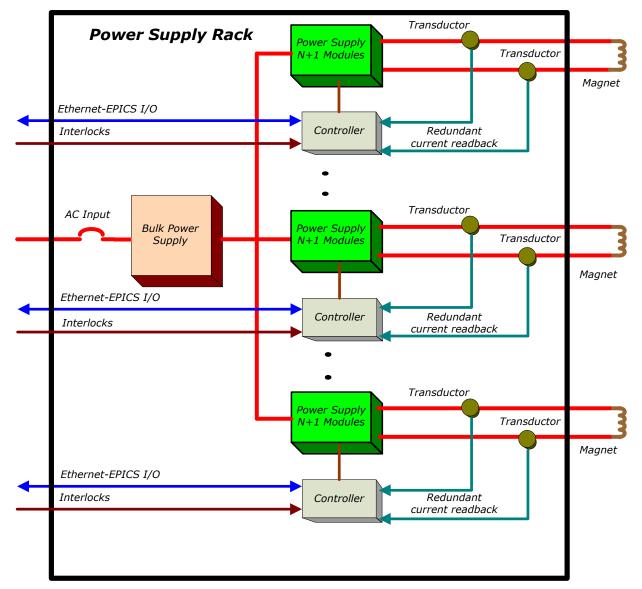
- Booster operates at 5 Hz to accelerate the electrons: 100 MeV to 3 GeV.
- Power converters produce an off-set sine wave current with high repeatability at 5 Hz
- To avoid disturbance on the ac distribution network, the dipole and quadrupole power converters were designed to present a constant load despite having high circulating energy: 2 MVA in the case of the dipole
- Redundancy was introduced wherever this was economically feasible.
- Plug-in modules are used to simplify and speed up repairs.
- Component standardization and de-rating across all power converters was an additional design goal

Diamond Booster Dipole Power Converter

- Booster dipole PC is rated at peaks of 1000A and 2000V
- Three units are sufficient to produce the required output. The fourth is redundant
- Each unit is made up of a boost circuit and a 2-quadrant output regulator that produces the required offset sine wave current.
- The boost circuit regulates the voltage on the main energy storage capacitor and is controlled to draw constant power from the ac network.




Figure 4: First few cycles after turn on.


Figure 1: Booster dipole power circuit.

THE 3HZ POWER SUPPLIES OF THE SOLEIL BOOSTER

Table 1: Major booster parameters

Power Supplies for the ATF2

CNAO STORAGE RING DIPOLE MAGNET POWER CONVERTER 3000A / ±1600V

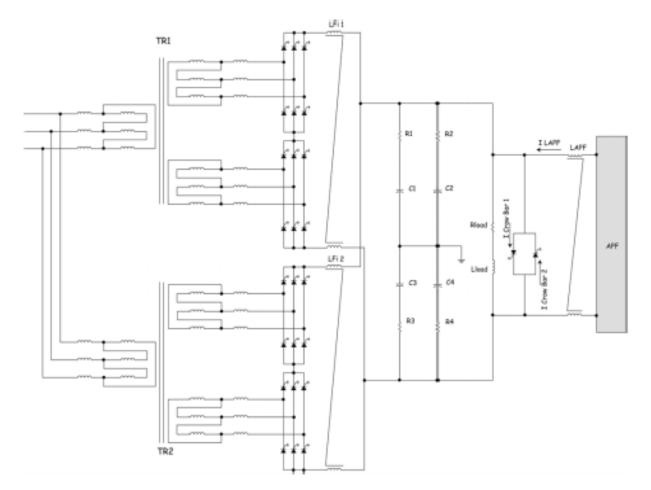


Figure 2: Topology of CNAO synchrotron power supply.

Bipolar Power Supplies at SPEAR3 and LCLS (480W, ±40V, ± 12A)

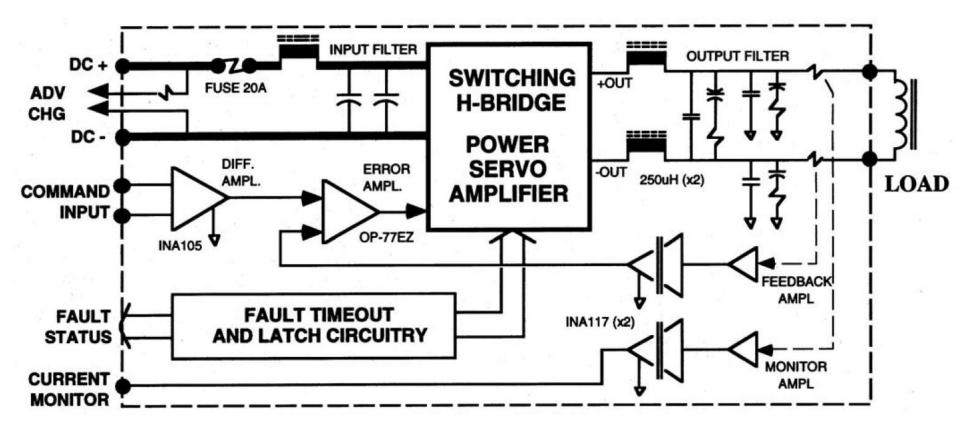
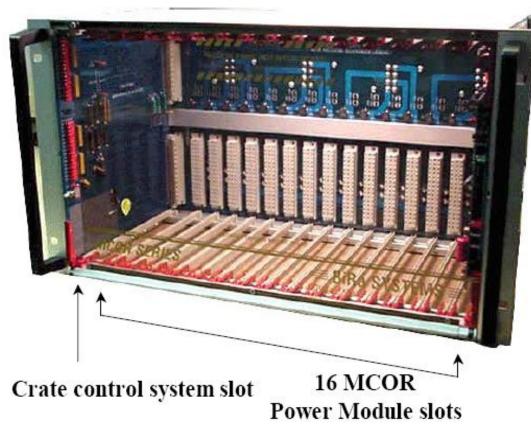



Figure 1.3. MCOR12 Block Diagram.

Bipolar Power Supplies at SPEAR3 and LCLS

Figure 1.1. A typical MCOR installation

NEW MAGNET POWER SUPPLY FOR PAL LINAC

	Bipolar	Unipolar	
Size (W x H x D)	435x135×450	435×178×450	mm
Input	1¢ 220V	3¢ 30V	V
Output	±10/20	50/50	A/V
Output stability	±50ppm	±20ppm	< 1 hour
	±100ppm	±50ppm	> 10 hours
Output resolution	1	bit	
Topology	Full-Bridg	onverter	
Switch freq.	5	kHz	
Output Filter Cut-off freq.	<	kHz	

Table 1: Development specifications of MPS

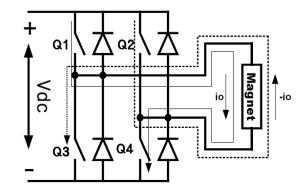


Figure 1: Bipolar MPS operation of full-bridge fourquadrant DC/DC converter.

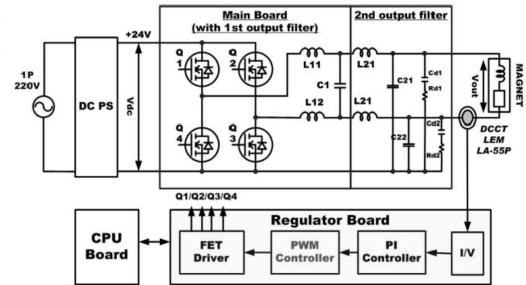
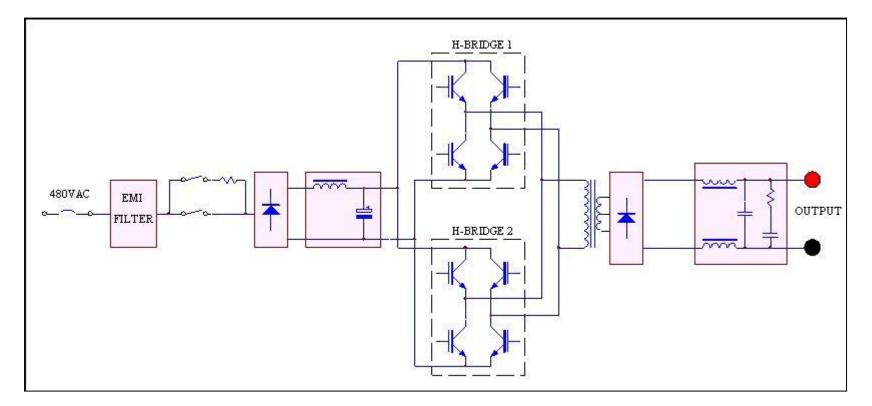
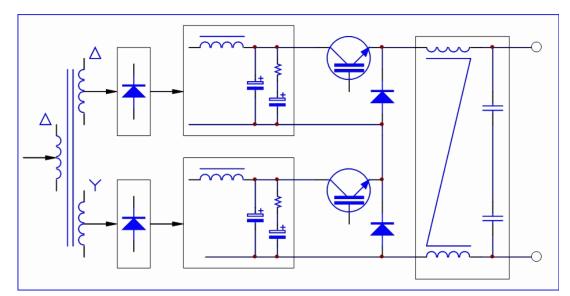



Figure 4: Circuit diagram of bipolar MPS.

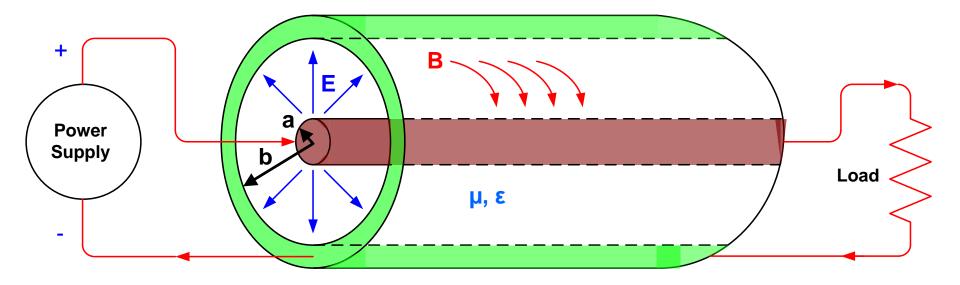
PEP-II Large Power Supplies

Table 1: LGPS ratings.


LGPS	V	Ι	P (kW)	Qty
BV1/2	80	900	72	1
QF2L/R	80	1250	100	2
QF5L/R	253	750	190	2
QD4L/R	200	1350	270	2

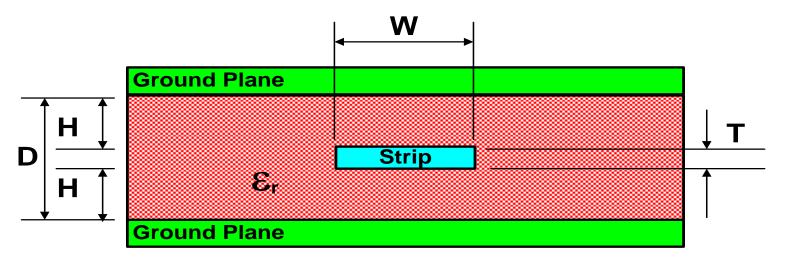
SPEAR3 Large Power Supplies

- Line-isolated
- 32 kHz Switch-output ripple
- High efficiency
- Fast output response
- Stability better than ±10 ppm
- 100A to 225A
- 70kW to 135kW
- Low cost: US\$ 0.26 0.39/W


- <u>Transmission Lines</u>
- Conventional Pulsers
- <u>Solid-State Pulsers</u>
 - -<u>Turn-on Pulser</u>
 - -<u>Marx Modulator</u>
 - Induction Modulator

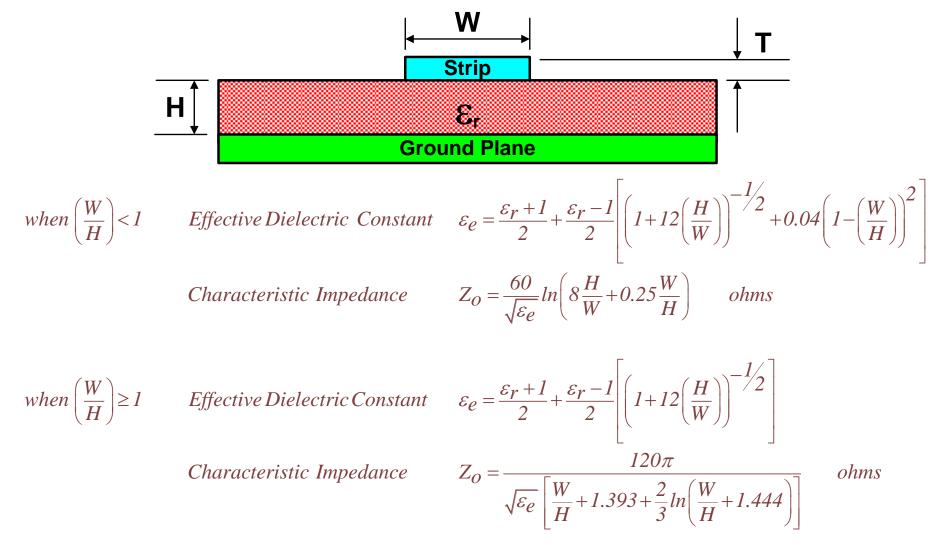
Transmission Line Basics

- A transmission line is a "controlled impedance" device, usually consisting of two conductors.
- Its geometry and dielectric determine the electric and magnetic field distributions between the conductors.
 - The voltage between the conductors is determined by the integral of the electric field between them.
 - The current along the conductors is determined by the integral of the magnetic field on the conductor surfaces.
- *Transmission lines support the propagation of fixed velocity waves in both directions along the line.*
- Transmission lines guide transverse electro magnetic (TEM) waves, TE or TM waves are guided by waveguides


- Coaxial transmission lines
 - Voltage between two coaxial conductors
 - Currents of equal magnitude and opposite sign are carried on the conductors
 - Conductors separated by air or dielectric
 - Transverse electromagnetic (TEM) transmission line media
 - Non-dispersive (propagates all frequency components equally), no cutoff frequency
 - No external electric or magnetic fields

• Coaxial transmission lines and cables

$$Z_0 = \frac{\ln \frac{b}{a}}{2\pi} \sqrt{\frac{\mu}{\varepsilon}}$$


• Planar transmission line - Stripline consists of a single strip buried in a dielectric separated from two or more ground planes

Characteristic Impedance

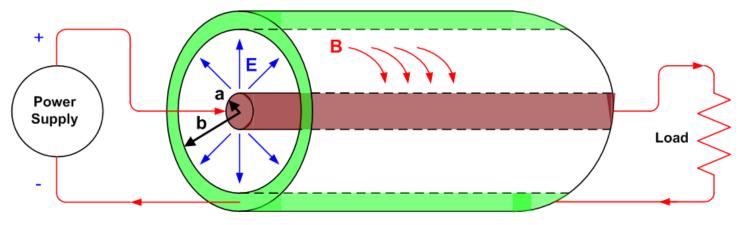
$$Z_{O} = \frac{60}{\sqrt{\varepsilon_{r}}} ln \left[\frac{4H}{0.67\pi W \left(0.8 + \frac{T}{D} \right)} \right] ohms$$

• Planar transmission line - Microstrip line consists of a single strip on dielectric separated from a ground plane

- Lumped element transmission lines
 - Combination of series inductors, shunt capacitors
 - Single inductor-capacitor combination is a resonant circuit
 - Series of an infinite combination of series L, shunt C turns into an ideal transmission line
 - Electric fields of lines stored in capacitors
 - Magnetic fields of lines stored in series inductors

June 2012

Lumped Element Transmission Lines

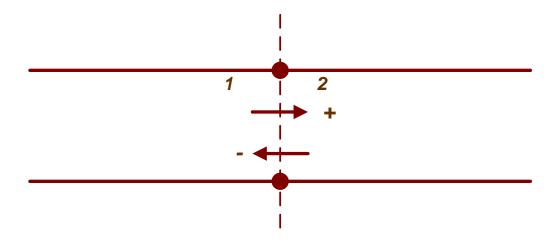

$$Y$$
 X
 $\frac{dC}{dz}$
 $\frac{dL_2}{dz}$
 $\frac{dL_2}{dz}$

 $E = \hat{y}E_y$ $H = \hat{x}H_x$ $Z_0 = \sqrt{\frac{L}{C}}$ Characteristic impedance - 377 ohms for air (free space)

for air(and most dielectrics) $\mu_r = 1$, for air $\varepsilon_r = 1$ (most other dielectrics $\varepsilon_r > 1$, n = number of sections

$$Z_0 = \frac{\ln \frac{b}{a}}{2\pi} \sqrt{\frac{\mu}{\varepsilon}} \text{ For coaxial line, } 50\Omega \le Z_0 \le 80\Omega$$

$$v = \frac{1}{\sqrt{\mu_0 \mu_r \varepsilon_0 \varepsilon_r}} = wave \ velocity \ wavelength \ \lambda = \frac{v}{f} \quad time \ delay = t_d = n * \sqrt{LC}$$



June 2012

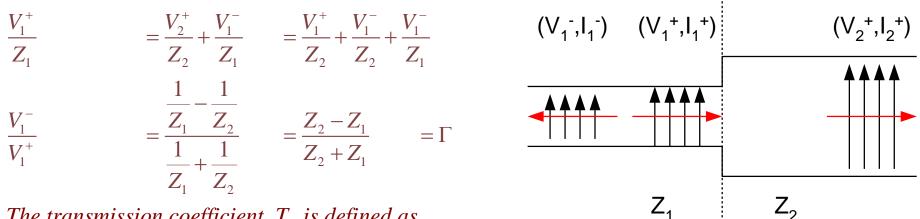
Section 6 - Pulsed Power Supplies

The general situation at an interface between two transmission lines of impedance Z_1 and Z_2 is

- A source generates an incident voltage and current, (V_1^+, I_1^+) moving forward on Line 1, with $V_1^+ = Z_1 I_1^+$
- (V_1^+, I_1^+) at the interface causes a transmitted voltage and current, (V_2^+, I_2^+) , moving forward on Line 2, with $V_2^+=Z_2I_2^+$
- (V_1^+, I_1^+) at the interface also causes a reflected voltage and current, (V_1^-, I_1^-) , moving backward on Line 1, with $V_1^- = Z_1 I_1^-$

Section 6 - Pulsed Power Supplies

Transmission Line Equations at an Interface


The voltages on each side of the interface must be equal.

 $V_1^+ + V_2^- = V_2^+$

Current must be conserved at the interface.

 I_1^+ $=I_{2}^{+}+I_{1}^{-}$

Expressing the second equation in terms of the voltages and impedances yields the Reflection Coefficient, Gamma

The transmission coefficient, T, is defined as

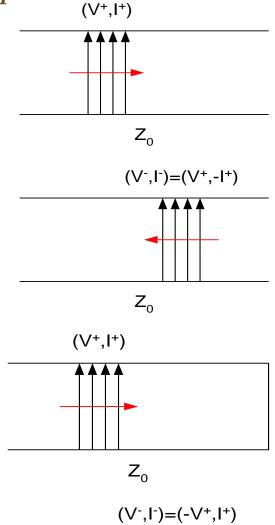
$$T \qquad \Box \frac{V_2^+}{V_1^+} = \frac{\left(V_1^+ + V_1^-\right)}{V_1^+} \\ = 1 + \Gamma \\ = \frac{Z_2 + Z_1 + Z_2 - Z_1}{Z_2 + Z_1} = \frac{2Z_2}{Z_2 + Z_1}$$

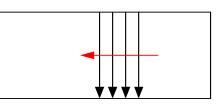
- Join two transmission lines together
 - If the impedances of both lines are the same, the electric and magnetic fields (voltage and current) can propagate without interruption.
 - If not, the boundary conditions on the fields force a reflection of part of the signal

Transmission Line Power Conservation

The flow of energy (power) is conserved at the interface.

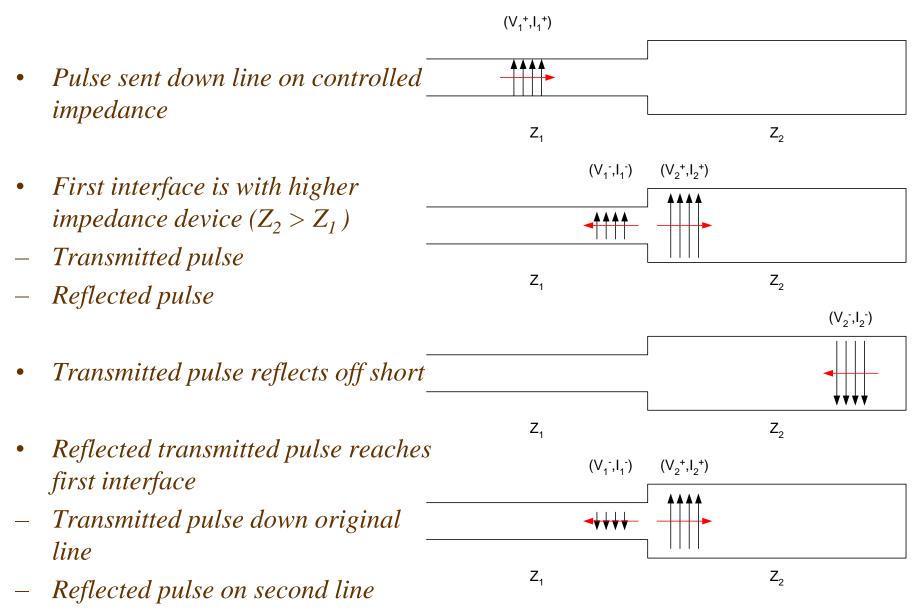
 $=V_1^+I_1^+$ (assume all voltages and impedances are real) P_{IN} $=\frac{(V_1^+)^2}{Z_1}$ $=\frac{(TV_{1}^{+})^{2}}{Z_{2}} = \frac{(4Z_{2})}{(Z_{2}+Z_{1})^{2}}(V_{1}^{+})^{2}$ P_{T} $=\frac{\left(\Gamma V_{1}^{+}\right)^{2}}{Z_{1}} = \frac{\left(Z_{2}-Z_{1}\right)^{2}}{Z_{1}\left(Z_{2}+Z_{1}\right)^{2}}\left(V_{1}^{+}\right)^{2}$ P_{R} $P_{T} + P_{R} = \frac{\left(4Z_{2}Z_{1} + Z_{2}^{2} - 2Z_{2}Z_{1} + Z_{1}^{2}\right)}{Z_{1}\left(Z_{2} + Z_{1}\right)^{2}}\left(V_{1}^{+}\right)^{2} = \frac{\left(V_{1}^{+}\right)^{2}}{Z_{1}}$ $= P_{IN}$

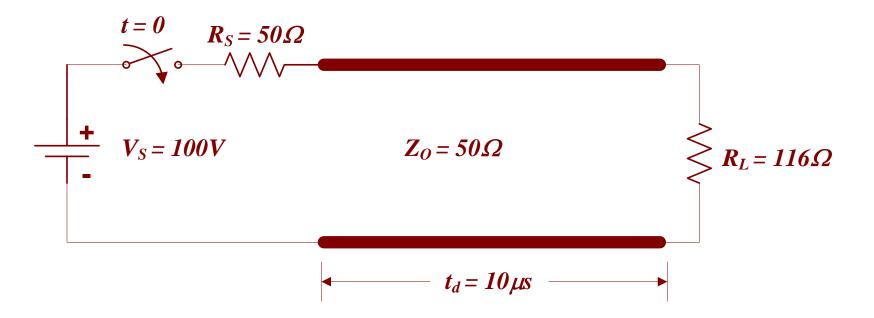

Transmission Line Simple Examples


Open Line

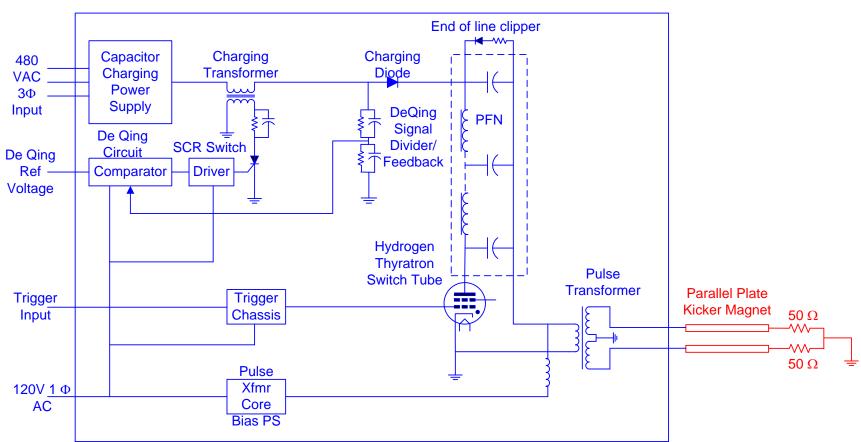
- $Z_1 = Z_0, Z_2$ infinite
- *Γ* = 1
- $I_2 = 0$
- Voltage totally reflected without inversion

Shorted Line


- *Z*₂ zero
- *Γ* = -1
- $V_2 = 0$
- Voltage totally reflected with inversion

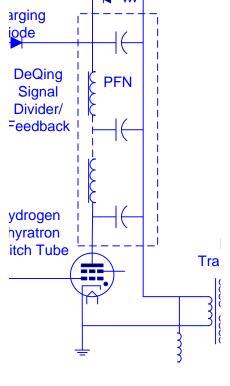

 Z_0

Transmission Line More Complicated Example



- A. An artificial transmission line can be formed using lumped Ls and Cs. Calculate the delay of an artificial line composed of 8 sections of inductances L=4mH per section and capacitance C=40pF per section.
- B. The frequency of a signal applied to a two-wire transmission cable is 3GHz. What is the signal wavelength if the cable dielectric is air? Hint relative permittivity of air is 1
- C. What is the signal wavelength if the cable dielectric has a relative permittivity of 3.6?

For the transmission line shown below, calculate the Reflection Coefficient Γ , the reflected voltage and the voltage and current along the line versus time.


Conventional Thyratron Pulser - PFN

Kicker Pulser

Conventional Pulsers - The Pulse Forming Network (PFN)

Flatness is directly proportional to the number of LC meshes Rise-time is determined by the LC of the mesh closest to the load Pulse width T is twice the one way transit time t of the wave in the PFN The one-way transit time is

 $t = n * \sqrt{L * C}$ and the pulse width T is

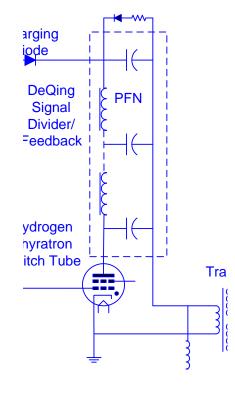
$$T = 2 * n * \sqrt{L * C}$$

The load impedance and pulse width are usually specified. From these two parameters the PFN LC can be specified. The nominal L and C in each mesh is the total L and C divided by the number of meshes.

$$Z = \sqrt{\frac{L}{C}}$$
$$T = 2 * Z * C$$
$$C = \frac{T}{2 * Z}$$
$$L = \frac{T * Z}{2}$$

Since the PFN impedance is matched to the load impedance, all the PFN stored energy is dissipated in the load

Conventional Pulsers - The Pulse Forming Network (PFN)


The PFN is typically tuned to the impedance of the load in order to reduce voltage and current reflections. The effective output voltage at the load obeys the voltage divider law and is effectively

$$V_{load} = V_{pfn} * \frac{Z_{load}}{Z_{load} + Z_{pfn}}$$

$$V_{pfn} = V_{load} * \frac{Z_{load} + Z_{pfn}}{Z_{load}}$$

Because typically the PFN has the same impedance as the load, $V_{pfn} = 2 * V_{load}$

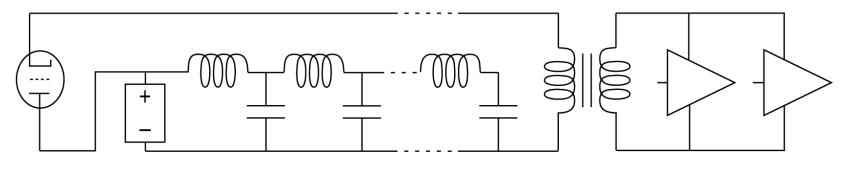
Therefore the PFN must be charged to twice the desired load voltage.

- Open transmission lines are often used for Pulse Forming Networks (PFNs).
 - They are typically charged up from a high impedance source
 - Their open end is connected to a normally open switch that closes to connect the PFN to the load
- This situation can be viewed as a traveling wave reflecting back and forth off of two open ends
 - Total voltage on the line is the sum of the incident and reflected waves $(V_{PFN} = 2V_{LOAD})$
 - Pulse has length 2 l / v, since the tail of the pulse must reflect off of the other open end before it reaches the load

Note: l = the length of the open transmission line and <math>v = wave velocity

Klystron perveance =
$$P = \frac{I_{klystron}}{(V_{beam voltage})^{3/2}}$$

The perveance of 5045 klystron is 2 micropervs The peak RF power from a 5045 is 65MW, the beam volatge is 350kV $I_{klystron} = P * (V_{beam voltage})^{3/2} = 2 * 10^{-6} * (350kV)^{3/2} = 414A$ The power needed to achieve 65MW of RF = V_beam voltage * I_klystron = 350kV * 414A = 144.0MW !


Pulsed power is the right approach

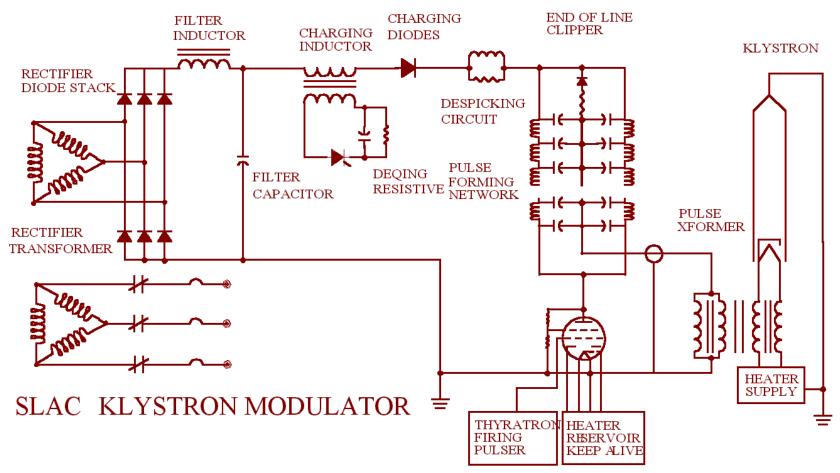
Smaller power source

Less cooling required (klystron efficiency is 45%) Average power = peak power *duty cycle(on-time*PRR) Average power = 144.9MW *5µS*60Hz=42.4kW much lower power **Conventional Pulsers - Klystron Modulator with PFN**

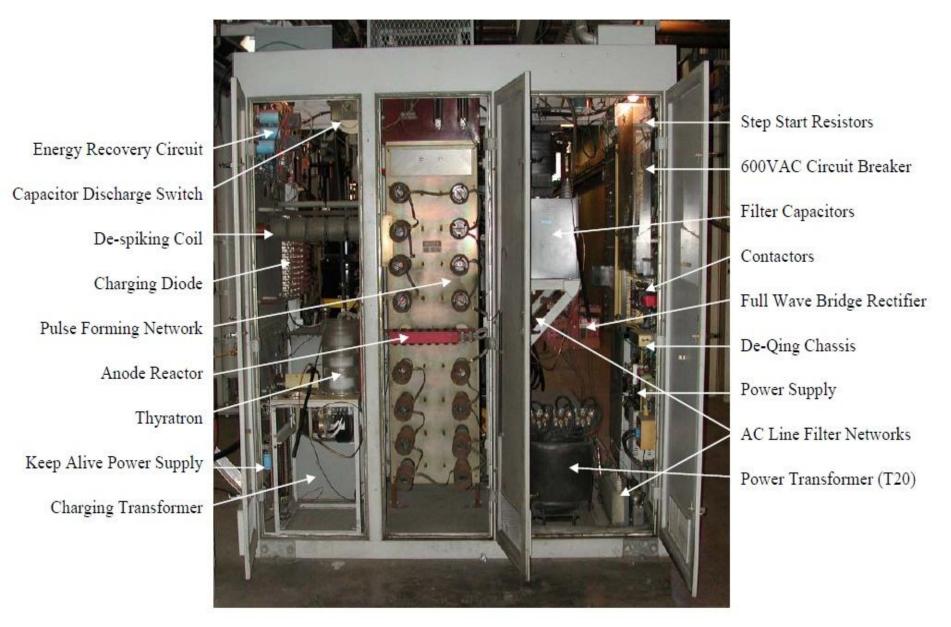
Thyratron

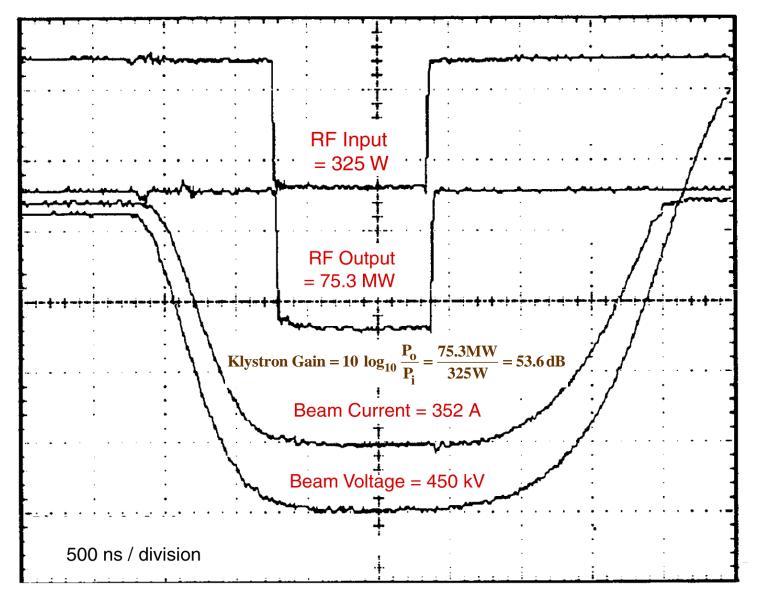
1:14 Transformer

Pulse Forming Network


Charging

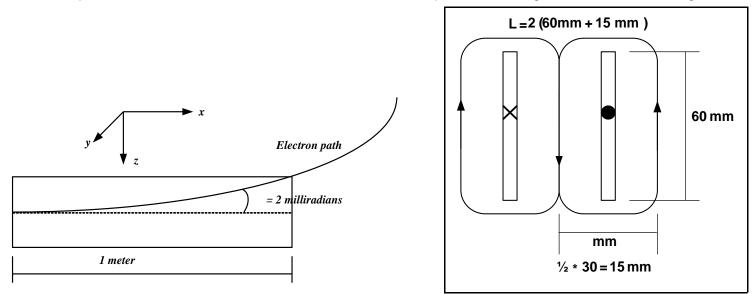
Supply


75 MW Klystrons


Conventional Pulsers - Present Klystron Modulator Power Supply

- Primary VVT, with diode rectifier
- High voltage secondary with diodes and filter capacitor
- Protected against secondary faults

Conventional Pulsers - Klystron Modulator PS – Cabinet Details

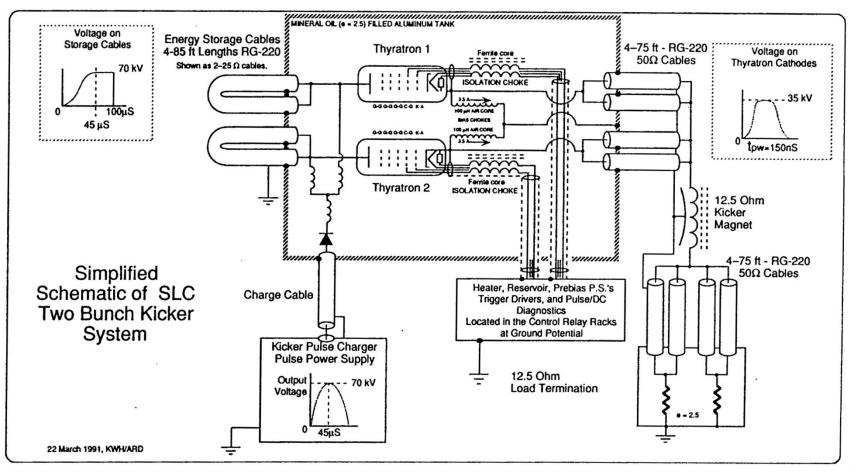


Conventional Pulsers - Kicker or Fast Modulator

- Improve the rise time of modulator pulse using Cable PFN
- In line Switch with PFN
- Blumline with Shunt Switch

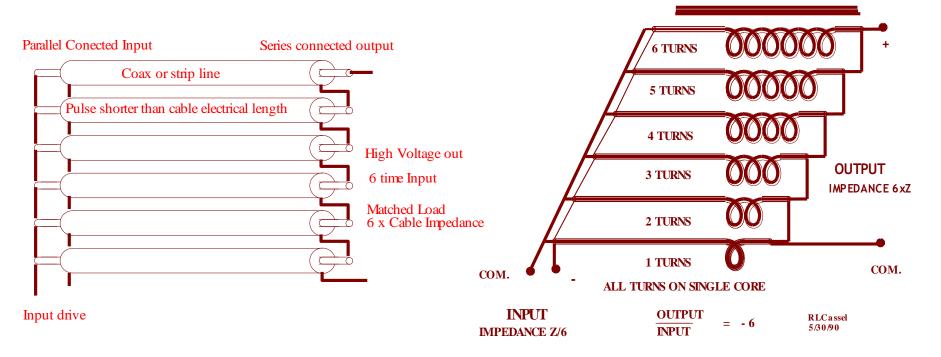
Kicker Magnet Calculation

A 3GeV electron moves in a magnetic field as shown below. Calculate the B field and the magnet current needed to provide a 2 milliradian deflection in the electron path. The magnet is 1 meter in length.


magnet aperature 60mm X 34mmSome definitions and constants needed for conversion $q := 1.610^{-19}$ CElectron charge $v_x := 3 \cdot 10^8 \cdot \frac{m}{s}$ electron velocity $eV := 1.610^{-19} \cdot J$ Electron energyelectronmass := 9.109510^{-31} \cdot kgelectron rest mass $n_t := 2$ magnet turns (2 plates producing field in same direction) $L_{mag} := 1 \cdot m$ magnet length $\theta := 2 \cdot 10^{-3}$ radThis is the deflection angle $MOL := 4 \cdot \pi \cdot 10^{-7} \cdot \frac{newton}{amp^2}$ $\mu_r := 1$ $E_x := 3 \cdot 10^9 \cdot eV$ $E_y := E_x \cdot tan(\theta)$ $E_y = 9.6 \times 10^{-13}$ J $E_y = 6 \times 10^6 eV$ $F_y := \frac{E_y}{L_{mag}}$ $F_y = 9.6 \times 10^{-13}$ N $L_{field} := 2 \cdot (60 \text{ mm} + 15 \text{ mm})$ $L_{field} = 0.15m$ $B_z := \frac{F_y}{q \cdot v_x}$ $B_z = 0.02T$ $I := \frac{B_z \cdot L_{field}}{\mu_0 \cdot \mu_r \cdot n_t}$ I = 1194A

361

June 2012


Conventional Pulsers - Kicker Modulator

- Conventional Inline Kicker Modulator
- Thyratron for switches
- Improve the rise time of modulator pulse using Cable PFN

Conventional Pulsers - Cable Transformer Modulator

- Cable Pulse transformer connecting the input of a cable in Parallel and the Output In Series and if the pulse is shorter than twice the electrical length of the cable and driving a matched load cable transformer works.
- Fast rise time with simple transformer
- Disadvantage stray capacitance and floating cable return limits transformer usage

Solid-State Pulsers

Comparison of Thyratron and Solid-State Pulser Parameters

Parameter	Thyratron	Solid-state	
Control turn-on	Yes	Yes	
Control turn-off	No	Yes	
Pulse Shaping	PFN	IGBT	
Output Voltage	1/2 PFN voltage	Same as device voltage	

Solid-State Pulsers

- Replace Thyratron with solid-state switch SCR, IGBT, MOSFET, etc
- Having a high enough di/dt capability is the problem
- For many applications IGBTs without PFNs are being used at the present time

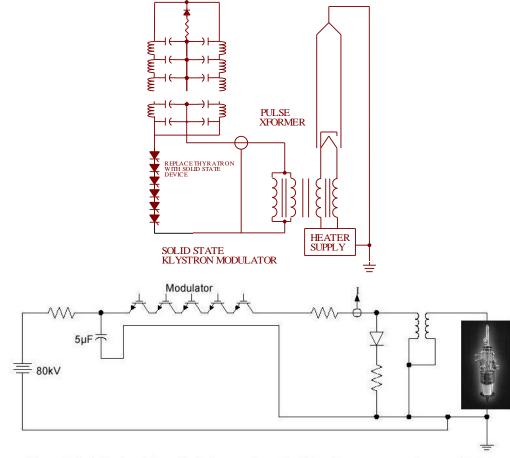


Figure 1 The hybrid modulator block diagram shows the high voltage power supply, the solid state modulator with energy storage capacitor, and the pulse transformer.

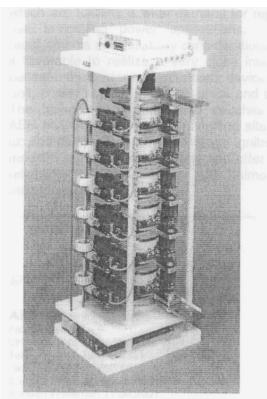
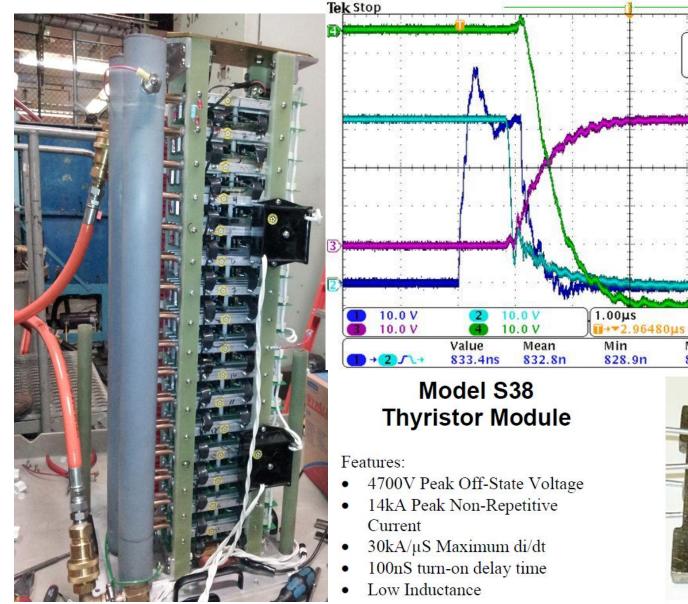



Fig. 11) Switch Assembly SPR-08F45-6-WC

ABB Semiconductor AG 366

Section 6 - Pulsed Power Supplies

Solid-State Pulsers – SLAC Implementation of Solid-State Switch

5

13 Mar 2012 15:19:37

10.0 V

Std Dev

1.891n

00

2.50GS/s

Max

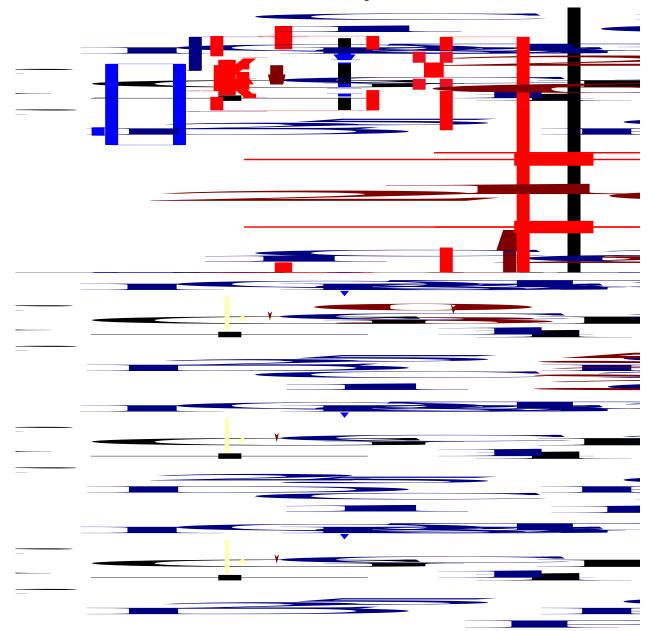
836.2n

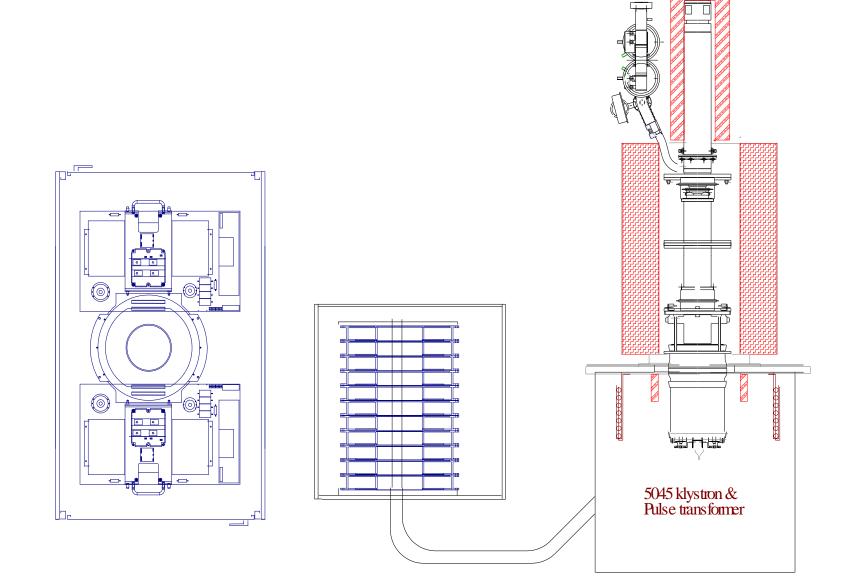
1M points

4.8808µs

4.8848µs ∆4.0000ns -72.2 V -71.4 V

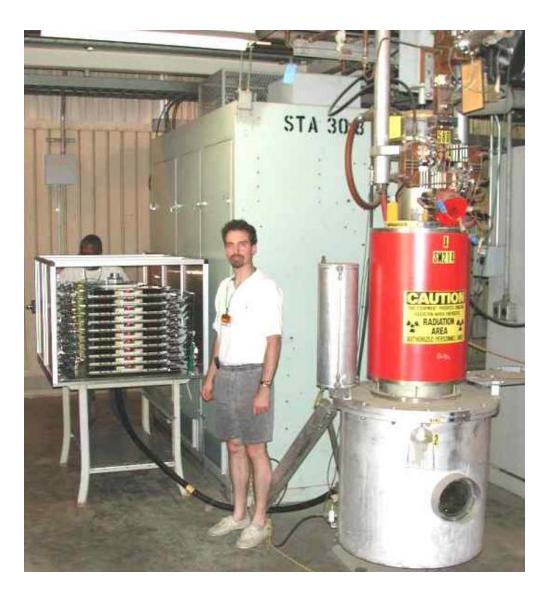
∆800mV


A Solid-State Turn-On Pulser


• All pulse capacitors are pre-charged simultaneously

- IGBTs are all switched on together
- Capacitors are then simultaneously discharged producing sinusoidal V and I pulses in the pulse transformer and magnet. The secondary winding voltages are additive
- At the end of the pulse the IGBT is turned off. The magnet current decay causes a voltage reversal at the free-wheeling diode
- The freewheeling diodes conduct and the magnet current decays exponentially to zero

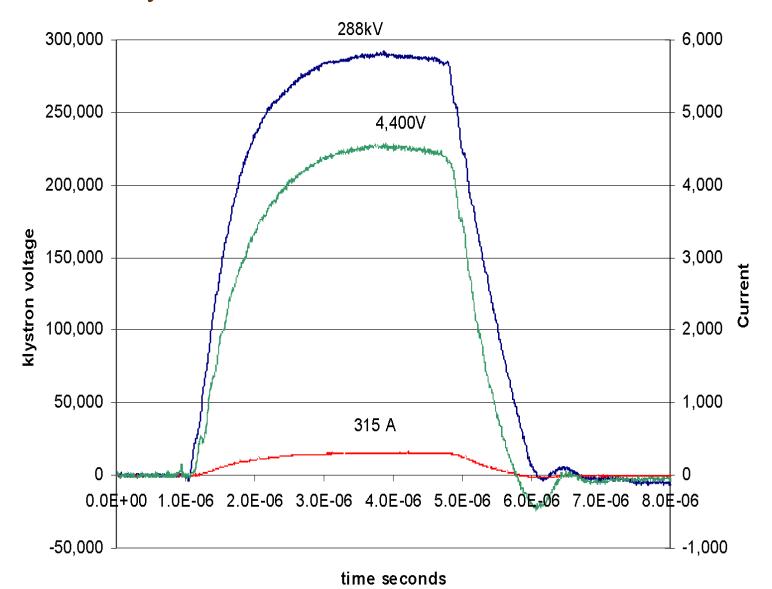
Solid-State Induction Klystron Modulator



Solid-State Induction Klystron Modulator

Section 6 - Pulsed Power Supplies

Solid-State Induction Klystron Modulator



Hybrid

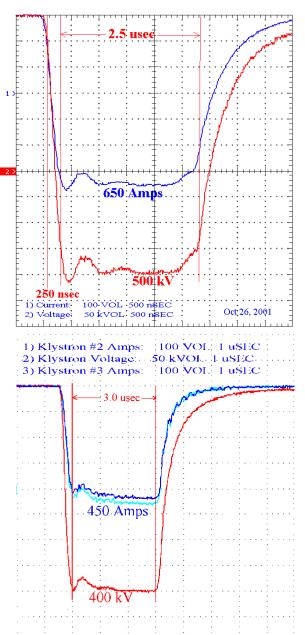
- Solid-state 10 stack installed alongside Gallery line-type PFN unit
- 22 kV => 330 kV via 15:1 xfmr
- Prototype currently at 255 kV
 @ 2.2 μsec @ 120 PPS

Solid-State Induction Klystron Modulator

modulator pulse

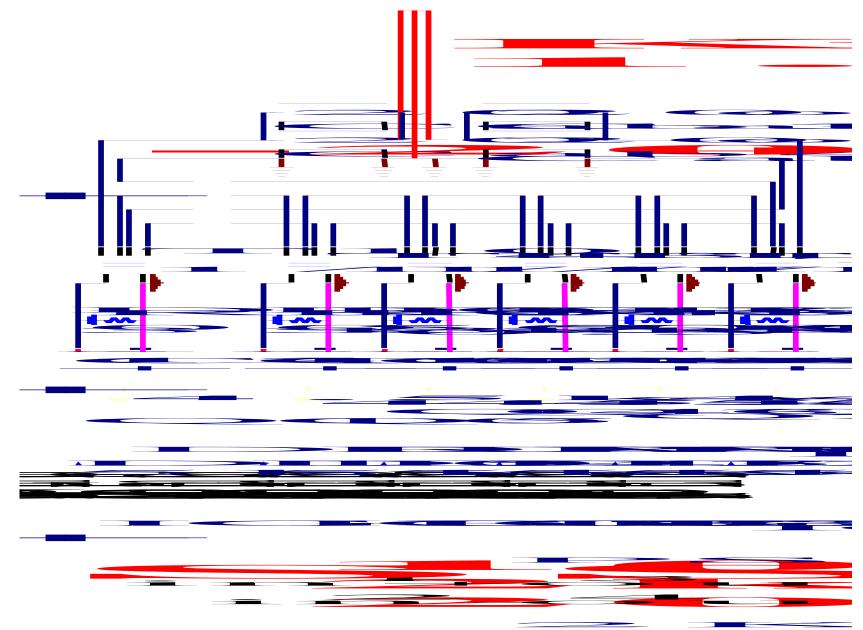
Hybrid

Solid-State Induction Klystron Modulator

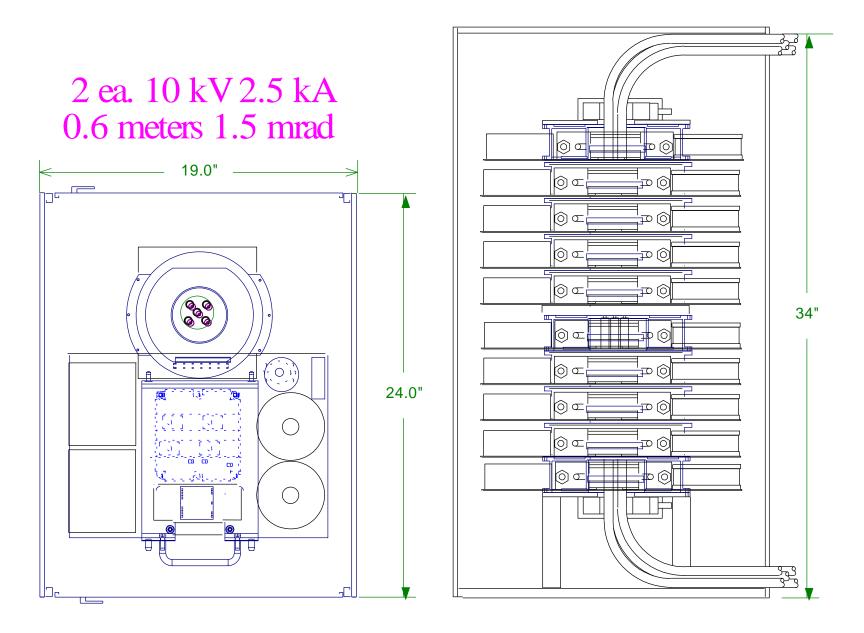


CORES AND SECONDARY

- 76 Primaries @ 5400 A
- 3-Turns Secondary
- 400kV @ 1800A, 725MW for 3.2 µs, 350kW Ave.


SOLID STATE DRIVERS

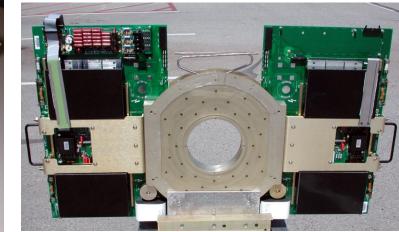
- 152 IGBT Drivers (two per each primary)
- 1800 Volts per IGBT
- 2700 Amps per Driver



Section 6 - Pulsed Power Supplies

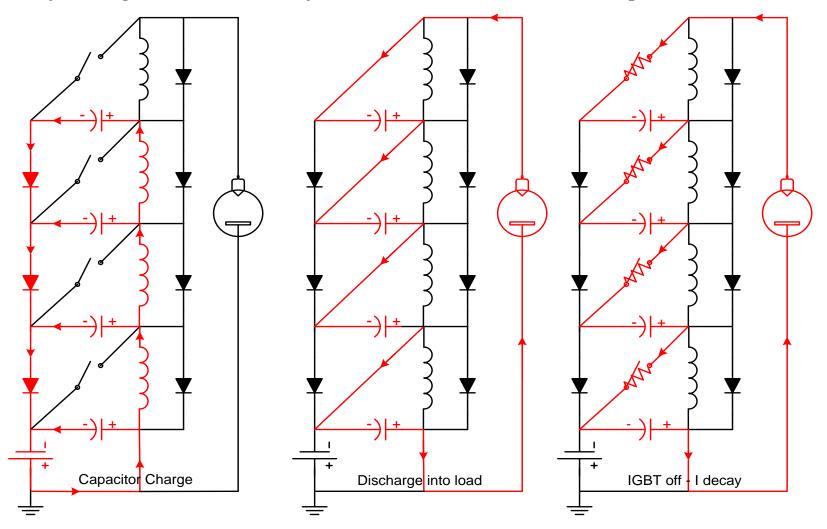
Solid-State Induction Kicker Modulator

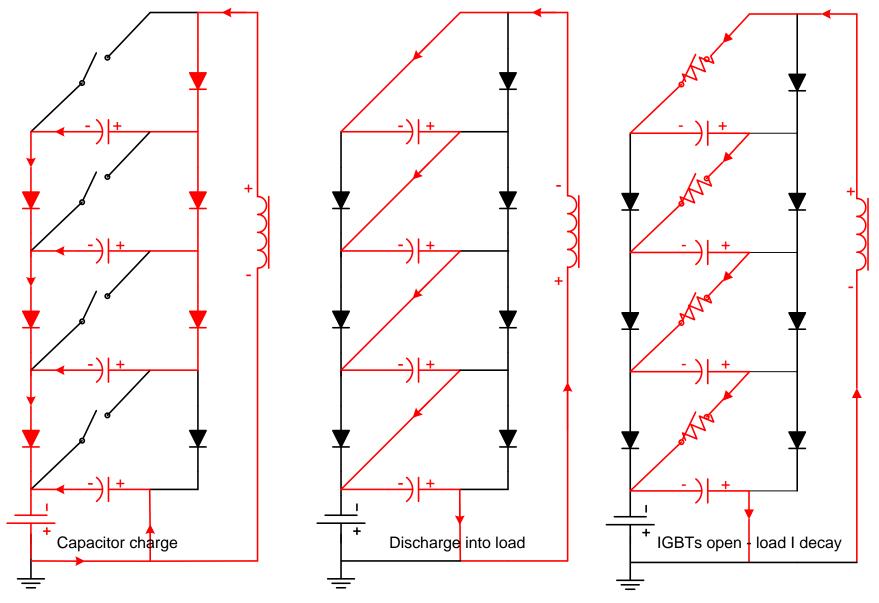
Solid-State Pulsers - Induction Kicker Modulator



Solid-State Induction Modulators

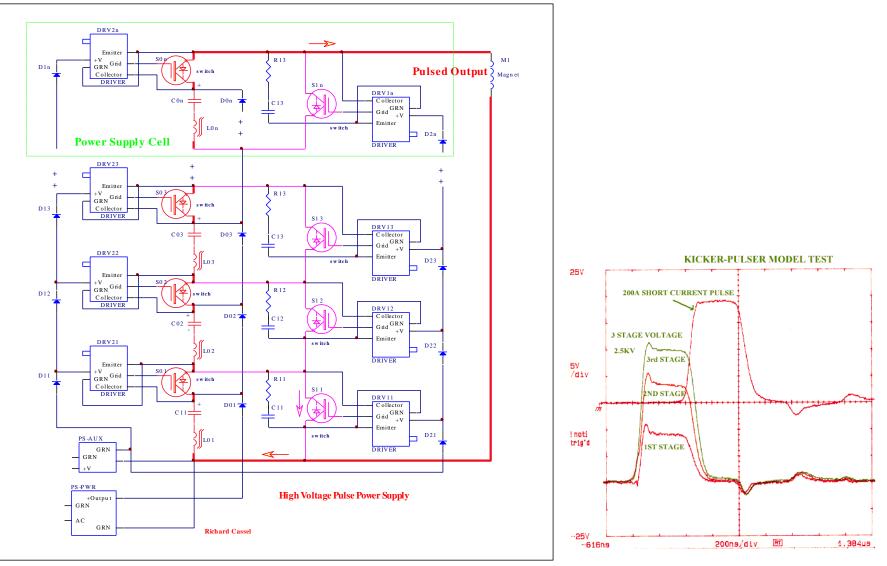
- Fractional turn pulse transformer


 Similar to a induction accelerator
 Multiple primaries driven in parallel
 The secondary connected in series
- Solid-state driver consists of
 - -A solid state switch that turns on and off
 - -DC capacitor per primary winding



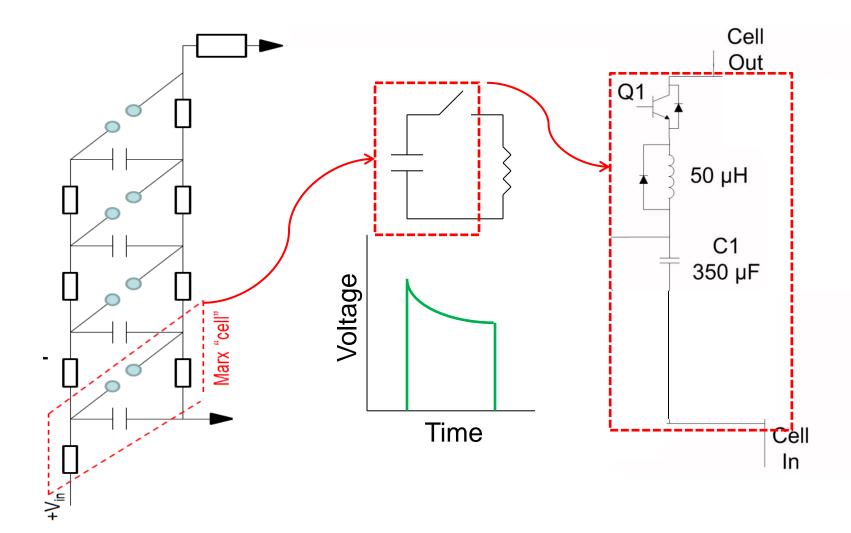
Solid-State Marx Generator for Modulators or Kickers

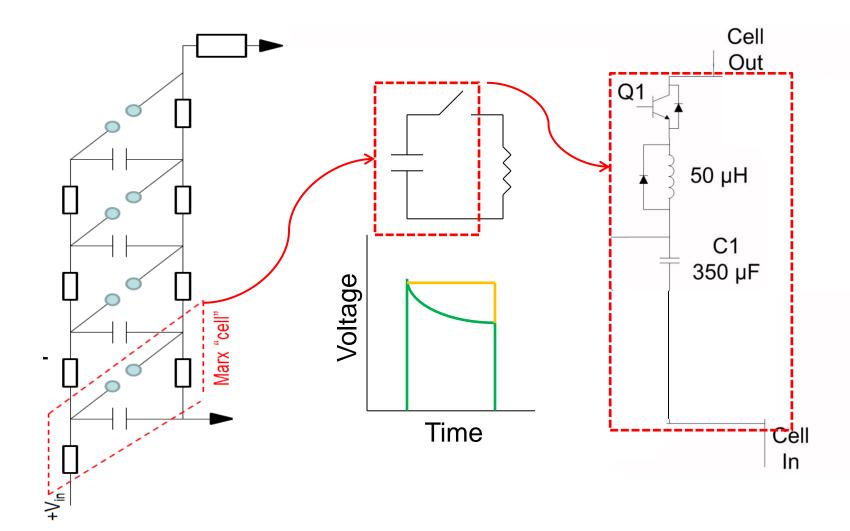
• Marx Generator charges capacitors in parallel for quickness, discharges them in series for high output voltage. For long pulses, advantage is to avoid the need for large iron core transformers based on volt-second product

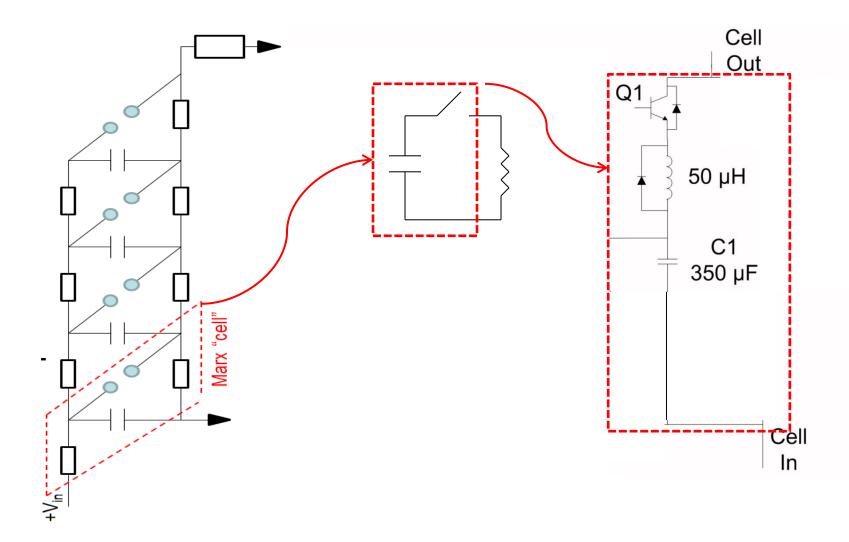

Solid-State Marx Generator for Modulators or Kickers
If the load is a magnet, the charging inductors are not required

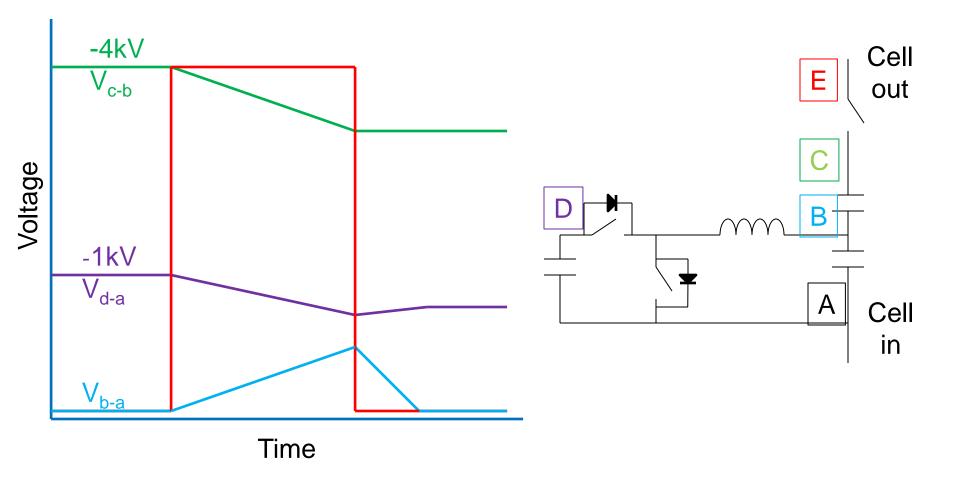
Section 6 - Pulsed Power Supplies

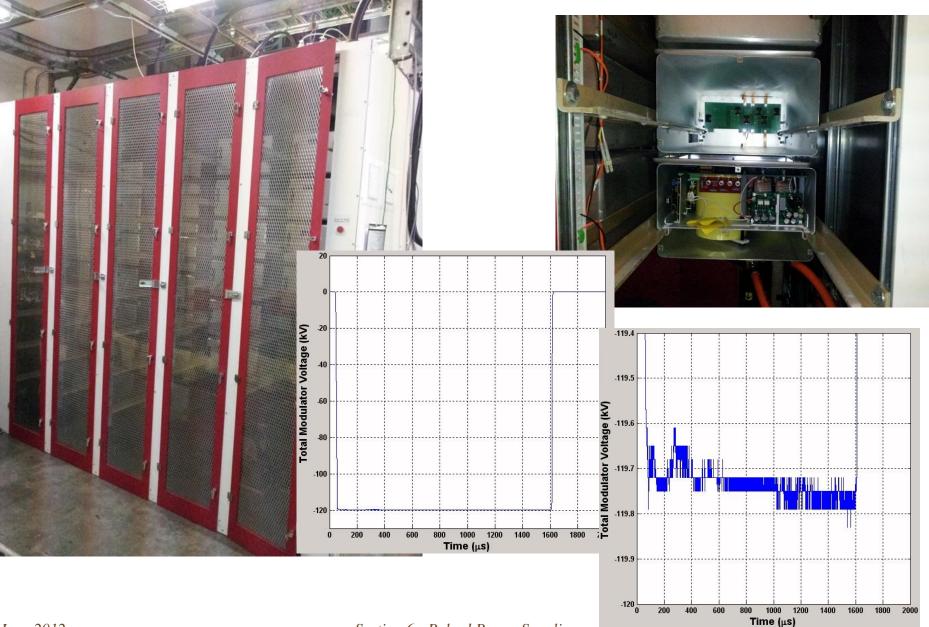
Solid-State Marx Generator for Modulators or Kickers

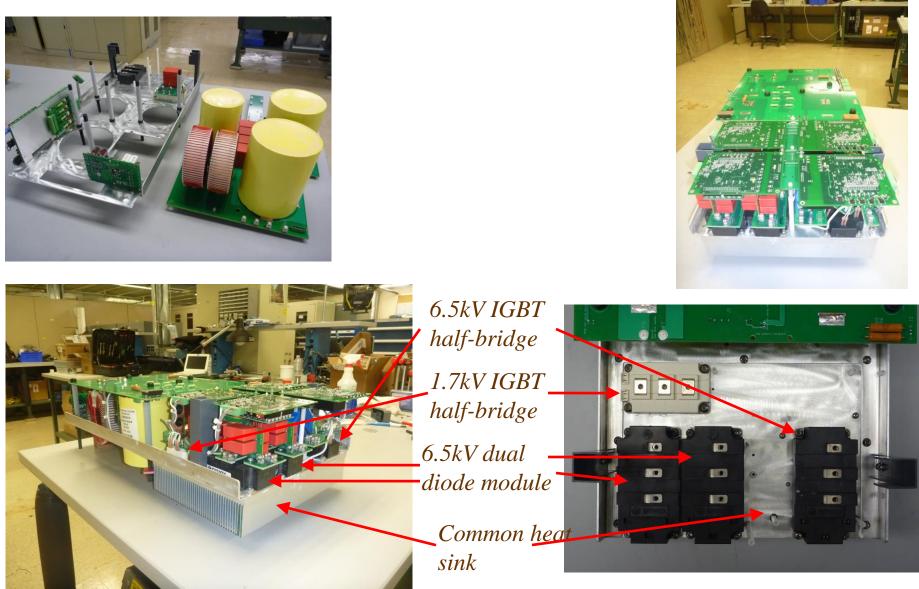

• Another implementation, using solid-state switches in place of the charging inductors for smaller size and less diversion of capacitor current from load


Section 6 - Pulsed Power Supplies

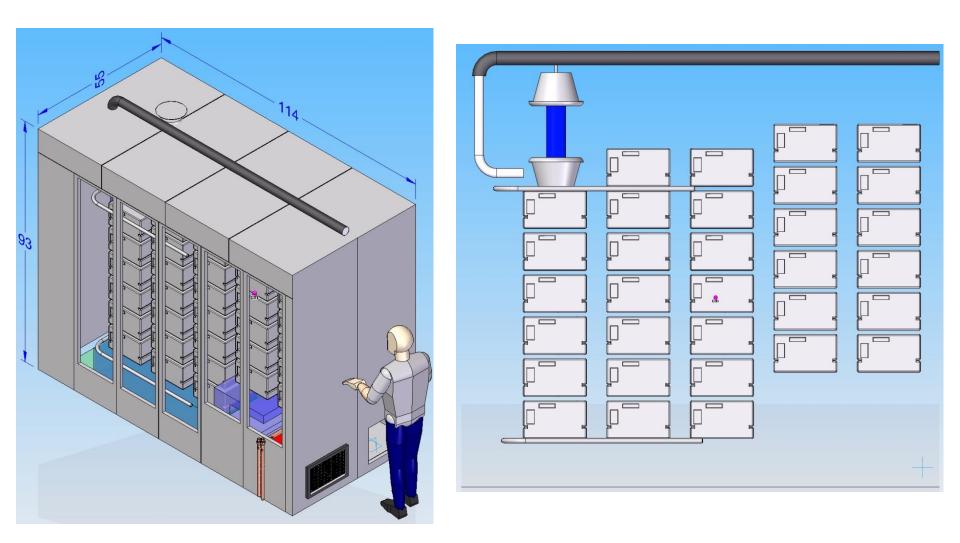

SLAC Marx P2 Generator Update


SLAC Marx P2 Cell Schematic


SLAC Marx P2 Cell Schematic

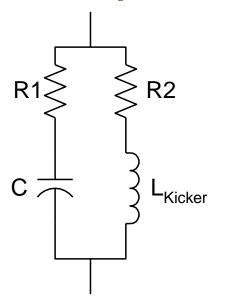


SLAC Marx P2 Assembly and Results



Section 6 - Pulsed Power Supplies

SLAC Marx P2 Modules



June 2012

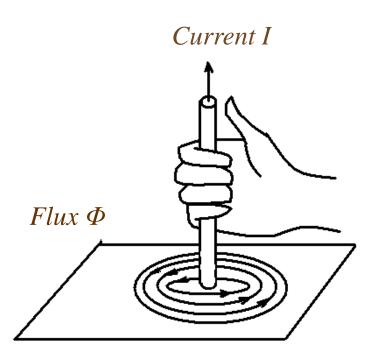
A controlled impedance transmission line often drives a kicker. The kicker is usually well modeled as an inductor. A matching circuit can be built around the kicker and its inductance so that this circuit, including the kicker magnet, has constant, frequency independent, impedance which is matched to the transmission line.

Assuming that the transmission line impedance is Z_0 and the kicker inductance is L_{Kicker} derive the values of R1, R2, and C necessary to make a frequency independent (constant) impedance Z_0 .

A. What is the significance of the value $\sqrt{\frac{\mu_o}{\varepsilon_o}}$?

B. What is the significance of the values $\frac{1}{\sqrt{\mu_o \varepsilon_o}}$ and $\sqrt{L^*C}$?

C. Calculate the speed of light in mediums with dielectric constants of: $\varepsilon_r = 1$ $\varepsilon_r = 2$ $\varepsilon_r = 4$ $\varepsilon_r = 8$ $\varepsilon_r = 16$


Section 7

- Magnetics
 - <u>The Electric Magnetic Equivalence</u>
 - Field Due to a Current
 - Magnetic Units Including Turns
 - Cores and Materials
 - <u>Transformer Design Issues</u>
 - <u>Inductors</u>

The Electric - Magnetic Equivalence

- Magnetic circuits are analogous to electric circuits and are important for the analysis of magnetic devices. The equations for both electric and magnetic circuits show strong similarities
- Various magnetic types, such as transformers and filter inductors, play a key role in many of the components used in power supplies
- Magnets are also extensively used in accelerators to guide, direct, steer and focus beams

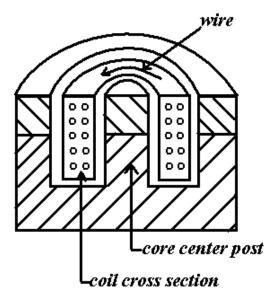
Field Due to a Current

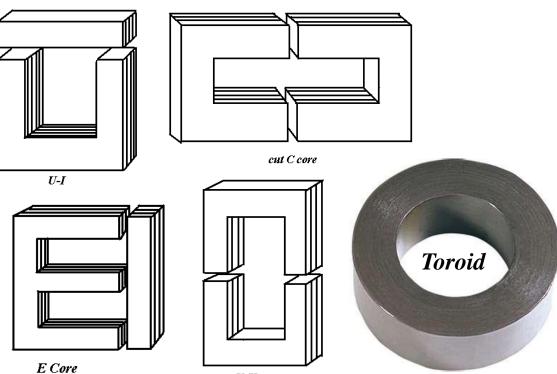
- Right Hand Rule:
- *Thumb* = *Current*

Flux Φ Direction

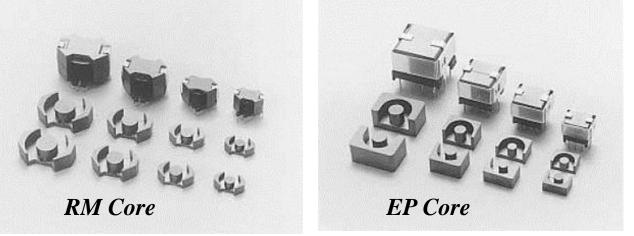
• Fingers Point in Direction of Magnetic Field

Magnetic Units Including Turns


Symbol	Description	SI units	cgs units
N	Winding turns	turn (t)	t
Н	Field intensity	$(A \cdot t)/m$	Oersted (Oe)
В	Flux density	tesla (T)	gauss (G)
μ	Permeability	$T \cdot m/A \cdot$	G/Oe
F	Magnetomotive force	A·t	gilbert (Gb)
Φ	Flux	weber/t (Wb/t)	maxwell
R	Reluctance	A·t/Wb	
Р	Permeance	henry/t	H/t
Ι	Current	ampere (A)	A
L	Inductance	henry (H)	Н

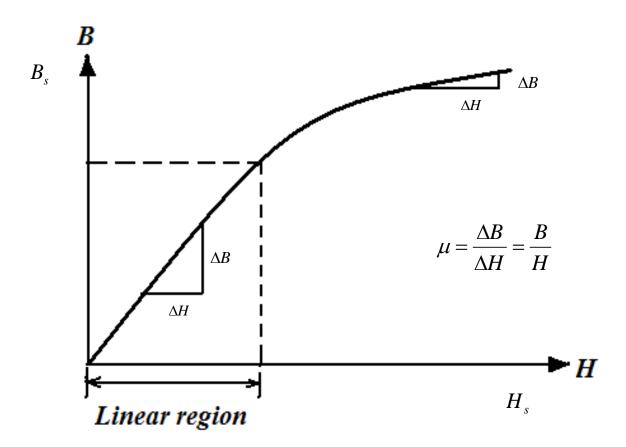

Core Shapes

- *U-U, U-I cores*
- E-E, E-I, ETD cores
- POT cores

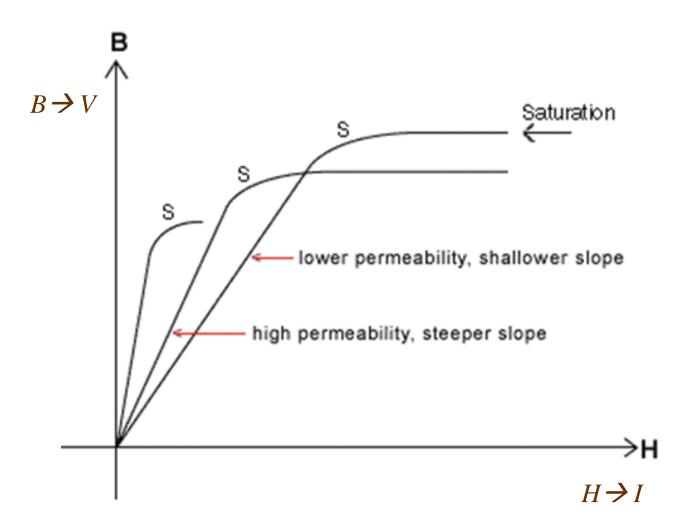

- RM cores
- PQ and PM cores
- EP, EFD and ER cores
- Toroid

Pot cores

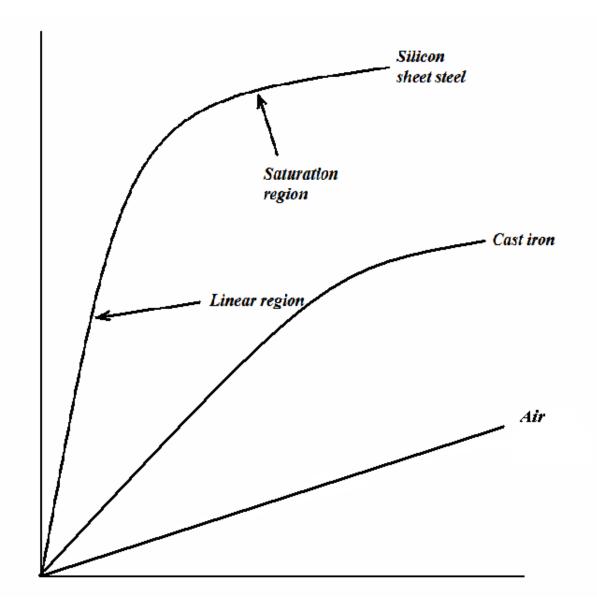
U-U



Permeability Definitions

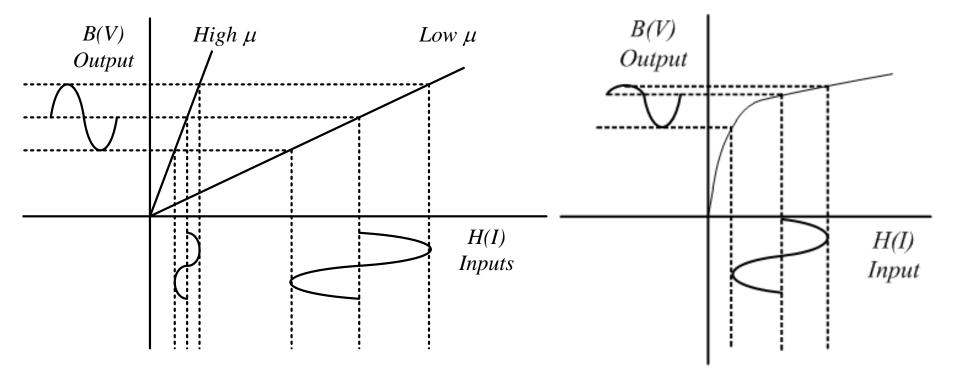

- $\mu_0 = permeability of vacuum = 4*\pi*10^{-7} H/m$
- μ_r = relative permeability
- $\mu_m = material \ permeability = B/H \ at \ any \ given point$
- $\mu_m = \mu_0 * \mu_r$
- *Permeability is an important core parameter*
- Ferromagnetic materials used in transformer and inductor cores because of their high permeability

Core Materials
Air
Alloys
Amorphous
Iron Powder
Manganese-Zinc Ferrite
Molybdenum Permalloy Powder
Nickel-Zinc Ferrite
Sendust
Silicon Steel

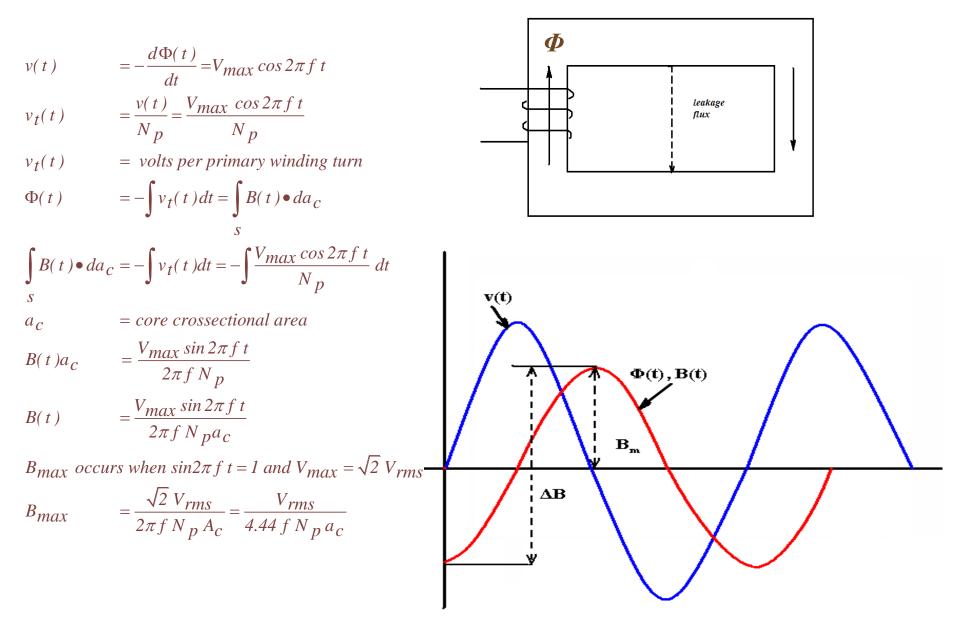

Material Characterization

Important Transformer Concepts

Material Comparison


Core Material Guidelines

Material	Frequency Range	B _{sat}	Cost
Ferrites	Good to microwaves	0.2 T	Low
MPP (Moly Permalloy Powder)	200kHz	0.2 to 0.55 T	High
Powdered Fe	1MHz	0.4 to 1 T	Low
Laminated Si-Fe	2kHz	<i>1T</i>	Low
Laminated Electrical Steel	2kHz	0.5 to 1.8 T	Low
Ni-Fe Alloys	100kHz	0.5 to 1.8 T	High


Transformer Concepts

Effect of permeability magnitude on transformer current

Effect of permeability nonlinearity on transformer current

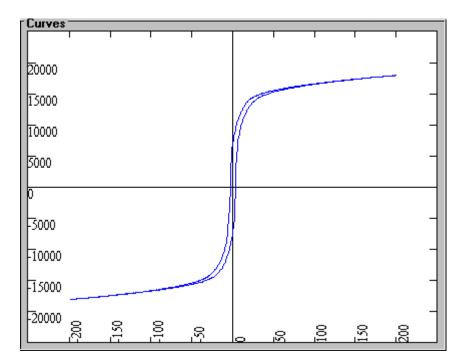
Relationship Between v(t) and B(t)

Transformer Design – Ensure Sufficient Core Crossection

 $B_{max} = \frac{V_{rms}}{4.44 * f * A_c * N_p * 10^{-8}}$

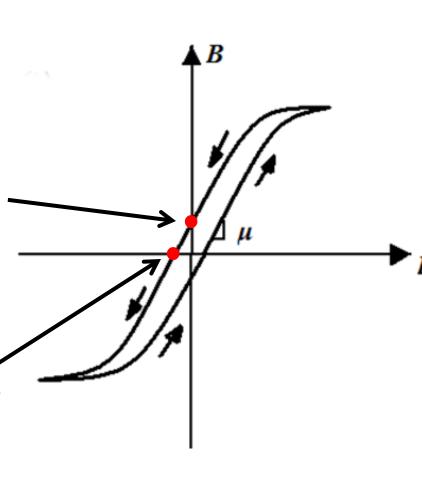
where

 $B_{max} = max imum allowable flux density in gauss$ $V_{rms} = voltage applied to the primary in volts$ $4.44 = \frac{\sqrt{2}}{2\pi} \text{ converts peak AC to rms and } \omega \text{ to } f$ f = frequency of the applied voltage in hertz $A_c = Core \text{ crossectional area in } cm^2$ $N_p = Number \text{ of primary winding turns}$ $10^{-8} = \text{ conversion from engineering to SIunits}$


Example for a 480V, 600kVA, laminated electrical steel core $B_{max} = \frac{480V * 1.05(voltage safety factor)}{4.44 * 60Hz * 300cm^2 * 60 turns * 10^{-8}} = 10,510 \text{ gauss}$

For square wave or rectangular wave excitation

$$B_{max} = \frac{D * V_{peak}}{4 * f * A_c * N_p * 10^{-8}}$$


where

D = duty cycle the wave

Transformer Design Issues

- Four quadrant B-H curves are known as hysteresis curves. Note that the curve is open in the middle. This is a consequence of the magnetic microstructure.
- **Remanence** is defined as the absolute value of the magnetic field when the applied voltage is removed. The remnant field can cause inrush current problems when the transformer is re-energized
- Coercive Force The amount of reverse magnetic field which must be applied to a magnetic material to make the magnetic flux return to zero.

Transformer Design Issues – Inrush Current

For the 480V, 600kVA transformer

$$i_{max} = \frac{10^3 * h * A_c * ((B_r + 2 * B_{max}) - 130)}{3.2 * N_p * A_s}$$

- i_{max} = maximum instantaneous current in amperes
- $h = the \ length \ of \ the \ coil \ in \ inches$
- A_c = the crossectional area of the core in sq inches
- B_{max} = Maximum flux density=10,500G=1.05T=68 kilolines per square inch
- B_r = residual flux density in kilolines (Maxwells) per square inch = 60% of 1.05T, expressed as 41 kilolines per square inch
- N_p = number of primary turns

$$A_s$$
 = effective square inches of the air-core magnetic field

Example
$$I_{fl} = \frac{600kVA}{\sqrt{3} * 480V} = 722A$$
, the inrush current is

$$i_{inrush} = \frac{10^3 * 40 * 46.5 * ((43 + 2 * 71) - 130)}{3.2 * 60 * 69.4} = 6.56 kA$$

This is about 9X the transformer full load (operating) current

Reduce the inrush current by increasing the number of primary turns and/or increasing the effective area of the air-core magnetic field

June 2012

Section 7 - Magnetics

Transformer Losses

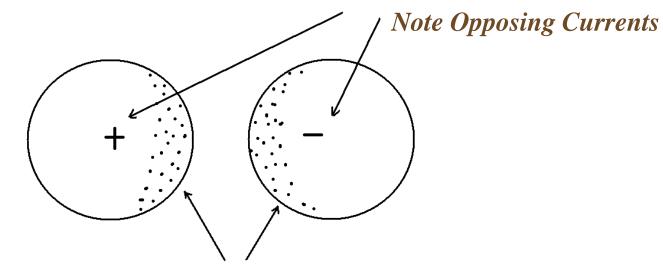
There are always energy losses in transformers. These energy losses generate heat in the form of core losses and winding losses. The losses are from the following sources:

- 1. Hysteresis loss from sweeping of flux from positive to negative and the area enclosed by the loop is the loss. Hysteresis loss is due to the energy used to align and re-align the magnetic domains. The smaller the loop area, the smaller the energy loss per cycle
- 2. Eddy current loss from the circulating currents within the cores due to flux generated voltages.
- 3. Copper or winding loss. This is also dependent on the wire size, switching frequency, etc. Skin effect and proximity effect will contribute to this loss.

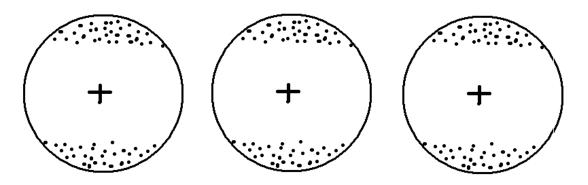
Skin Effect

- As the frequency of a given ac current in a conductor is increased, the power dissipation increases
- We ascribe this to an increase in ac resistance of the conductor but in actuality it is due to a rearrangement of the current distribution within the conductor
- The increase in loss is due to a tendency for the current to concentrate on the perimeter of the conductor rather than being uniform over the conductor area as it would be at dc
- This effect becomes more severe as frequency is increased
- This is called "skin effect"

$$\delta = \frac{1}{\sqrt{\pi f \,\mu \sigma}} \quad meters$$

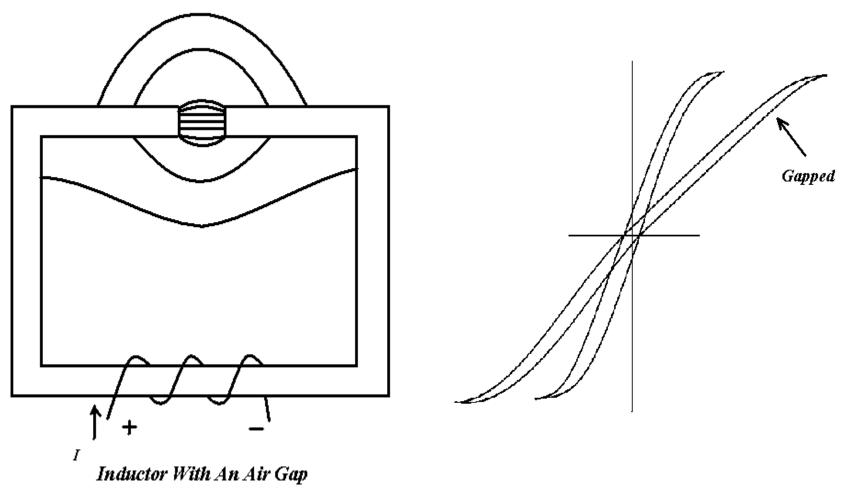

This is the depth where the fields or current in a conductor have decreased to 37% of their nominal value. In other words 63% of the current is carried in this depth.

Section 7 - Magnetics


Proximity Effect

- A current carrying conductor will generate a magnetic field
- This field can induce eddy currents in nearby conductors, increasing losses in addition to any skin effect. The eddy currents obey Lenz's Law. They flow in a direction that reduces the flux in the conductor
- This is referred to as "proximity effect"
- In a transformer or inductor, the inner windings operate in a field created by the outer windings
- This can also limit the conductor size
- As a general rule the wire diameter or the layer thickness is usually less than twice the skin depth at the operating frequency. For multi-layer windings wire diameters of less than 0.5 skin depth may be required.

Proximity Effect


Current Concentrates At One Side

Proximity Effect - Multiple Parallel Wires

Section 7 - Magnetics

Effect of Air Gap

- They are unavoidable in many cores
- In an inductor they permit increased energy storage for a given B by reducing the effective permeability
- Air gaps also stabilize the inductance value for both bias and manufacturing variations
- In general gaps are undesired in transformers but very useful in inductors
- An air gap may be discrete or distributed

Basic Equation for An Inductor

$$L = \frac{\mu_0 \mu_r N^2 A_c}{\mu_r l_g + l_c}$$

where

N = the number of winding turns (dimensionless)

 A_c = the core cross sectional area in m^2

 l_c = the length of the magnetic path in the core in m

 l_g = the effective length of the air gap in m

 $\mu_r = core material permeability under the operating conditions$ $<math>\mu_r$ is dimensionless

$$\mu_0 = \frac{4\pi * 10^{-7} H}{m}$$

Inductors

Purposes

- Used as filters for smoothing power supply ripple
- Used as fault current limiting reactors in AC power currents
- Used to limit di/dt in certain pulsed circuits

Requirements

- Must carry high DC current
- Must select core size that is able to store the required magnetic energy (volt-seconds)
- An air gap is sometimes employed to extend DC current capability without saturating. Iron and Ferrites are manufactured with distributed air gaps.

- Section 8 Controls
- Mathematical Preliminaries
 - Differential Equations
 - Linear Systems
 - Impulse and Step Functions
 - Frequency Domain and Transforms
- Electric Circuit Theory
- <u>Stability</u>
 - Zero Flux Current Transductors
 - <u>Shunt Resistors</u>
- Feedback Loops
- Power Supply Controllers

Mathematical Preliminaries - Differential Equations

Differential equations describe systems that change with time For a system with time varying quantities, u(t), y(t), that satisfy

the differential equation

$$\frac{dy(t)}{dt} = a u(t)$$

y(t) depends on its past values as well as those of u(t)

$$\frac{dy(t)}{dt} \equiv \lim_{\Delta t \to 0} \frac{y(t_0 + \Delta t) - y(t_0)}{\Delta t} = au(t)$$

$$y(t_{0} + \Delta t) \cong y(t_{0}) + \Delta t \, a \, u(t_{0})$$

Continuing this to construct $y(t)$ at later times
$$y(t_{0} + 2\Delta t) \cong y(t_{0} + \Delta t) + \Delta t \, a \, u(t_{0} + \Delta t) \cong y(t_{0}) + \Delta t \, a \, u(t_{0}) + \Delta t \, a \, u(t_{0} + \Delta t)$$
$$= y(t_{0} + \Delta t) = y(t_{0}) + \Delta t \, a \, u(t_{0} + \Delta t) = y(t_{0}) + \Delta t \, a \, u(t_{0} + \Delta t)$$

$$y(t_0 + N\Delta t) \cong y(t_0) + a\sum_{n=0} \Delta t u(t_0 + n\Delta t)$$

Resulting in the integral equation

$$y(t) = y(t_0) + a \int_{t_0}^t u(\tau) d\tau$$

June 2012

Section 8 - Controls

Mathematical Preliminaries - Linear Systems

A linear system, h[x], is defined such that for functions x_1 and x_2 if

 $y_1 = h[x_1] \text{ and } y_2 = h[x_2]$

then $ay_1 + by_2 = h[ax_1 + bx_2]$ *This is the principle of superposition*

Examples of Linear Systems

Constant gain system

Sum of two constant gain systems

$$h_1[x] = A_1 x$$

 $h_2[x] = A_2 x + A_3 x$

Integrals

$$h_3[x] = \int_{t_0}^t x(\tau) d\tau$$

 $h_4\left[x\right] = \frac{dx}{dt}$

We are interested in linear systems because there are many mathematical tools available for use on linear systems and because many common physical systems and components are linear: Resistors, Inductors, Capacitors

Mathematical Preliminaries - Example of a Nonlinear System

 $h[x] = e^{x}$ This is a nonlinear system Proof: $e^{(ax+bx)} = e^{ax}e^{bx} \neq a e^{x} + b e^{x}$

We note that non-linear systems can often be approximated by linear systems

Mathematical Preliminaries - Impulse and Step Functions

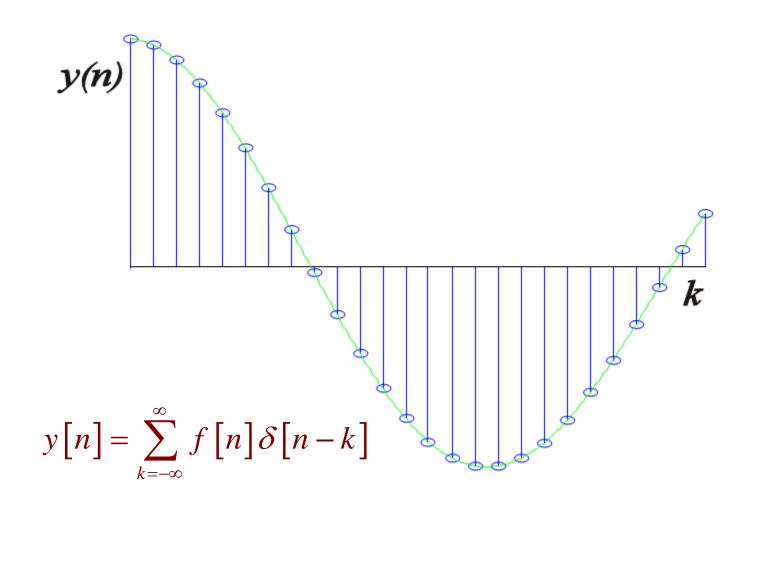
- The problems we investigate involve a control signal acting on a system
- We simplify the solution by representing the control signal as a sequence of elementary functions
- Then we need to characterize the response of our system to these elementary functions
- Finally, we use the properties of linear systems to obtain the response of the system with the control signal acting on it
- Two such commonly used elementary functions are the impulse function and the step function

Mathematical Preliminaries - Impulse Functions - Discrete and Continuous

Continuous Dirac delta function, $\delta(t)$ properties

 $\delta(t) = 0, \quad t \neq 0 \qquad \delta(t) = \infty, \quad t = 0$ $\int_{-\infty}^{\infty} \delta(t) dt = 1$

Functional representation


$$y(t_0) = \int_{-\infty}^{\infty} f(t) \delta(t - t_0) dt$$

Discrete impulse function properties $\delta[n] = 0, \quad n \neq 0 \qquad \delta[n] = 1, \quad n = 0$ Functional representation

$$y[n] = \sum_{k=-\infty}^{\infty} f[n]\delta[k-n]$$

 $Height = \infty$ Width = 0Area = 1t=0Height = 1Width = 0Area = 0t=0

Mathematical Preliminaries - Function as Sum of Delta Functions

Mathematical Preliminaries - Continuous Step Function Properties Height - 1

 $U(t) = 0, \quad t < 0$ $U(t) = 1, \quad t \ge 0$

$$Height = 1$$

$$t = 0$$

$$t = \infty$$

Relation to impulse

 $\delta(t) = \frac{dU(t)}{dt}$

Functional representation

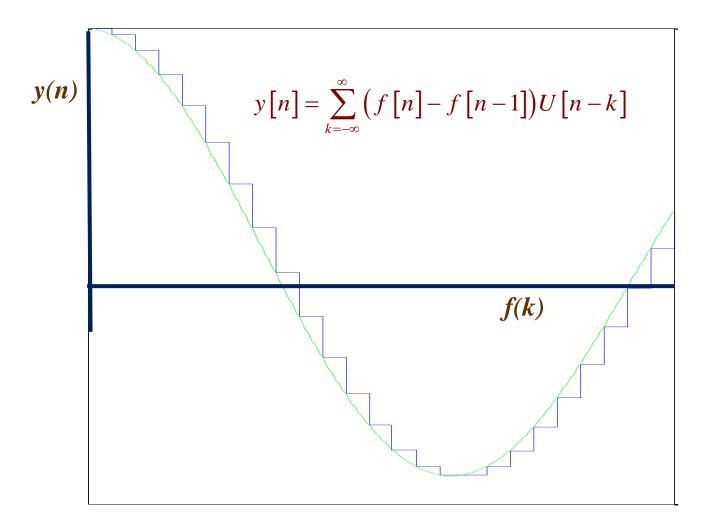
$$y(t_0) = -\int_{-\infty}^{\infty} f(t) \frac{dU(t_0 - t)}{dt} dt$$

$$= -f(t)U(t_0 - t)\Big|_{t=-\infty}^{t=\infty} + \int_{-\infty}^{\infty} \frac{df(t)}{dt}U(t_0 - t)dt$$

$$= \int_{-\infty}^{\infty} U(t_0 - t) \frac{df(t)}{dt} dt + f(-\infty)$$

Mathematical Preliminaries - Discrete Step Function

Heaviside step function


Properties	Height = 1	
U[n] = 0, n < 0		
$U[n] = 1, n \ge 0$		
Relation to impulse	n = 0	$n = \infty$

 $\delta[n] = U[n] - U[n-1]$

Functional representation

$$y[n] = \sum_{k=-\infty}^{\infty} f[n]\delta[n-k]$$
$$y[n] = \sum_{k=-\infty}^{\infty} f[n](U[n-k]-U[n-k-1])$$
$$y[n] = \sum_{k=-\infty}^{\infty} (f[n]-f[n-1])U[n-k]$$

Mathematical Preliminaries - Function Approximation with Steps

Mathematical Preliminaries - Complex Exponentials

• Introducing the complex exponential according to the Euler formula

 $P = A^* \angle \theta$ $A^* e^{j\omega t} = A^* (\cos \omega t + j \sin \omega t)$ $\omega = 2^* \pi^* f$ $j = \sqrt{-1}$

- Since the magnitude of the complex exponential is always 1, this function gives us a steady state eigenfunction of the constant, differential and integral operators we will need to analyze circuits
- If the input to a system consists of a single frequency, the output will consist of just that same frequency, although with a different amplitude and phase than the input.
- The phasor amplitude is the eigenvalue of that frequency

Eigenvalue = proper value or characteristic roots

For example the roots of the quadratic formula y=(-b+/-SQRT)bsquared-4ac)/2a=eigenvalues or the roots of the equation

Mathematical Preliminaries - Fourier Transforms

- Fourier transforms represent some of the Eigen functions as combinations (sums/integrals) of complex exponentials.
- The standard Fourier transform pair for continuous functions is

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt \qquad f(t) = \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} \frac{d\omega}{2\pi}$$

- For periodic systems, with a period, T, the only complex eigenvectors that can be used to represent the signals are those whose frequencies are multiples of the "fundamental harmonic", $\omega = 2\pi/T$.
- Periodic functions are represented by the infinite sums of the appropriately weighted harmonics. In this case the Fourier transform pairs are

$$F_{n} = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-j\frac{2\pi n}{T}t} dt \qquad f(t) = \sum_{n=-\infty}^{\infty} F_{n} e^{j\frac{2\pi n}{T}t}$$

Mathematical Preliminaries - Fourier Series

Using Euler's formula, we can also represent these relations as

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n \cos \frac{2\pi n}{T} t + \sum_{n=1}^{\infty} b_n \sin \frac{2\pi n}{T} t$$

$$a_0 = \frac{1}{T} \int_0^T f(t) dt$$

$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \cos \frac{2\pi n}{T} t \, dt$$

$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(t) \sin \frac{2\pi n}{T} t \, dt$$

Mathematical Preliminaries - Advantages of the Frequency Domain

• When working with linear, time-invariant systems, there are several advantages to moving from the time domain to the frequency domain.

If $x_1 \rightarrow y_1$, $x_2 \rightarrow y_2$ and if $ax_1 \rightarrow ay_1$, $bx_2 \rightarrow by_2$ and if $ax_1 + bx_2 \rightarrow ay_1 + by_2$, then system is linear

If $x(t) \rightarrow y(t)$ and if $x(t-t_0) \rightarrow y(t-t_0)$, then system is time-invariant

• Each frequency corresponds to a unique eigenfunction of the system and the system response for each frequency can be calculated independently.

Mathematical Preliminaries - System Transfer Function

Given an input, x(t), a system, h(t), and an output, y(t), the Transfer Function is the Fourier Transform of h(t)

$$H(\omega) = \int_{-\infty}^{\infty} h(t) e^{-j\omega t} dt$$
$$H(\omega) = \frac{Y(\omega)}{X(\omega)}$$

where

$$Y(\omega) = \int_{-\infty}^{\infty} y(t) e^{-j\omega t} dt$$
$$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

Mathematical Preliminaries - Laplace Transforms

- There is another transform often used in system analysis, the Laplace transform.
- It is closely related to the Fourier transform in that it is also based on system eigenfunctions.
- In addition to "real" frequencies, it also uses complex frequencies that allow it to also study decaying solutions.
- As with Fourier transform, integral must converge in order for transform to exist.
- It is convenient to use Laplace transforms for the study of solutions to problems with initial conditions.
- The variable used in Laplace transforms is often

$$s = j \omega$$

Mathematical Preliminaries - Laplace Transforms

The definition of the Laplace transform is $F(s) = \int f(t)e^{-st} dt$

Some simple transforms

 $f(t) = \delta(t - t_0) \quad t_0 > 0 \qquad F(s) = 1$ $F(s) = \frac{1}{s}$ f(t) = U(t)

Unit step with delay

$$f(t) = U(t - t_0) \quad t \ge 0 \qquad F(s) = \frac{e^{-st}0}{s}$$

Exponentially decreasing function, starting at t=0

$$f(t) = e^{-at}U(t) \quad a \ge 0 \qquad \qquad F(s) = \frac{1}{s+a}$$

Laplace transform of a derivative

let
$$f(t) = \frac{dg(t)}{dt}$$
 $F(s) = sG(s) - g(0)$

June 2012

Mathematical Preliminaries - Inverting Laplace Transforms

- Laplace Transforms simplify the calculations of system behavior, but these calculations are performed in the s domain.
- In order to return to a time domain function, the s domain function must be inverted.
- Inversion of these functions can be performed via complex variable techniques.
- Much more commonly, one uses readily available tables of functions and their Laplace transform pairs
- There also exist such transform tables for Fourier transforms.

http://www.vibrationdata.com/Laplace.htm

http://mathworld.wolfram.com/FourierTransform.html

Kirchoff's current law - sum of all current into a node is 0 Kirchoff's voltage law - sum of all voltages around a loop is 0 Voltage-current relations across passive elements

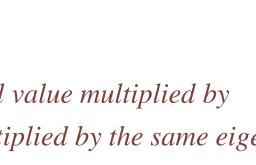
$$V = R * I \qquad V = L * \frac{di}{dt} \qquad I = C \frac{dv}{dt}$$
$$v(t) = Ri(t) + L \frac{di(t)}{dt} \qquad Real magnet with R and L components$$

Represent the current i(t) as a complex exponential $i(t) = I e^{j\omega t}$ then the equation for v becomes $Ve^{j\omega t} = R I e^{j\omega t} + L j \omega I e^{j\omega t} - i(0) = (R + j\omega L) I e^{j\omega t}$ $I e^{j\omega t}$ is the eigenfunction $(R + j\omega L)$ is the eigenvalue, which, is the impedance, $Z(\omega)$ **Electrical Circuit Theory - Circuit Analysis Using Calculus**

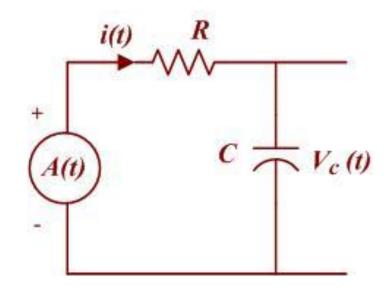
$$KVL - A(t) + Ri(t) + v_c(t) = 0 \quad But \ i(t) = C \frac{dv_c(t)}{dt}$$

System equation

$$RC\frac{dv_c(t)}{dt} + v_c(t) = A(t)$$
 Let $RC = \tau$


Solution

$$v_{c}(t) = v_{c}(0)e^{-\frac{t}{\tau}} + \tau^{-1}e^{-\frac{t}{\tau}}\int_{0}^{t}A(t)e^{\frac{t}{\tau}}dt$$


For the case when A is constant

$$v_{c}(t) = \left[v_{c}(0)e^{-\frac{t}{\tau}} + A(1 - e^{-\frac{t}{\tau}}) \right]$$

This is now in the form of an initial value multiplied by an eigenfunction and an input multiplied by the same eigenfunction

Electrical Circuit Theory - Circuit Analysis Using Transforms

Repeat the same problem using Laplace transforms

$$C\frac{dv_{c}(t)}{dt} = \frac{\left[-v_{c}(t) + A(t)\right]}{R}$$

Transform both sides

$$C\left[sV_{c}(s) - v_{c}(0)\right] = -\frac{1}{R}V_{c}(s) + \frac{1}{R}A(s)$$

$$\left(sC + \frac{1}{R}\right)V_{c}(s) = Cv_{c}(0) + \frac{1}{R}A(s)$$

$$V_{c}(s) = \frac{1}{s + \tau^{-1}}v_{c}(0) + \frac{\tau^{-1}}{s + \tau^{-1}}A(s) \qquad let \ \tau^{-1} = \alpha$$

For the case when A is constant

$$=\frac{1}{s+\alpha}v_{c}\left(0\right)+A\frac{1}{s}\frac{\alpha}{s+\alpha}$$

Take the inverse transform

$$v_c(t) = v_c(0)e^{-\alpha t} + A(1 - e^{-\alpha t})$$

$$v_c(t) = v_c(0)e^{\frac{-t}{\tau}} + A(1 - e^{\frac{-t}{\tau}})$$

Same result as on the previous page

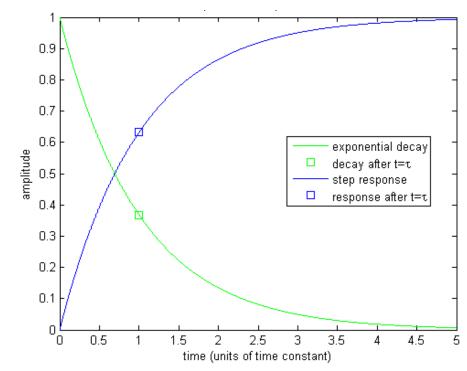
Take the inverse transform to obtain

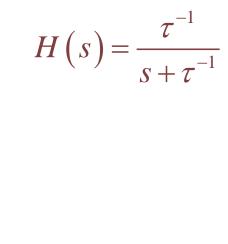
$$v_{c}(t) = v_{c}(0)e^{-\frac{t}{\tau}} + A\left(1 - e^{-\frac{t}{\tau}}\right), \text{ as before}$$

From the transform equation

$$V_{c}(s) = \frac{1}{s + \tau^{-1}} v_{c}(0) + \frac{\tau^{-1}}{s + \tau^{-1}} A(s)$$

we can immediately read off the system transfer function


as the ratio of $\frac{V_c(s)}{A(s)} = \frac{\tau^{-1}}{s + \tau^{-1}}$ when the initial conditions are zero.


We also see that both the transfer function and the response to the initial conditions have the same poles and therefore similar frequency characteristics

June 2012

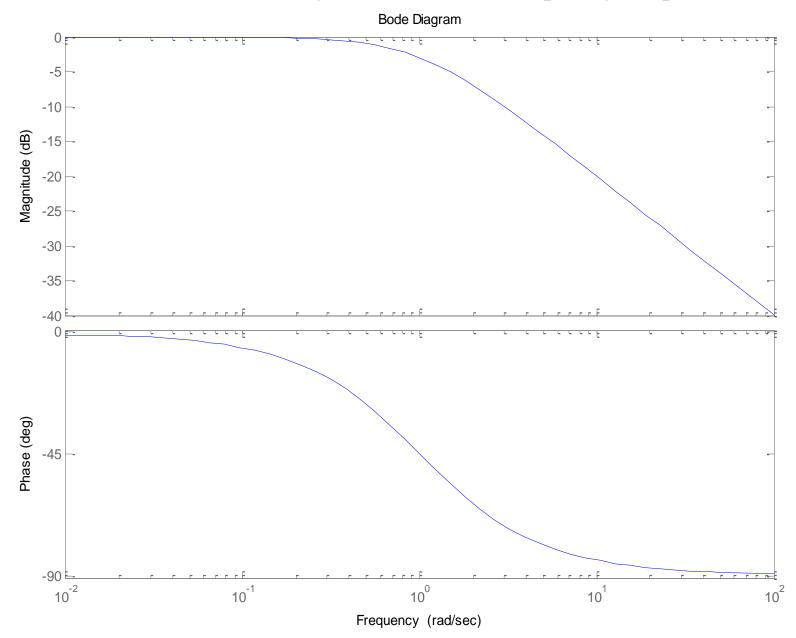
Electrical Circuit Theory - One Pole Low-Pass Systems

- Dynamics are determined by the numerator and denominator of transfer function
- The values of s for which the numerator or denominator vanishes are called "zeroes" and "poles"
- One pole circuits all have the same shape response and depend only on the time constant, $\tau = RC$ or L/R
- A one pole circuit rises to 63% or decays to 37% of its final value at $t = \tau$

Section 8 - Controls

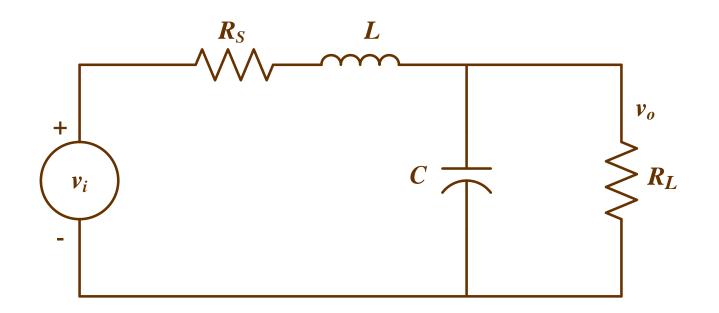
Electrical Circuit Theory - One Pole Low Pass Frequency Response

- Since we will analyze our systems primarily in the frequency domain, it is important to understand the properties of a one pole system as a function of frequency.
- We can calculate the transfer function using algebra on the system impedances


$$H(j\omega) = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}}$$
$$= \frac{\tau^{-1}}{j\omega + \tau^{-1}}$$
$$= \frac{1}{1 + j\omega \tau}$$

Electrical Circuit Theory - One Pole LP Frequency Response

$$\begin{aligned} Magnitude \quad \left| H\left(j\omega\right) \right| &= \frac{1}{\sqrt{1 + \left(\omega\tau\right)^2}} \\ \left| H\left(j\omega\right) \right|_{dB} &= 20 \log_{10} \left| H\left(j\omega\right) \right| \\ &= -10 \log_{10} \left[1 + \left(\omega\tau\right)^2 \right] \\ &\cong 0 \quad for \ \omega\tau <<1 \\ 3 \ dB \ (half-power) \ point &= -10 \log_{10} 2 \quad for \ \omega\tau = 1 \\ 20 \ dB \ per \ decade \ attenuation \ &\cong -20 \log_{10} \omega - 20 \log_{10} \tau \quad for \ \omega\tau >>1 \\ \end{aligned}$$


$$\begin{aligned} Phase \qquad \angle H\left(j\omega\right) &= -\arctan\left(\omega\tau\right) \\ &\cong 0 \qquad \omega\tau <<1 \\ &= -45^0 \qquad \omega\tau = 1 \\ &\cong -90^0 \qquad \omega\tau >>1 \end{aligned}$$

Electrical Circuit Theory - One Pole LP Frequency Response

Section 8 - Controls

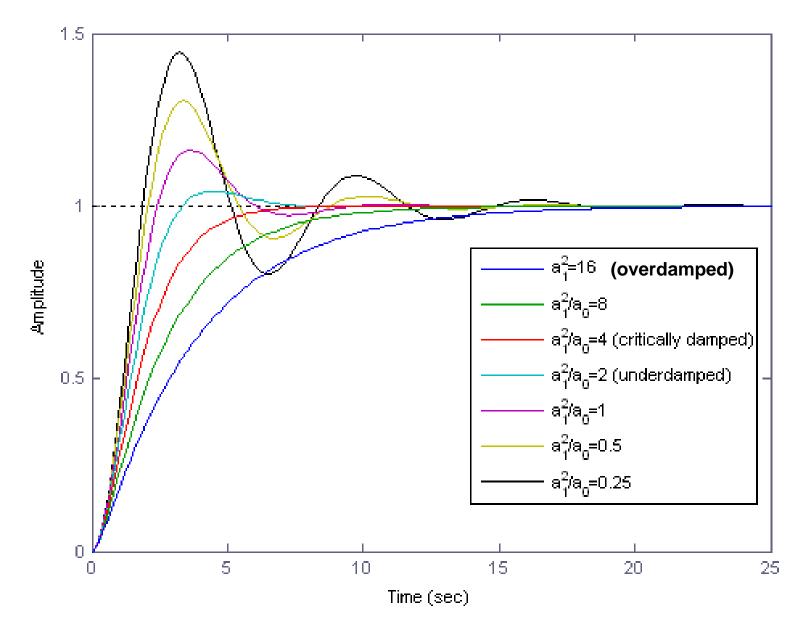
Electrical Circuit Theory - Two Pole Low Pass Frequency Response

Electrical Circuit Theory - Two Pole Systems

Find transfer function of voltage divider

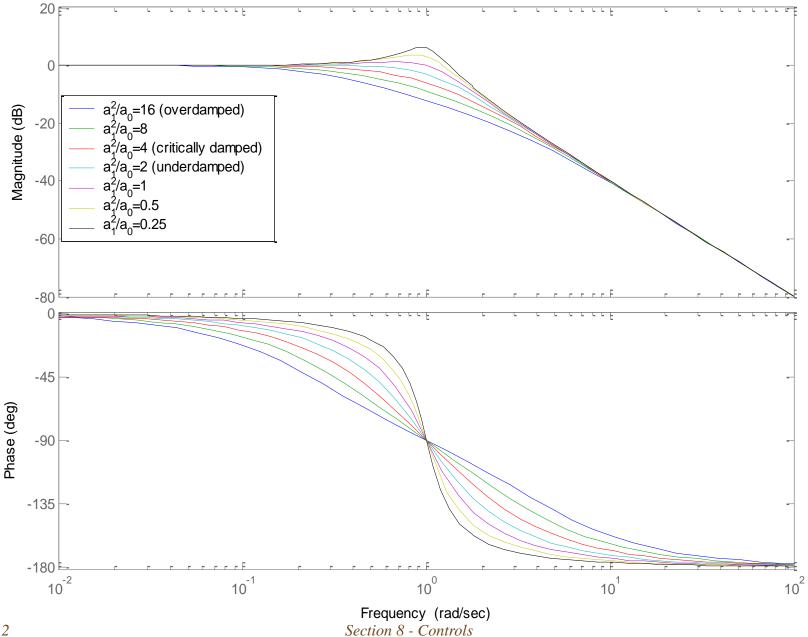
$$H(j\omega) = \frac{\frac{R_L/j\omega C}{R_L + 1/j\omega C}}{R_S + j\omega L + \frac{R_L/j\omega C}{R_L + 1/j\omega C}} = \frac{R_L}{-R_L LC\omega^2 + j(R_L R_S C + L)\omega + (R_S + R_L)}$$

$$= \frac{1}{LC} \frac{1}{-\omega^{2} + j(R_{s}/L + 1/R_{L}C)\omega + (1 + R_{s}/R_{L})(1/LC)} \qquad let \ \omega_{0}^{2} = 1/LC$$
$$= \frac{\omega_{0}^{2}}{-\omega^{2} + j(R_{s}/L + 1/R_{L}C)\omega + (1 + R_{s}/R_{L})\omega_{0}^{2}}$$


This has the form

$$H(s) = \frac{a_0}{s^2 + a_1 s + a_0} = \frac{a_0}{(s - s_1)(s - s_2)}$$
$$s_1 = -\frac{a_1}{2} + \sqrt{\left(\frac{a_1}{2}\right)^2 - a_0} \qquad s_2 = -\frac{a_1}{2} - \sqrt{\left(\frac{a_1}{2}\right)^2 - a_0}$$

Electrical Circuit Theory - Two Pole Systems


- Two pole circuits have two degrees of freedom. One degree sets the system time scale. One degree sets the stability parameter
- For a given time scale, the more stable the system, the slower its response. Two pole systems can be separated into three categories
- Over-damped system $a_1^2 / a_0 > 4$
 - Both poles are real
 - No oscillation in step response
- *Critically damped system* $a_1^2 / a_0 = 4$
 - Both poles are real and identical
 - Fastest step response with no oscillation
- Under-damped system $a_1^2 / a_0 < 4$
 - Poles are complex conjugates of each other
 - Step response is faster than the other two, but has overshoot

Electrical Circuit Theory - Two Pole System Step Response

Electrical Circuit Theory - Two Pole System Frequency Response

- **Electrical Circuit Theory Two Pole System Frequency Response** Summarizing
 - Low and high frequency behavior is almost independent of a_1
 - At low frequencies the magnitude is constant and the phase approaches 0^{0}
 - At high frequencies the magnitude decreases 40 dB/decade (20 dB/pole) and the Phase approaches -180[°] (-90[°]/pole)
 - At $\omega_0 a_1$ determines attenuation and phase slope
 - Increased rise time and overshoot are the result of additional response near ω_0
 - A resonant circuit is a lossless ($R_S = 0$ and $R_L = \infty$ in diagram) second order circuit often encountered in pulsed-power systems. Real systems have loss (and damping), but can be well approximated by resonant circuits

• The resonant frequency is
$$f = \frac{l}{2\pi\sqrt{LC}}$$

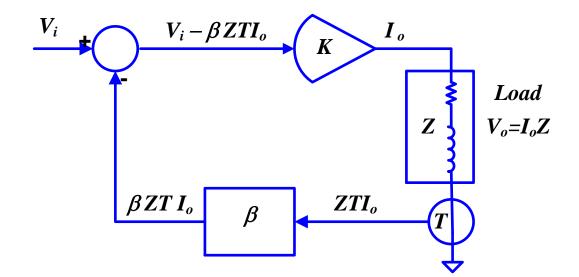
Electrical Circuit Theory - Bode Plots

- Bode plots are a standard way to present properties of feedback systems
- Each pole
 - Corresponds to a 6 dB/octave (20 dB/decade) roll-off in amplitude above the pole
 - Represent magnitude on log-log plot with a straight line that has a 6 dB/octave kink at the pole
 - Corresponds to a 90 degree phase shift at high frequencies
 - 0 angle shift at $f_c/10$
 - -45 degree shift at f_c
 - -90 degree shift at $10*f_c$

Electrical Circuit Theory - Bode Plots

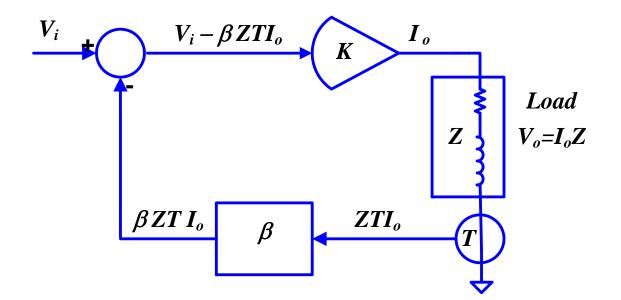
- Complex conjugate poles are slightly more complex Far from the poles they have the same behavior as two real poles
 - 12 dB/octave
 - 180 degree phase shift

Near the pole frequency, their behavior depends on the damping factor of the complex pole pair


• Similar rules exist for zeros

6 dB/octave increase in gain above zero

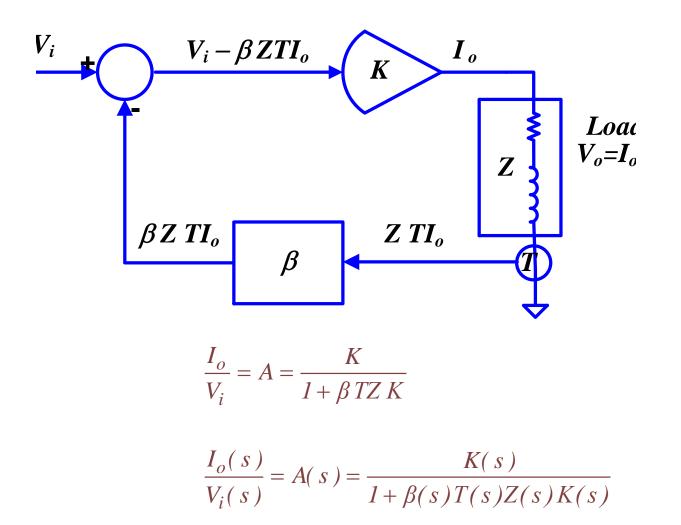
+45 degree phase shift at the zero


Electrical Circuit Theory - Feedback

- Purpose of a power supply is to provide stable power
- Use feedback circuits to
 - Regulate a system, that is, keep the output fixed at a desired constant value
 - Control a system, that is, force the output to follow a variable control input

 $I_o = K(V_i - \beta T Z I_o)$ rearranging gives $\frac{I_o}{V_i} = A_{CL} = \frac{K}{1 + \beta T Z K}$

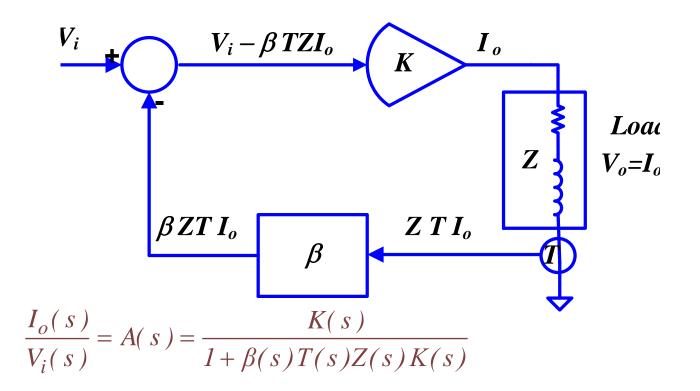
- A_{CL} is called the closed loop gain
- For β TZ K >> 1 $A_{CL} = \frac{1}{\beta TZ}$
- Power supply characteristics (K) relatively unimportant, gain dependent upon $\beta T Z$


The feedback loop acts as an active null detector so that the output always follows the input

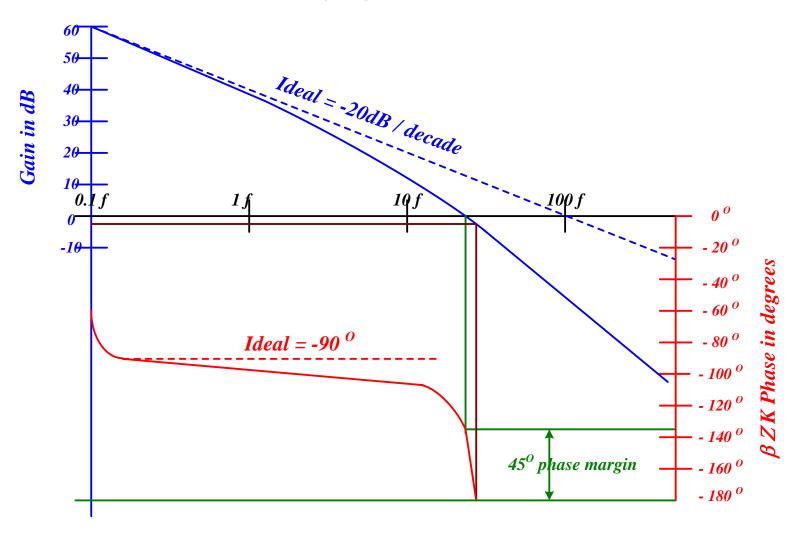
$I_o = K \left(V_i - \beta Z T I_o \right)$		
V_i	$V_i - \beta Z T I_o \rightarrow 0$	I_o
$V_i \downarrow$	$V_i - \beta Z T I_o \rightarrow 0$	$I_o \downarrow$
I _o	$V_i - \beta Z T I_o \rightarrow 0$	$I_o \downarrow$
$I_o \downarrow$	$V_i - \beta Z T I_o \rightarrow 0$	I_o

Three Types of Stability

- Stability against oscillation
- Stability against short and long-term output voltage or current drift
- Stability (Regulation) against rapid, short changes in line voltage or load characteristics


Stability Against Oscillation

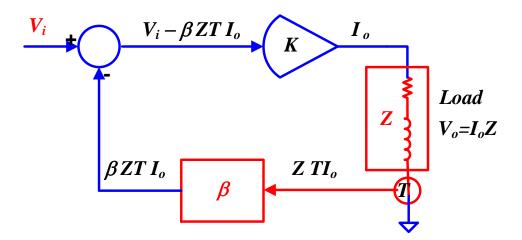
All the elements of the transfer function, gain, or in this case, the transconductance, are all functions of frequency $s = j\omega = j2\pi f$


Section 8 - Controls

Stability Against Oscillation

Very simply : $1+\beta(s) T(s)Z(s)K(s)$ must not = 0 or approach 0 $\beta(s) T(s) Z(s) K(s)$ must not = -1 in order to avoid oscillations $|\beta|e^{j\alpha}|T|e^{j\beta}|Z|e^{j\chi}|K|e^{j\varphi} = |\beta|T||Z||K|e^{j(\alpha+\beta+\chi+\varphi)}$ $|\beta||T||Z||K| \neq 1$ when $\alpha + \beta + \chi + \varphi = \pm 180^{\circ}$

Stability Against Oscillation


- For stability, the phase shift must be $< 180^{\circ}$ when the |gain| = 1
- For stability, the |gain| must be < 1 when the phase shift is 180 O

Factors Affecting Power Supply Drift Stability

Short-Term (24 hour) Stability - essentially stability against cyclic or diurnal temperature changes.

$$\frac{I_o}{V_i} = A_{CL} = \frac{K}{1 + \beta TZ K}$$

Since $\beta TZ K >> 1$, $\frac{I_o}{V_i} = A_{CL} = \frac{1}{\beta TZ}$ K is unimportant,

behavior dependent on load Z, transductor T, feedback factor β , and upon V_i stability

The part that has the greatest influence short-term stability is the feedback signal β because the feedback acts as an active null detector. V_i is sometimes temperature stabilized

Factors Affecting Short-Term (24 hour) Power Supply Drift Stability

- The diurnal temperature cycle can be as much as 40 °F (22 °C). This globally affects the internal parts as well as the external setpoint
- All parts (resistors, capacitors, semiconductors, op-amps, etc) are temperature dependent.
- The load is also temperature dependent and is subject to the same diurnal changes
- The input line voltage will change during the course of the day as more load is consumed or shed

General

- Use low-temperature coefficient parts or balance (+) coefficient parts with (-) coefficient parts
- Enclose the power supply in a controlled environment where temperature change is held to a minimum
- 10 to 50 ppm attainable w/o temperature control (5 to 10 ppm) with temperature control

For the read-back signal, use:

- Precision, low-temperature coefficient current transductors $(0.3 \text{ ppm} / {}^{O}C)$ with metal film burden resistor $(0.9 \text{ ppm} / {}^{O}C) \cong 1.2 \text{ ppm} / {}^{O}C$
- Precision, low-temperature coefficient resistors for current shunt or voltage read-back (10 ppm / ^oC)

Stability - Zero Flux Current Transductors

LEM Model 866 0 - ±600 A ±400 mA out 0.3 ppm / ⁰ C DC - 100 kHz 10 kA / mS Separate burden resistor

LEM Model 860 Series 0 - ±1000 A, ±2000 A, ±3000 A ±10 V out 0.3 ppm / ⁰ C DC - 100 kHz 10 kA / mS

Stability - Isotek Model A-H, Manganin < 10 ppm/ OC Shunt Resistor

http://www.isotekcorp.com

Long-Term Stability

- All parts are subject to aging.
- Resistors increase or decrease in value
- Capacitor dielectrics breakdown
- Capacitor electrolytes dry out or evaporate and leak
- Semiconductor bias points change
- Op-amp scale, linearity, monotonicity, gain and offsets change with time

Factors That Affect Long-Term Stability

Stability Enhancement

- Accelerate initial aging components prior to intended use by baking at elevated temperatures
- Accelerate aging by exposure to electron beam

- *Two types of Regulation Load and Line*
- Classic definition of Load Regulation (0% is best)

$$%V_R = \frac{V_{NL} - V_{FL}}{V_{FL}} * 100\%$$
 % $I_R = \frac{I_{NL} - I_{FL}}{I_{FL}} * 100\%$

• Classic definition employing V_{NL} is usually not applicable. A limited version uses "decreased load or increased load" instead of a no-load condition

$$\% V_R = \frac{V_{DL} - V_{FL}}{V_{FL}} * 100\% \qquad \% I_R = \frac{I_{DL} - I_{FL}}{I_{FL}} * 100\%$$

• In addition, the recovery time for the power supply output voltage or current to return the original condition is also specified

"The power supply shall have a voltage regulation of 0.5% for load changes of \pm 5% from nominal with voltage recovery in ≤ 2 milliseconds"

Factors that Affect Stability (Regulation) Against Transient Effects

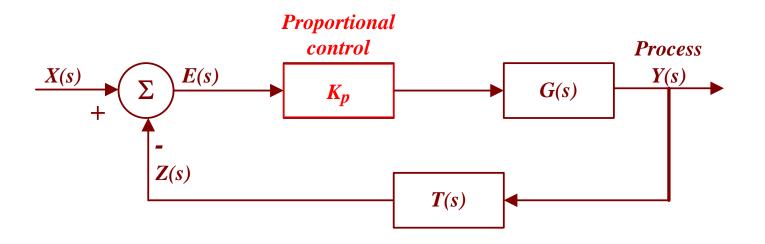
• Line Regulation – Definition (HL= output voltage under high line, NL= output voltage under nominal line, LL = output voltage under low line)

$$\% V_R = \frac{V_{HL} - V_{NL}}{V_{NL}} * 100\% \qquad \% I_R = \frac{I_{HL} - I_{NL}}{I_{NL}} * 100\%$$

$$\% V_R = \frac{V_{NL} - V_{LL}}{V_{NL}} * 100\% \qquad \% I_R = \frac{I_{NL} - I_{LL}}{I_{NL}} * 100\%$$

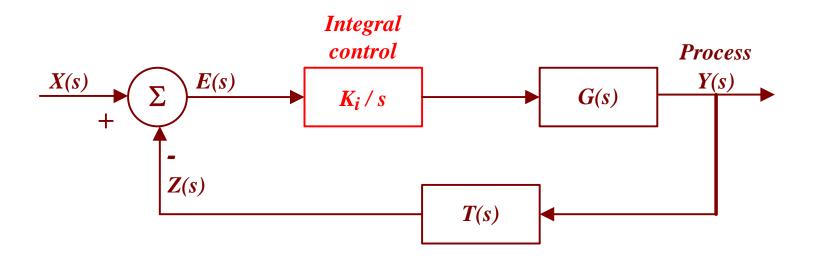
• In addition, the recovery time for the power supply output voltage or current to return the original condition is also specified

"The power supply shall have a voltage/current regulation of 0.5% for line changes of \pm 5% from nominal with voltage/current recovery in $\leq 2 \text{ mS}$ "

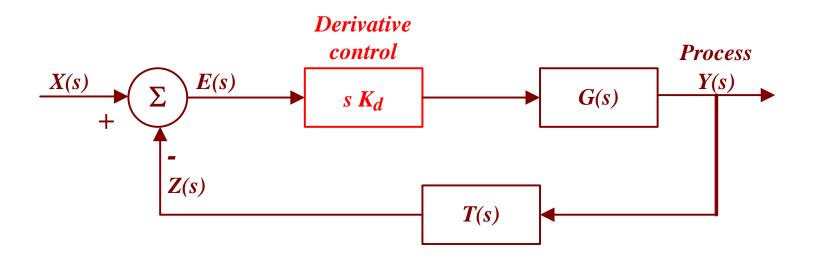

Factors that Affect Stability (Regulation) Against Transient Effects

The ability of a power supply to respond to a transient condition depends upon the speed, depth and duration of the transient. The transient can be mitigated by the use of:

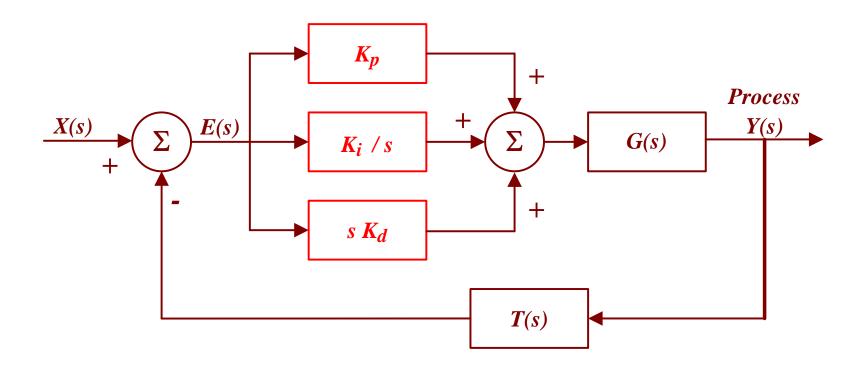
- Large filter capacitors and inductors in the input and output filters to maintain the input and output load voltage and current against line voltage changes and load changes..
- Employ fast regulating circuits. Regulating speed should be at least as fast as the fastest expected transient.


PID Loops - Proportional Control

- Earliest controllers proportional only
- Proportional control consists of just a gain
- It has good response to instantaneous changes in the process or other cause of error
- Control effort is the product of the error and a finite gain Kp
- Eventually effort is too small to reduce error to zero
- There is always an error it can never be eliminated


PID Loops - Integral Control

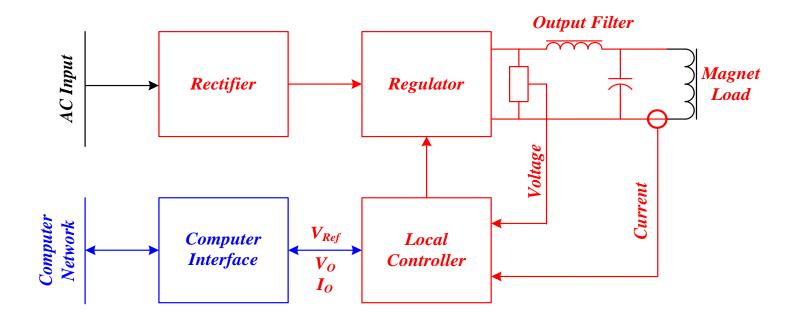
- Integral control consists of a pure integrator
- The control effort is now $\int e(t) dt$
- Eliminates DC errors
- Limits high frequency response
- Introduces a phase delay that can cause sluggishness or oscillation


PID Loops - Derivative Control

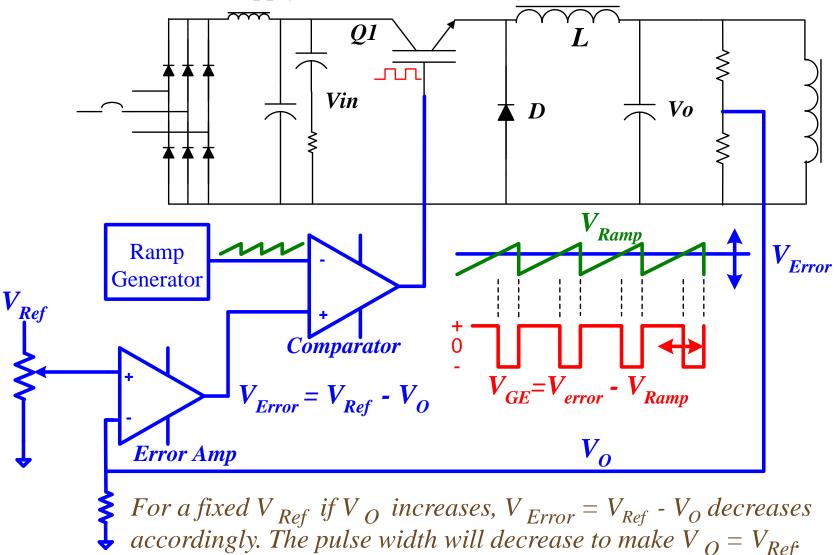
- *Responds to the change of the error signal*
- Control effort increases with frequency of error signal s K_d
- Useful either to cancel a pole or to predict periodic behavior
- Can emphasize high frequency noise

PID Loops - Summary

- *PID stands for Proportional, Integral, and Derivative control*
- Standard, general purpose classical control element
- *K_p* general cancelling of error signals
- *K_i eliminates DC error*
- *K_d* compensates for changes in the error signal or process

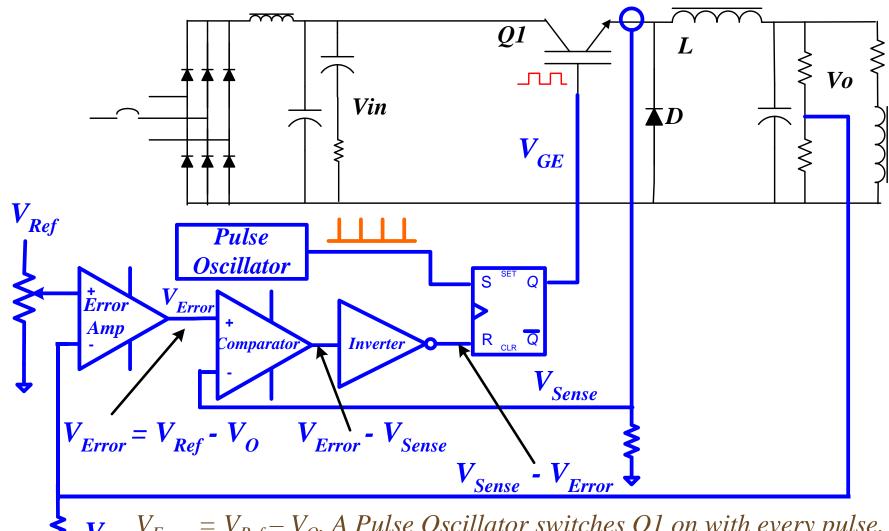

Stability and Feedback Summary

- *The transfer function is the relation between the input, x, and the output, y*
- y more closely approaches the desired output by increasing feedback gain
- The efficiency of feedback for a dynamic (time-varying) system involves not only the gains, but also the speed of the system response
 - Bandwidth is the frequency range over which the feedback achieves (close) to its nominal gain (3 dB point)
 - DC Response is a measure of how closely the system tracks a constant input. Improve the DC Response by increasing the loop gain
 - Step Response is the action of the system in response to an input step
 - Settling Time is how long it takes to settle to within a certain fraction of its final value
 - Overshoot is any ringing occurs as the system achieves its final value
 - Ramp response is a measure of how well the system follows an input ramp command

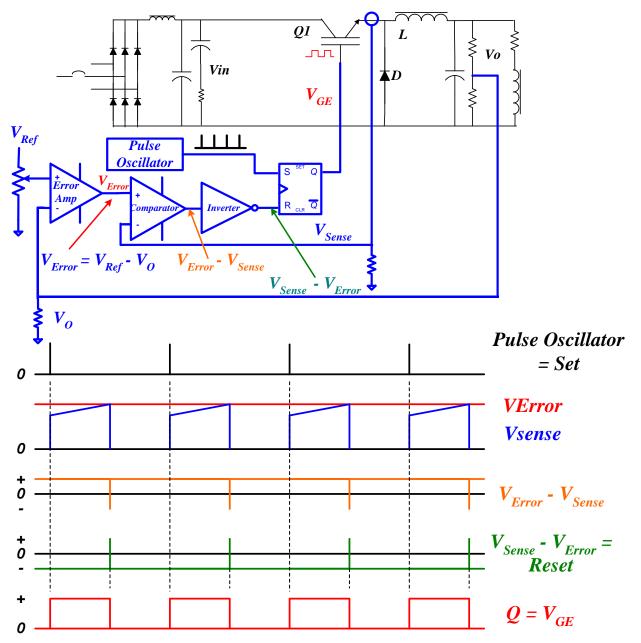

Power Supply Controllers

Purposes

- Set the output voltage or current to a desired value
- Regulate the output voltage or current to the desired value in the presence of line, load and temperature changes
- Monitor load and power supply actual versus desired performance



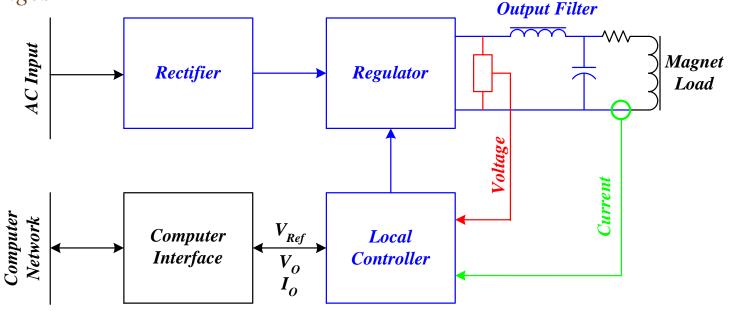
Power Supply Controllers - Voltage Mode Control

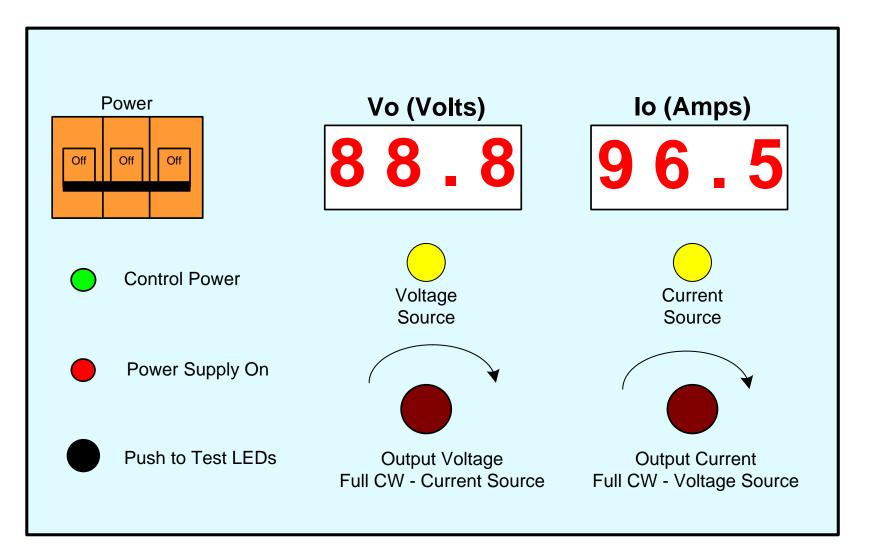

If V $_O$ decreases, V $_{Error}$ increases accordingly. The pulse width will increase to keep V $_O = V_{Ref}$

Power Supply Controllers - Current Mode Control

 V_0 $V_{Error} = V_{Ref} - V_0$. A Pulse Oscillator switches Q1 on with every pulse. L current is converted to a voltage by a sense resistor. The L current builds up to the threshold set by the error voltage which then turns off Q1 in order to keep the output voltage or current constant. Section 8 - Controls 471

Power Supply Controllers - Current Mode Control

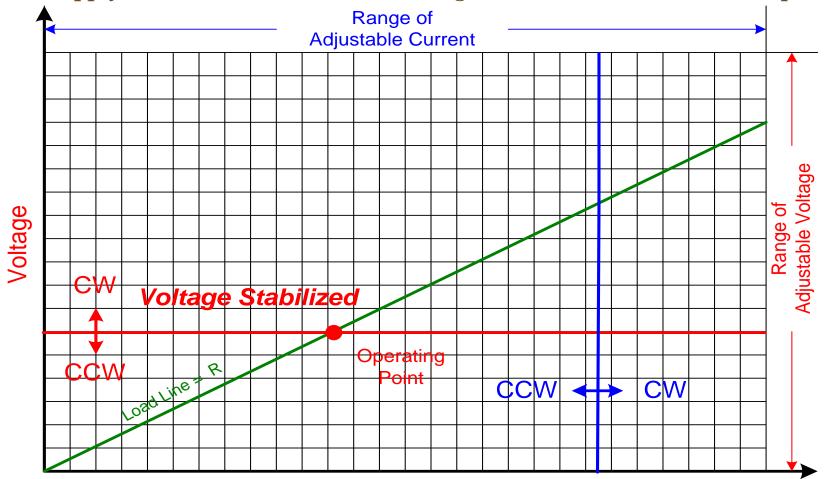

June 2012


Section 8 - Controls

Power Supply Controllers

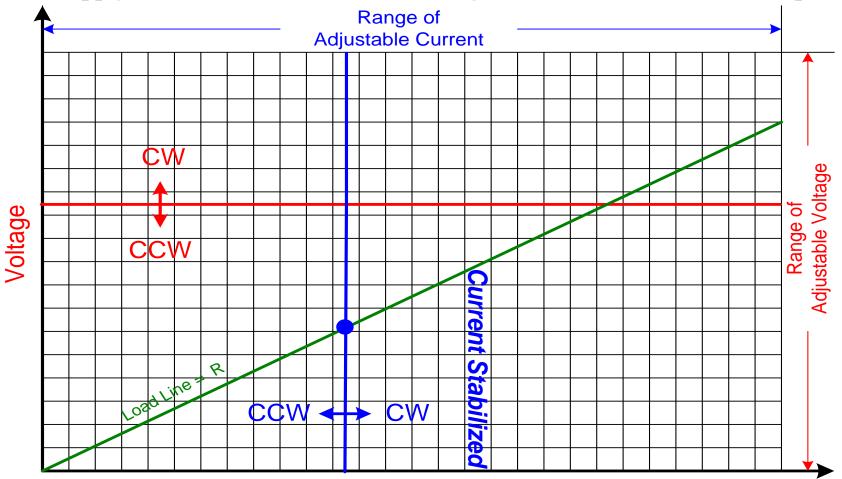
Summary

- *Typically 2 control loops voltage and current*
- *The outer loop defines the source type voltage or current stabilized*
- The outer loop has lower BW and corrects for drift due to slow temperature changes and aging effects
- The inner loop has higher BW and compensates for fast transients, AC line changes



Power Supply Front Panel

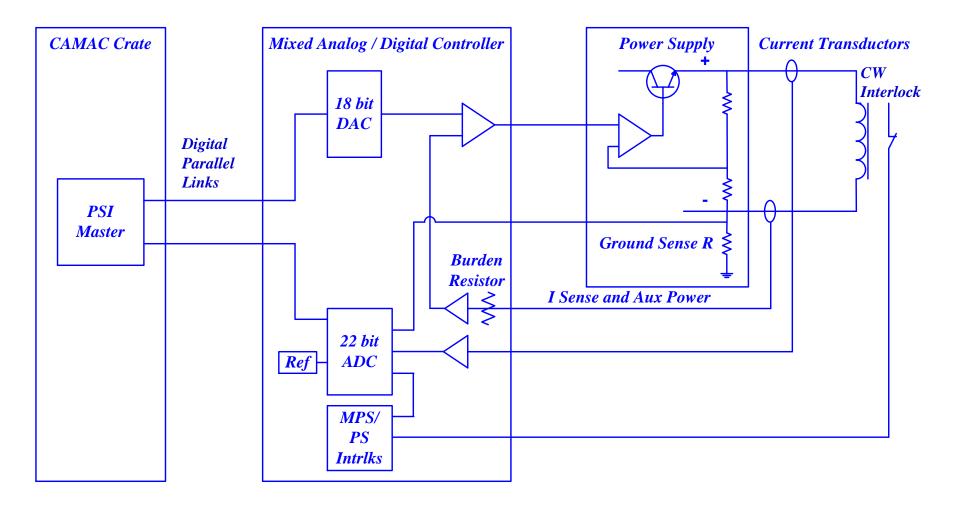
Section 8 - Controls

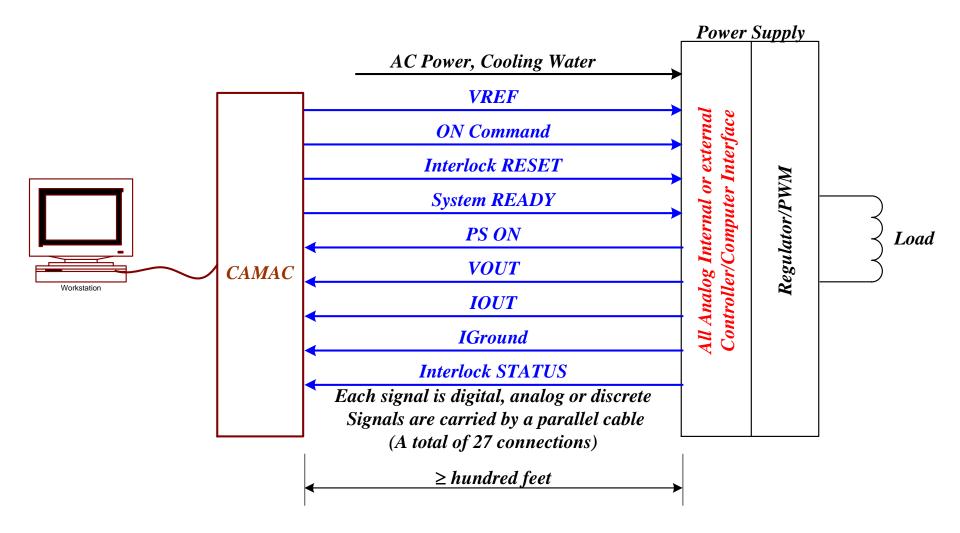


Current

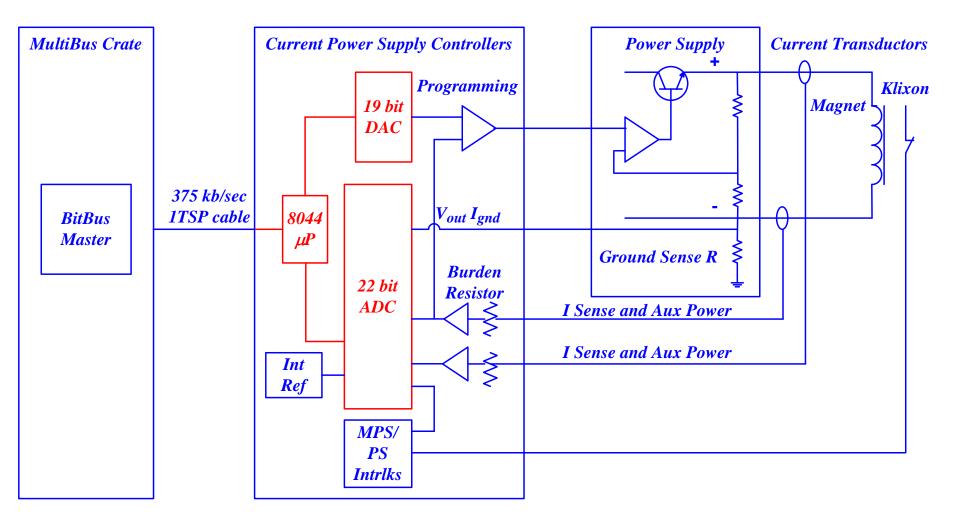
Constant Voltage Mode. The power supply will operate in this mode whenever the current demanded by the load is less than that defined by the front panel current control. The output voltage is set by the front panel voltage control. The output current is set by the load resistance and the Vset.

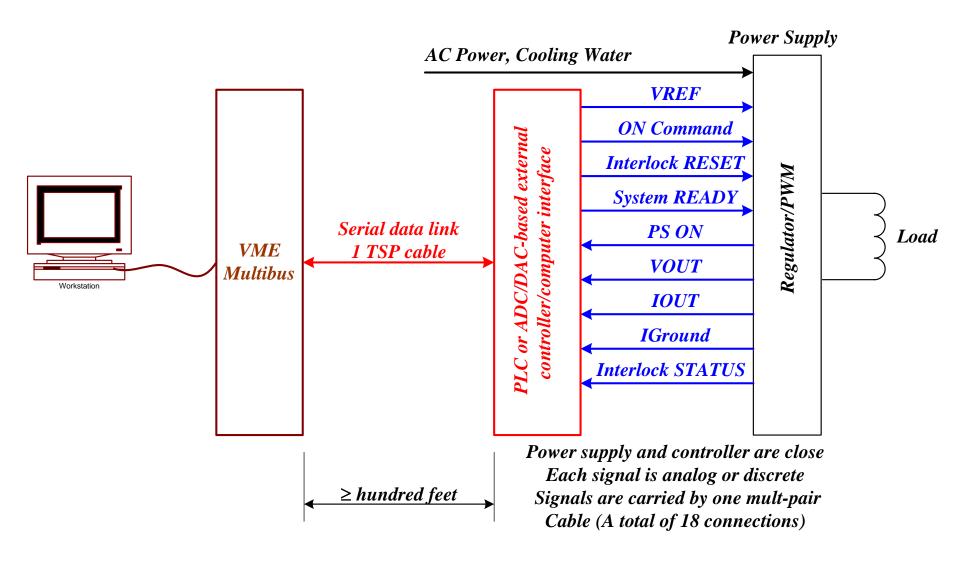
Section 8 - Controls

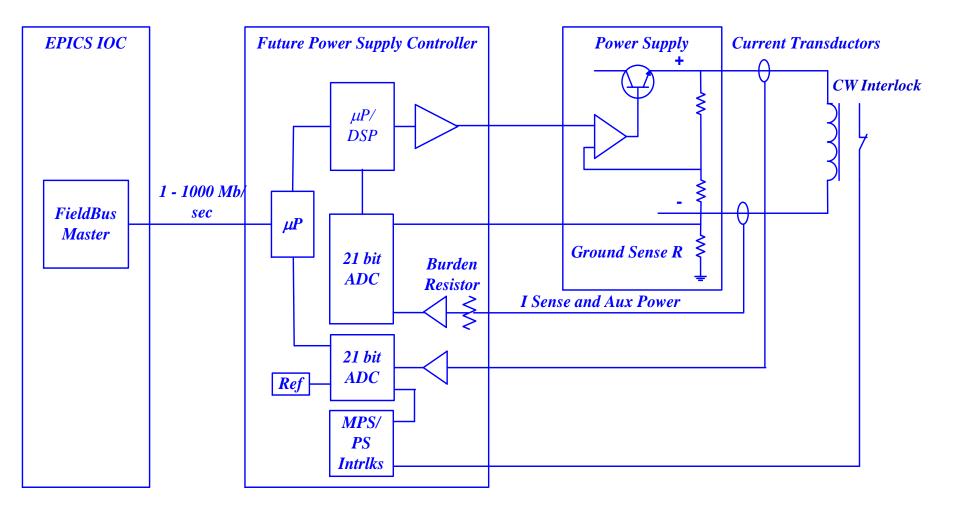

Not Power Supply Controllers - Automatic Voltage/Current Crossover – Example 2


Current

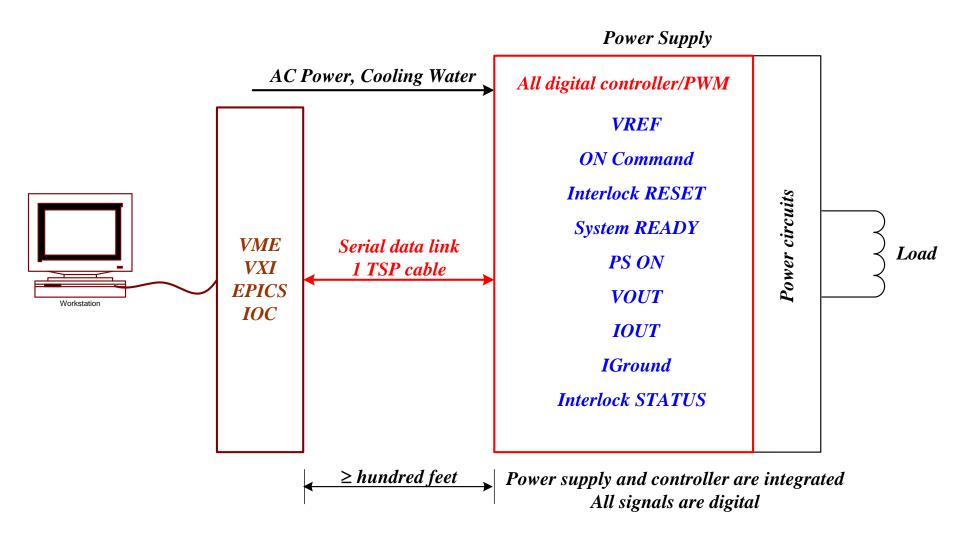
Constant Current Mode. The power supply will operate in this mode whenever the voltage demanded by the load is less than that defined by the front panel voltage control. The output current is set by the front panel current control. The output voltage is set by the load resistance and the I set.

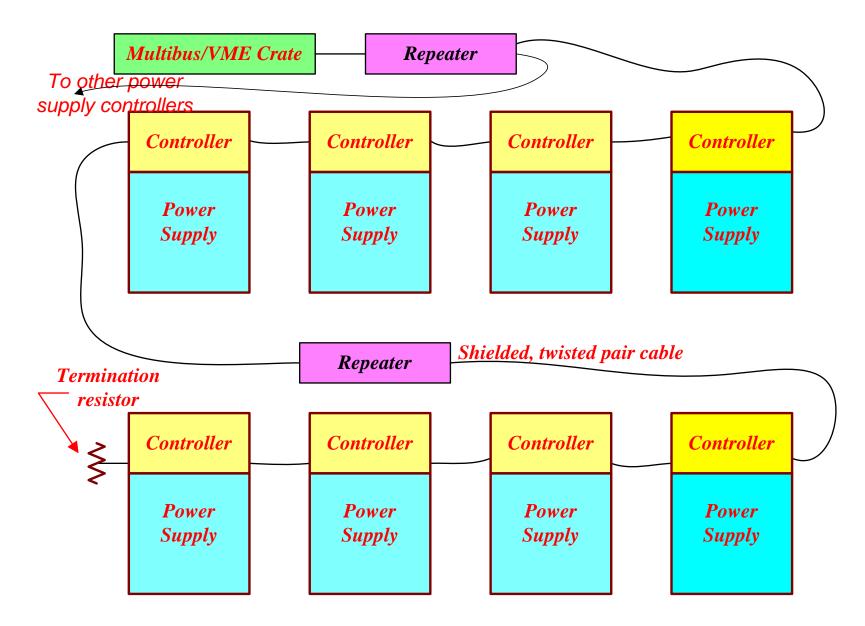

Section 8 - Controls


All-Analog Power Supply Controllers – Circa 1970s to 1980s



Hybrid Analog/Digital Power Supply Controllers – Circa 1980s to Present




Hybrid Analog/Digital Power Supply Controllers – Circa 1980s to Present

All Digital Power Supply Controllers – Circa the Future

Controls Type	Characteristics
All analog controls	 Long, expensive multi-conductor cable Cables subject to noise pickup, ground loops, losses in signal strength Installation rigid, difficult to modify
Hybrid analog/digital controls	 PLCs, ADCs / DACs subject to noise pickup, ground loops, must keep out of power supply Serial data cable can be daisy-chained Installation rigid, difficult to modify
All digital controls	 Integrated high level digital signals exhibit greater immunity to noise pickup, ground loops Serial data cable can be daisy-chained Installation flexible, control system can be modified in software or firmware Will require novel implementation of interlocks, voltage and current transductors

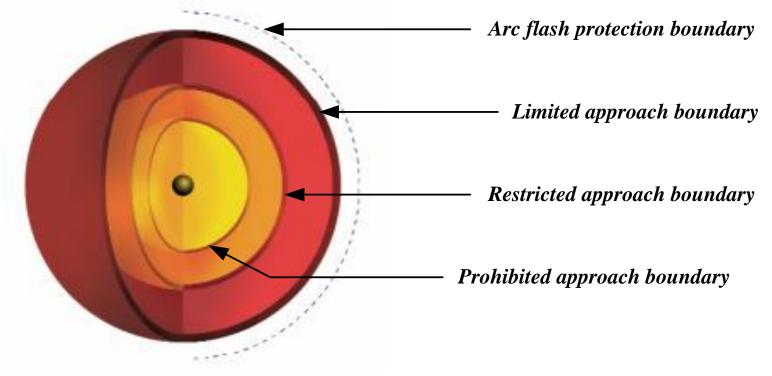
Some Communication Busses

Bus Type	Single / Differential	Protocol	Data Rate	Length	Connector	Comments
RS232	$\begin{array}{c} -12 \longrightarrow +12V \\ SE \end{array}$	Serial	115kb/s	5m	25 /15/9pin sub D	Inexpensive wiring
BitBus IEEE 1118	0-5V Differential	Serial	375kb/s	300m	9 pin sub D	Inexpensive wiring
IEEE488 GPIB		Parallel	8Mb/s	20m	24 pin	Measurement Equipment
Ethernet	Optical/SE Differential	Serial	1Gb/s		RJ8, RJ45 Optical	Move lots of data packets
USB 2.0		Serial	12Mb/s	5m	4 pin USB	Hot-swappable
Firewire IEEE1394	3.3V Differential	Serial	800Mb/s	46m	4 pin / 6 pin Optical	Hot-swappable
SCSI	3.3V Diff/ Optical	Parallel	1.28Gb/s	12m	68 pin 80 pin	
eSATA		Serial	3Gb/s			Hot-swappable

Section 9 – Personnel and Equipment Safety

- NFPA 70E Safety in the Workplace
 - The Voltage Hazard

-<u>Arc Flash</u>


- <u>NFPA 70 National Electrical Code</u>
- Interlocks
 - Personnel Protection Systems (PPS)
 - Load Protection Systems-Machine Protection Systems (MPS)
 - <u>Power Supply Protection</u>
 - Programmable Logic Controllers (PLCs)
- Lockout/Tagout (LOTO)

NFPA 70E

NFPA 70E - 2004 - Standard for Electrical Safety in the Workplace

- Addresses employer and employee in the workplace
- Focus is on procedures, personnel protective equipment
- Attempts to mitigate effects of three major electrical hazard types shock, arc flash and arc blast

NFPA 70E - The Voltage Hazard

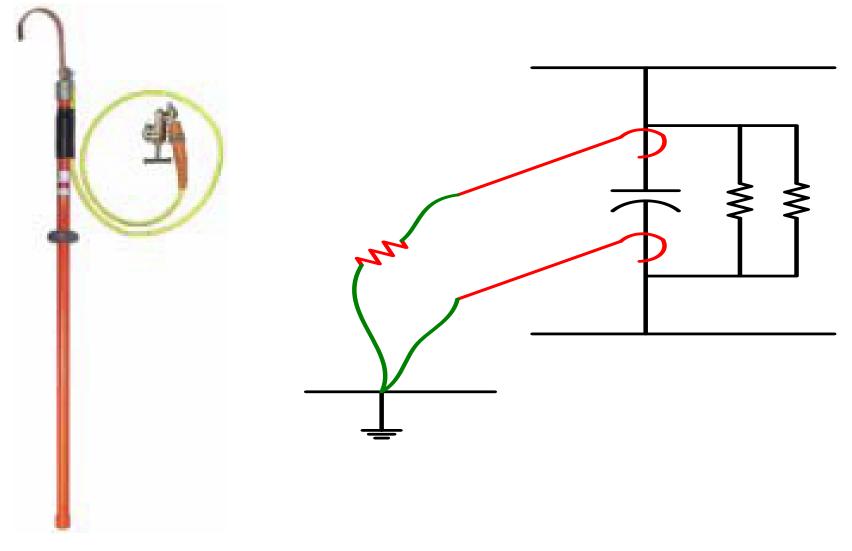
- Limited approach boundary is the distance from an exposed live part within which a shock hazard exists
- Restricted approach boundary is the distance from an exposed live part within which there is an increased risk of shock, due to electrical arc over for personnel working in proximity to the live part
- Prohibited approach boundary is the distance from an exposed live part within which work is considered the same as making contact with the live part

NFPA 70E

NFPA 70E - 2009 - Approach boundaries - deal with the voltage hazard

NFPA 70E, Table 130.2(C)						
AC and DC Voltage Range Line - Line	Limited Approach Boundary Distance - No PPE	Restricted Approach Boundary Distance No PPE	Prohibited Approach Boundary Distance PPE Needed			
< 50V	None, if conditions permit	None, if conditions permit	None, if conditions permit			
50 - 300V	3.5 ft	Avoid contact	Avoid contact			
> 300 - 750V	3.5 ft	1 ft	1 inch			
> 750 - 15kV	5.0 ft	2 ft 2 inches	7 inches			
> 15kV - 36kV	6.0 ft	2 ft 7 inches	10 inches			
> 36kV	See NFPA 70E	See NFPA 70E	See NFPA 70E			

NFPA 70E

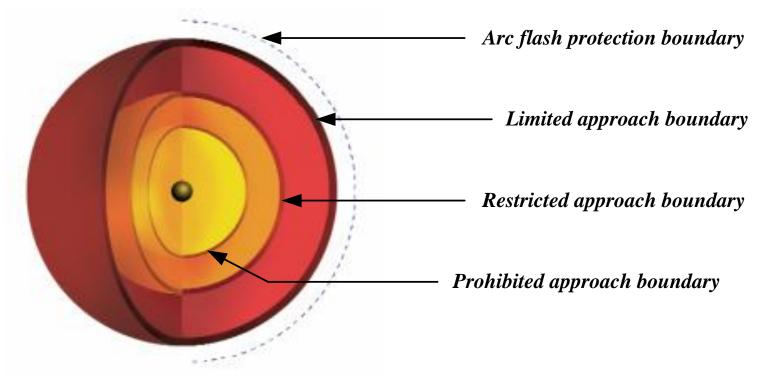

Mitigating Voltage Hazard - Rubber Electrical Insulating Gloves

- They are marked with the class appropriate for the voltage, and should be subject to periodic electrical tests
- Leather protective gloves should be worn outside the rubber gloves to provide protection from cuts, abrasions, or punctures.
- Before each use, check for signs of damage or color change. Replace if contamination or sustain any physical damage is evident.
- Gloves should be stored in a closed, dry container.

Section 9 - Personnel and Equipment Safety

The possibility of residual voltage on capacitors is high. Use one or more ground stick to remove the voltage (stored energy)

NFPA 70E - What is Arc Flash?


- Short circuit through air
- Caused when circuit insulation or isolation is compromised
- A burn and explosion hazard, not an electrocution hazard
- Temperature can greatly exceed 5000 F
- Instantaneous, almost too fast for the eye to comprehend
- Arc flashes occur 5 10 times a day in electric equipment in US alone.

NFPA 70E - Possible Causes of Arc Flash

- Tool inserted or dropped into a breaker or service area
- Equipment cover removal causes a short
- Loose connections on bus work
- Improper bus work fabrication
- Insulation breakdown due to environmental factors or equipment aging
- Failure to ensure equipment is de-energized before work
- Primarily applications above 208 VAC

Injuries Associated with Arc Flash

• Third Degree Burns, Blindness, Hearing Loss, Nerve Damage, Cardiac Arrest, Concussion, Death

- Arc flash hazard a dangerous condition associated with the release of electrical energy caused by an electrical arc. Typically due to the molten plasma formed by the melting of conductors during an electrical short circuit
- Arc flash protection boundary The distance form exposed live parts within which a person could receive a second degree (curable) burn (1.2 cal/cm² = 5 J/cm^2)

NFPA 70E - The Arc Flash Hazard

• An arc generates power that radiates out from a fault

 $P_{arc} = V_{arc} * I_{arc}$

• The total energy is the product of the arc power and duration of the arc

 $E_{arc} = P_{arc} * t$

- The energy density decreases with distance from the arc
- An arc-flash hazard occurs when the energy density on the torso or face exceeds 1.2 cal/cm², the energy density at which a second degree burn occurs. Note: This is comparable to holding the flame from a cigarette lighter on your skin for 1 second
- Flash protection boundaries and energies are calculated using NFPA 70E [example Table 130.7(C)(9)(a)] and IEEE1584
- The calculations entail knowing the voltage class of the equipment, some details about its manufacture, the available short circuit and the opening times of the protective circuit breaker(s)

NFPA 70E - Hazard/Risk Category

• The hazard/risk category is determined by selecting the row for which $E_{min} \leq E \leq E_{max}$ at the working distance.

E_{min} (cal/cm ²)	E_{max} (cal/cm ²)	Hazard/Risk Category
0	1.2	0
1.2	4	1
4	8	2
8	25	3
25	40	4

• The appropriate Personal Protective Equipment (PPE) required is then determined from Table 130.7(C)(10) and Table 130.7(C)(11) of NFPA 70E

NFPA 70E – Mitigation of Arc Flash

- Decrease available energy by using smaller upstream transformer (lower short circuit current)
- Decrease clearing time
 - Size breaker trip units more aggressively
 - Choose breakers for instantaneous trip times (smaller frame sizes generally trip faster than larger frame sizes)
 - Choose breakers with adjustable trip units including adjustments for instantaneous trips
- Protective devices upstream of transformers need to allow "inrush" current when transformer is energized. Using only upstream sensors, it is difficult to be as aggressive as desirable for arc-flash protection downstream of transformer. Add overcurrent devices on transformer secondary

NFPA 70E – Mitigation of Arc Flash

- Insert fast acting breakers or fuses in separate enclosures between the transformer and the equipment that needs to be operated. In general, separate the enclosures contain arc-flash generated in that enclosure
- Increase distance between worker and source of arc-flash
 - Use remote controls to operate high arc-flash hazard devices
 - Use extension handles on breakers to increase working distance of operation
 - Install meters to use for verification that system is de-energized if work is required on system
 - Install IR view-ports on panels that need to be monitored for overtemperature
- Install protective devices that sense arcs and not just overcurrent

NFPA 70E - More Information

More information

- <u>http://ieeexplore.ieee.org/servlet/opac?punumber=8088</u>
- NFPA 70E 2009 Edition
- <u>http://www.mt-online.com/articles/0204arcflash.cfm</u>
- <u>http://www.eaton.com/ecm/idcplg?IdcService=GET_FILE&dID=12075</u>
- <u>http://www.eaton.com/ecm/idcplg?IdcService=GET_FILE&dID=118182</u>
- <u>http://ecatalog.squared.com/pubs/Circuit%20Protection/0100DB0402.pdf</u>

NFPA 70 - National Electrical Code

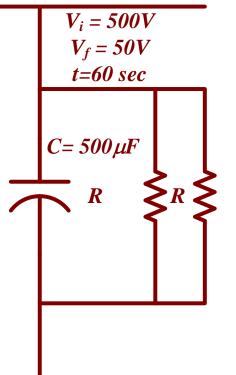
National Electrical Code NFPA 70

- Deals with hardware design, inspection and installation
- Most Articles do not pertain directly to power systems, but some examples that do are:
- 1. Sizing of raceways and conduits to carry power and control cables. Some relevant Articles are
- 2. Sizing of power cables for ampacity. Some relevant Articles are
- 3. Discharge of stored energy in capacitors

NFPA 70 - National Electrical Code

Example of cable ampacity sizing

A power supply provides 375A to a magnet via cables. The ambient temperature is 45C (104F), maximum and the cables are installed in cable tray. The cable tray fill conforms to the requirements of NECArticle 392.


Use NEC Table 310-17 for single conductor cables in free air at 30C. The derating for the 45C ambient is 0.87. The derating for the single conductor in a cable tray is 0.65 if placed touching other cables in the cable tray. The required amapcity is $Ampacity = \frac{I_{PS}}{deratings} = \frac{375A}{0.87 * 0.65} = 663A$ From Table 310-17 the basic amapcity of 500kcmil cable is 700A > 663A.

Use 2-1/C500kcmil cables

NFPA 70 - National Electrical Code

•Example of capacitor bleeder resistor sizing per NEC Article 460. Code requires permanent fixed energy discharge devices on capacitors operating at > 50V working voltage

- < 600 V, discharge to 50 V or less in 1 minute
- > 600 V, discharge to 50 V or less in 5 minutes
- Redundant bleeder resistors recommended

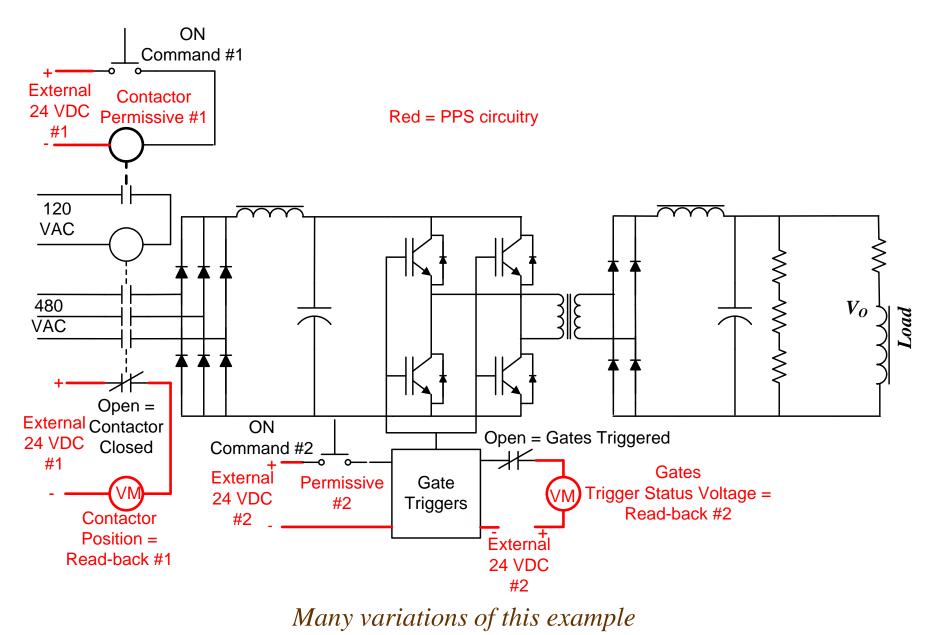
$$V_{f} = V_{i} e^{\frac{-t}{RC}}$$

$$R = \frac{-t}{C \ln(V_{f}/V_{i})} = \frac{-60 * sec}{500 \,\mu F \ln(50V / 500V)}$$

$$R = 50 \,kohm$$

$$P_{R} = \frac{V_{i}^{2}}{R} = \frac{(500V)^{2}}{50k\Omega} = 5W$$
Use two 5W, 100k Ω resistors in parallel

Interlocks


3 Types

- Personnel Protection System (PPS)
- Load Protection Machine or Magnet Protection System (MPS)
- Power Supply Protection Power Supply Internal Interlocks

Personnel Protection System (PPS) at SLAC

- Protection from hazards external to power supply (example accelerator housing door opened)
- Hazards are defined as voltages > 50 V, currents > 5m A, energy storage > 10 J.
- Must be hardwired (recently SLAC introduced PLC-based PPS)
- Two (2) PPS permissives are needed for power supply turn-on
- *Two* (2) *separate and different read-backs are required*
- Permissives and read-backs are usually 24 VDC systems
- Permissives and read-backs must be fail-safe
- If PPS is not practical, then energized equipment must be enclosed or live terminals covered

Interlocks - PPS Example

Section 9 - Personnel and Equipment Safety

505

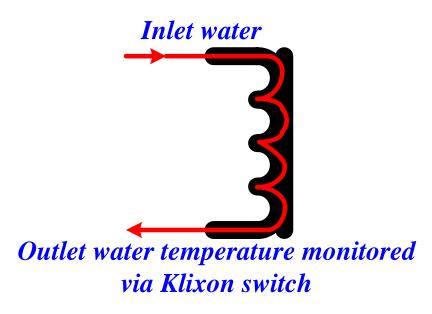
Machine Protection Systems (MPS)

Machine (or magnet) protection systems protect loads from damage.

Magnet Cooling Water Temperature / Flow Sensors

- Usually employ a simple normally closed (NC) contact that opens when a predetermined temperature has been reached.
- Water flow monitoring switches open when flow drops below a pre-established safe value
- Temperature / Flow switches are wired to the source power supply. If the water temperature is too high or if the flow drops the contacts open and turn the power supply off

Vacuum Interlock System


• Sensors are similar to that described in the magnet cooling water system

Orbit Interlock System

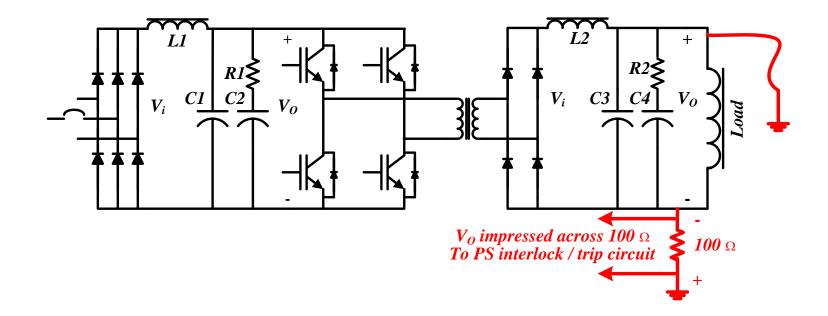
• Sensors consist of Beam Position Monitors and switches. Function is essentially the same in the magnet cooling water system

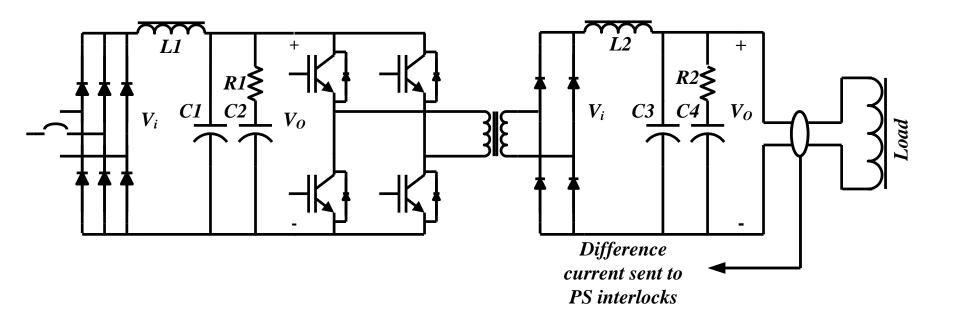
Water Temperature Sensors

- Thermal switches Klixons (a trade name) are NC contact bimetal switches mounted on the load cooling water outlet line. Their contacts open when temperature exceeds a pre-established safe value
- Multiple-winding, multiple water path magnets employ simple series connected Klixons.
- Klixons are wired to the source power supply. If the load overheats, the contacts open and turn off the power supply

Section 9 - Personnel and Equipment Safety

Machine Protection Systems (MPS)


Klixon switches


Section 9 - Personnel and Equipment Safety

Machine Protection Systems (MPS)

Ground Fault Detection / Protection Systems

- Loads are usually located in crowded, dense areas with a multitude of other equipment. This makes them vulnerable to ground faults
- Power supplies are usually isolated from ground so that a single ground fault does not cause load-catastrophic ground fault current. Fix first fault before the second fault occurs

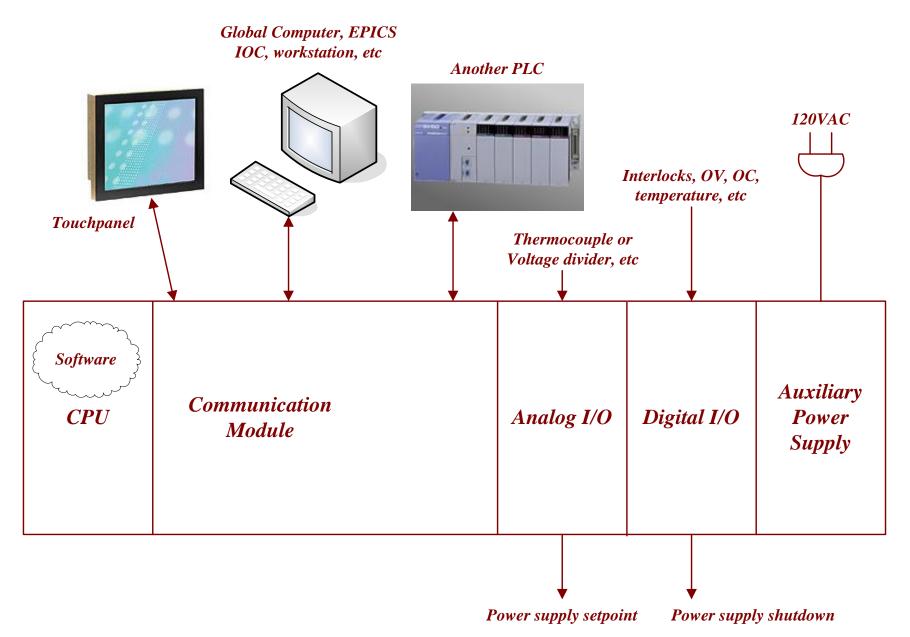
Some Internal Interlocks

Internal interlocks protect the power supply itself

- Low input supply voltage
- Phase loss detection
- Output DC over-current
- Low frequency filter inductor temperature
- *Heat-sink temperature or heat-sink cooling water flow*
- IGBT temperature
- IGBT over-current
- Ground Fault current
- Output over-voltage
- Cabinet or chassis over-temperature

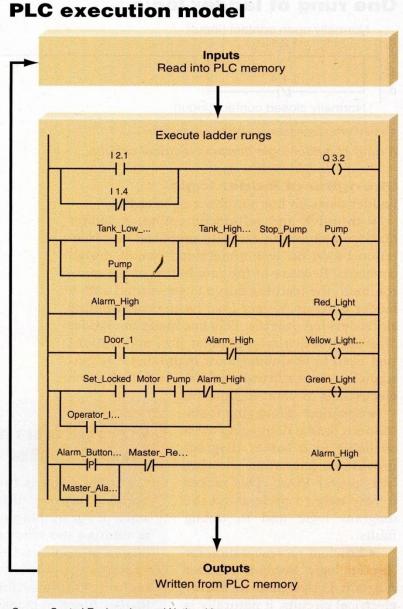
Example of a PLC and its Use

Manufacturers are many


•Allen-Bradley

- •Rockwell International (AB)
- Siemens
- General Electric
- IDEC

Programming logic


- Ladder logic
- C language
- LabView
- Functional block diagrams
- Structured text

PLC Uses and Networks

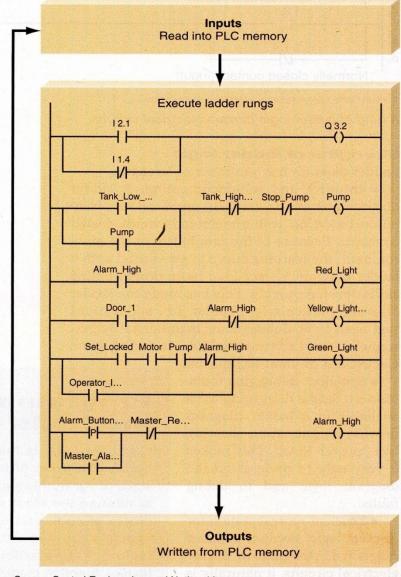
Section 9 - Personnel and Equipment Safety

Ladder Logic

Source: Control Engineering and National Instruments

Ladder diagrams evolved in the 1960s when the automobile industry needed a more flexible and selfdocumenting alternative to relay and timing cabinets. A microprocessor was added and software designed to mimic the relay panels.

Left rail is the "power bus". The right rail is the "ground bus". Power flows through NO or NC contacts to power coils.


Each contact and coil is linked to a Boolean memory location.

Series contacts look like "AND" and parallel contacts look like "OR"

Execution is left to right and top to bottom

Ladder Logic

PLC execution model

Source: Control Engineering and National Instruments

Most widely used to program PLCs

Strengths

- Intuitive can be learned very quickly by with little or no software training
- Excellent debugging tools, include animation showing live "power flow". This makes the logic easy to understand and debug
- Efficient representation for discrete logic

Weaknesses

- *Hierarchical data and logic flow.*
- Poor data structure. Rungs are executed in a left-to-right, top-to-bottom order. Timing is limited by the PLC processor speed
- Limited execution control
- Arithmetic operations are limited

Programmable Logic Controllers

PLCs implement	specific functions	such as:
----------------	--------------------	----------

I/O control	Timing	Report generation	Arithmetic
Logic	Communication	Data file manipulation	Counting

PLC Versus Programmable Automation Controllers (PAC)

Consider a PAC upgrade if your application requires:

- advanced control algorithms
- extensive database manipulation
- HMI functionality in one platform
- Integrated custom control routines
- complex process simulation
- very fast CPU processing
- memory requirements that exceed PLC specifications

Lockout / Tagout (LOTO)

Lock & Tag for Personnel Safety During Maintenance

- Procedures and requirements for servicing and maintaining machines and equipment
- Provision for locking off source power, the discharge of stored energy prior and the total de-energization of equipment before working on exposed electrical circuits or other hazardous equipment in which unexpected energization, startup or release of energy could cause injury to personnel

Required by

• Occupational Safety and Health Administration (OSHA) under 29CFR1910.147

Applicability

• For working on exposed electrical circuits that would expose personnel to any electrical hazard operating at > 50 V, >50A, >10J. All types of equipment containing electrical, mechanical, hydraulic, pneumatic, chemical and/or thermal active or stored energy

Lockout – Tagout (LOTO)

Items Locked Out (Off) – Tagged Out (Off) The power source or power device

Application by Authorized employee trained in LOTO and qualified to lock-off the equipment

Interlocks As LOTO Interlocks are not used as a substitute for lock and tag

For Locking and Tagging

• Padlocks, usually red-colored for personal use. Yellow-colored for administrative lock-out

- Tags
- Specialty locks (Kirk-Key Locks) for complex systems
- Master lock boxes

Section 10 - Reliability, Availability and Maintainability

- **Definition and Importance**
- <u>Glossary of Terms</u>
- <u>Calculation Standards</u>
- <u>Calculations Power Supply/Power System</u>
- Improvements by Redundancy Examples
- Fault Modes And Effects Criticality Analysis (FMECA)
- <u>The Reliability Process</u>
- <u>Maintainability Cold-Swap, Warm-Swap and Hot-swap</u>

Reliability and Availability Definitions

Reliability

According to IEEE Standard 90, reliability is the ability of a system or component to perform its required functions under stated conditions for a specified period of time

Availability

The degree to which a system, subsystem, or equipment is operable and in a committable state during a mission (accelerator operation).

The ratio of the time a unit is functional during a given interval to the length of the interval.

Importance

Reliability is important because accelerators are expected to perform like industrial factories; i.e., to be on-line at all times. In particular, accelerator power supplies are expected to be available when needed, day after day, year after year. Reliability must be considered when subsystems are complex (contain large part count) or when a system is composed of a large number of subsystems or the accelerator simply will not function.

Failures lead to annoyance, inconvenience and a lasting user dissatisfaction that can play havoc with the accelerator's reputation. Frequent failure occurrences can have a devastating effect on project performance and funding.

Glossary of Terms and Definitions

· · · · · · · · · · · · · · · · · · ·				
Availability	Ratio of operating time to operating + downtime A=MTBF/(MTBF+MTTR). This is a dimensionless number			
MTBF	Mean time between failures in hours			
MTBF ₀	The increased MTBF in hours that considers equipment operation at lower than rated power levels			
$MTBF_R$	The rated MTBF in hours			
MTTR	The mean time to repair and recover beam in hours			
R(t)	Reliability or probability of success over the mission time (Typically 9 months = 6600hours)			
λ , λ $_{O}$, λ_{R}	Failure rates in hr^{-1} . These are the reciprocals of the MTBFs			
1/1	One full rated power supply. Rated power = delivered power			
1/2	One out of two redundant power module configuration			
2/3	Two out of three redundant power module configuration			
3/4	Three out of four redundant power module configuration			
4/5	Four out of five redundant power module configuration			
2 2012	Section 10 - Reliability and Availability 522			

Section 10 - Reliability and Availability

Glossary - Math Expressions

 (hr^{-1}) λ Failure rate is constant (*hr*) Mission time t $f(t) = \lambda e^{-\lambda t}$ *Probability Density Function (PDF)* (dimensionless) $F(t) = 1 - e^{-\lambda t}$ *Cumulative Density Function (CDF)* (dimensionless) $R(t) = e^{-\lambda t}$ (dimensionless) *Reliability*(*Success probability*) $E(T) = \int t f(t) dt = \frac{1}{\lambda} \quad (hr)$ *Expected time to failure (MTBF)*

Glossary - Math Expressions

Failure rate of N series critical
components
$$\lambda_{composite} = \sum_{i=1}^{N} \lambda_{i}$$
 (hr^{-1}) Re liability of N series components $R_{s}(t) = \prod_{i=1}^{N} e^{-\lambda_{i}t} = \prod_{i=1}^{N} R_{i}(t)$ $(dimensionless)$ Failure N series components $Q_{s}(t) = \prod_{i=1}^{N} Q_{i}(t) = 1 - \prod_{i=1}^{N} R_{i}(t)$ $(dimensionless)$ Re liability of N parallel components $R_{p}(t) = \prod_{i=1}^{N} e^{-\lambda_{i}t}$ $(dimensionless)$ Probability of failure of parallel $Q_{p}(t) = 1 - R_{p}(t) = 1 - \prod_{i=1}^{N} e^{-\lambda_{i}t}$ $(dimensionless)$

Section 10 - Reliability and Availability

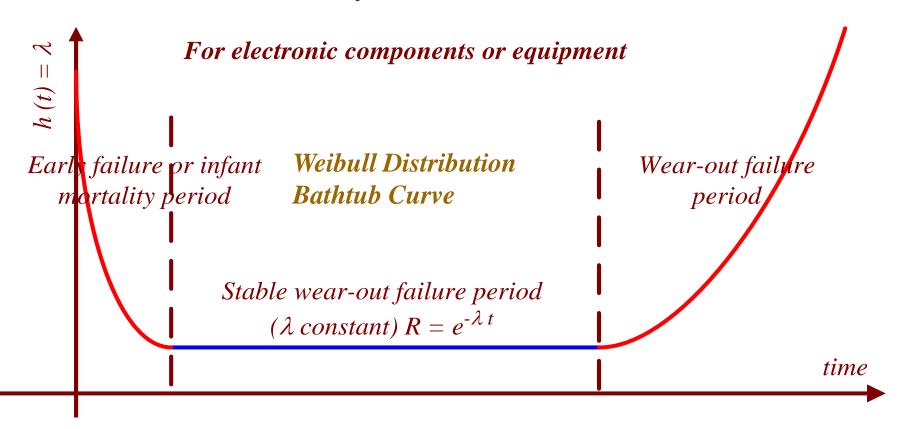
Homework Problem # 16

Homework Problem:

A. At least 2 of 4 parallel power supplies in an accelerator must continue to operate for the system to be successful. Let $R_i = 0.9$. Find the probability of success.

B. Solve for three out of four for success

C. Solve for four out of four for success


Glossary - Math Expressions

MTBF of series critical componentsMTBF =
$$1/\lambda_{composite}$$
(hr)MTBF of N series identical componentsMTBF_composite = $MTBF_i/N$ (hr)Mean time to repair or recover isMTTR(hr)Availability is $A = \frac{MTBF}{MTBF + MTTR}$ (dimensionless)Availability of series components $A_{composite} = \prod_{i=1}^{N} A_i$ (dimensionless)

Availbilty of identical components

 $A_{composite} = A$ (dimensionless)

Glossary - Failure Rate Curve

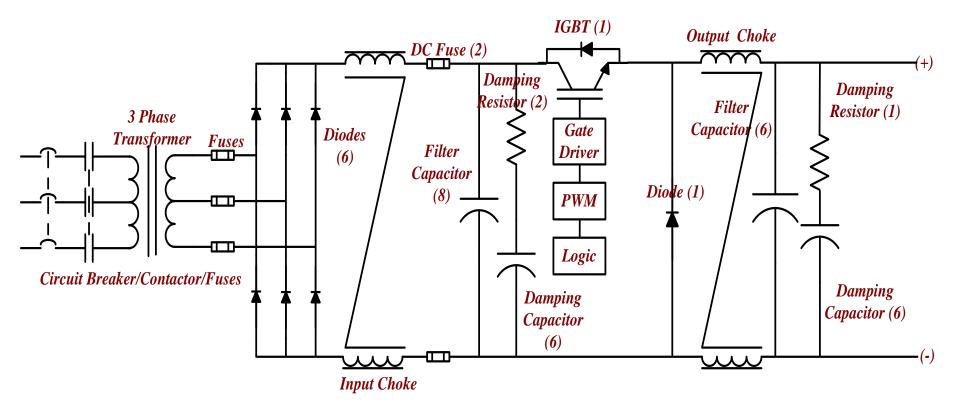
- Infant mortality manufacturing defects, dirt, impurities. Infant mortality reduced for customer by burn-in and stress-screening
- Stable wear-out statistics, manufacturing anomalies, out-of tolerance conditions
- Wear-out failure dry electrolytic capacitors, aged and cracked cable insulation

Reliability Calculation Standards

MIL-HDBK-217F (USA)	 Internationally used Parts count Parts stress Broad in scope Pessimistic
Telcordia (Bellcore) (USA)	 National use Parts count Parts stress Narrow scope (telecommunications) Optimistic
CNET 93 (France)	 Limited to France Parts count Parts stress Broad in scope
HRD5 (UK)	 Limited to UK Parts count Parts stress Broad in scope

Parts Count

- Appropriate failure rate is assigned to each part in the subsystem (power supply) that is mission critical
- Failure rates are functions of environment (Ground fixed Π_{GF} /Ground benign Π_{GB} /Ground mobile, Π_{GF}) and ambient temperature (Π_T)
- The parts count method is simple and used early in system design when detailed information is unknown
- Failure rates are summed and the following information is obtained


$$MTBF = \frac{1}{\sum \lambda} \qquad \qquad R(t) = e^{-\sum \lambda t}$$

Parts Count and Parts Stress

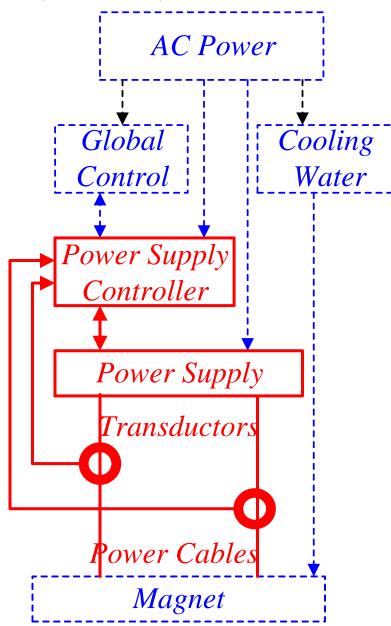
Parts Stress – Same as the Parts Count method, except it takes into account more detailed information about the components and their operating stresses. The detailed information is implemented via additional Π reliability factors, such as:

$$\begin{split} \Pi_{GB} &= ground \ benign & 0 < \Pi_{GB} < \infty \\ \Pi_{T} &= ambient \ temperature & 0 < \Pi_{T} < \infty \\ \Pi_{MQ} &= manufacturing \ quality & 0 < \Pi_{MQ} < \infty \\ \Pi_{VS} &= voltage \ stress \ factor & 0 < \Pi_{VS} < \infty \\ \Pi_{IS} &= current \ stress \ factor & 0 < \Pi_{IS} < \infty \\ \Pi_{PS} &= power \ stress \ factor & 0 < \Pi_{PS} < \infty \\ \lambda_{resultant} &= \lambda_{initial} \ * \Pi_{GB} \ * \Pi_{T} \ * \Pi_{MQ} \ * \Pi_{VS} \ * \Pi_{IS} \ * \Pi_{PS} \end{split}$$

Example of Reliability Calculation – Power Supply

Example of Reliability Calculation – Power Supply

Component Description	Qty	λ	π_{GB}	π_T	π_{MQ}	π _{VS}	π _{IS}	π _{PS}	Mission Loss	Total Rate $\lambda_T 10^{-6}$
Circuit Breaker/Contactor/Fuse	5	0.42	1.00	1.10	1.00	1.01	1.05	1.10	Yes	2.695
3 Phase Transformer	1	0.05	1.00	1.10	1.00	1.50	1.50	1.50	Yes	0.186
Input/Output Filter Choke	2	0.02	1.00	1.10	1.10	1.42	1.60	1.75	Yes	0.144
Secondary/DC Link Fuse	2	0.08	1.00	1.10	1.89	1.02	0.95	0.90	Yes	0.291
Main Filter Capacitor	8	0.23	1.00	1.12	1.50	1.25	1.25	1.05	Yes	5.057
Damping Capacitors/Resistor	15	0.02	1.00	1.10	1.00	1.00	1.00	1.00	No	0.000
IGBT/Diode	8	0.03	1.00	1.10	1.50	1.00	1.00	1.00	Yes	0.330
Heatsink Assembly	1	0.01	1.00	1.10	1.00	1.00	1.00	1.00	Yes	0.011
Gate Driver/PWM	2	0.50	1.00	1.10	1.00	1.10	1.10	1.15	Yes	1.524
Logic Board	1	3.50	1.00	1.10	1.00	1.00	1.00	1.00	Yes	3.850
Output Filter Capacitor	6	0.25	1.00	1.10	1.00	1.25	1.25	1.00	Yes	2.578
MTBF and Total Failure Rate								60,000		16.667


Section 10 - Reliability and Availability

Homework Problem # 17

Calculate the MTBF of a "typically commercial" 5 kW, switchmode power supply with EMI filter and appropriate electromechanical safety features amounting to 10% of the total number of components. The power supply operates at 50C ambient temperature. The power supply consists of the following components with the listed failure rates.:


- 2 each ICs, plastic linear, $\lambda = 3.64$ failures per million hours each
- 1 each opto-isolator, $\lambda = 1.32$ failures per million hours each
- 2 each hermetic sealed power switch transistors, $\lambda = 0.033$ failures per million hours each
- 2 each plastic power transistors, $\lambda = 0.026$ failures per million hours each
- 4 each plastic signal transistors, $\lambda = 0.0052$ failures per million hours each
- 2 each hermetic sealed power diodes, $\lambda = 0.064$ failures per million hours each
- 8 each plastic power diodes, $\lambda = 0.019$ failures per million hours each
- 6 each hermetic sealed switch diodes, $\lambda = 0.0024$ failures per million hours each
- 32 each composition resistors, $\lambda = 0.0032$ failures per million hours each
- 3 each potentiometers, commercial, $\lambda = 0.3$ failures per million hours each
- 8 each pulse type magnets, 130C rated, $\lambda = 0.044$ failures per million hours each
- 12 each ceramic capacitors, commercial, $\lambda = 0.042$ failures per million hours each
- 3 each film capacitors, commercial, $\lambda = 0.2$ failures per million hours each
- 9 each Al electrolytics, commercial, $\lambda = 0.48$ failures per million hours each

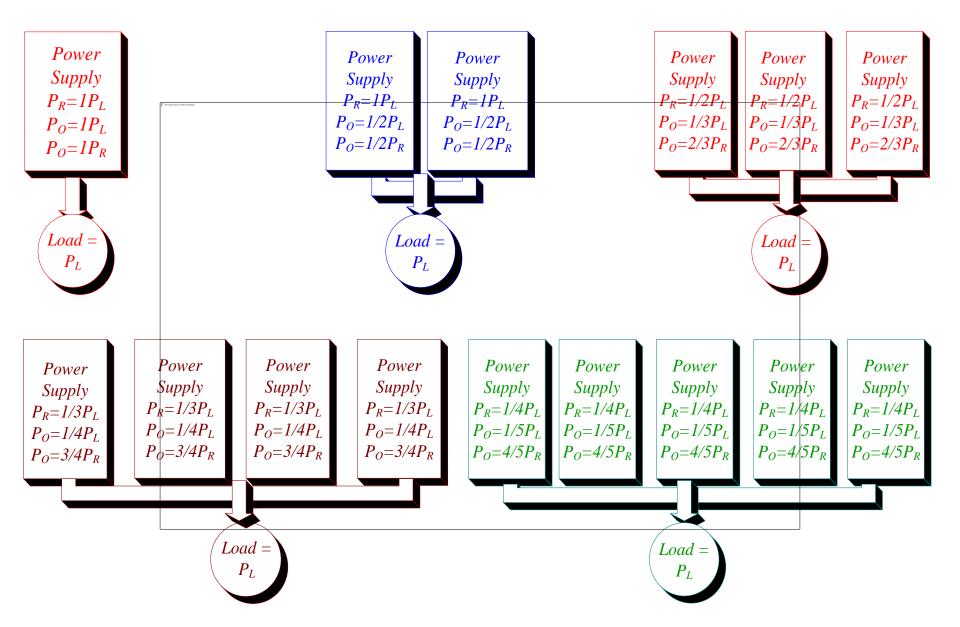
Section 10 - Reliability and Availability

Section 10 - Reliability and Availability

Example of Reliability Calculation – Power System

Single System Availabilty						
Component	MTBF	Availability				
PS Controller	110,000	0.9999818				
Power Supply	60,000	0.9999667				
Transductor 1	381,500	0.9999948				
Transductor 2	381,500	0.9999948				
Cables	14,000,000	0.9999999				
System	32,184	0.9999379				
t=6574 hrs/year MTTR=2 hrs components/system						

Reliability Software


Relex by Relex Software

See Reference Appendix for web link to this manufacturers products

RelCalc by T-Cubed

See Reference Appendix for web link to this manufacturers products

Reliability/Availability Improvement By Redundancy

• Two types - Standby and Active

1. Standby - the redundant parts are off and only operate when the first part fails. This requires more vigilance on the part of the control system and is not covered here.

2. Active - the redundant part(s) are on, albeit operating at a reduced power level until asked to assume increased or full load. This is easier to implement than Standby redundancy and is the more common method. We will examine this further

Availability Improvement By Oversizing and Redundancy

The general, exponential form of the Binomial Distribution for m out of n parts is

$$R(t) = \sum_{k=m}^{n} \left(\frac{n!}{(n-k)!k!} \right) \left(e^{-\lambda t} \right)^{k} \left(1 - e^{-\lambda t} \right)^{n-k}$$

$$\lambda = \text{constant} = \text{failure rate}$$

$$k = \text{index counter}$$

$$m = \text{minimum number of power modules needed for operation}$$

$$n = \text{total number of power modules in the system}$$

$$Special \text{ cases occurs when } m = n \text{ or when } m = n = 1$$

$$R(t) = e^{-n\lambda t}$$

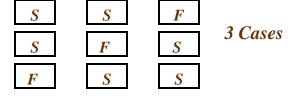
Availability Improvement By Oversizing and Redundancy

Binomial Expansion 2 out of 3 example

$$R_{2/3}(t) = \sum_{k=m=2}^{n=3} \left(\frac{n!}{(n-k)!k!}\right) \left(e^{-\lambda t}\right)^k \left(1 - e^{-\lambda t}\right)^{n-k}$$

k = 2

$$\frac{3!}{1!2!}e^{-2\lambda t}(1-e^{-\lambda t}) = 3 e^{-2\lambda t} (1-e^{-\lambda t})$$


3 cases, probability of success, probability of failure

$$\frac{3!}{0!3!}e^{-3\lambda t}(1-e^{-\lambda t})^0 = 1 e^{-3\lambda t}$$

1 case, probability of success, no failure

$$R_{2/3}(t) = 3e^{-2\lambda t} - 2e^{-3\lambda t}$$

Section 10 - Reliability and Availability

Availability Improvement By Oversizing and Redundancy

Derivation

When $\lambda(t)$ *is a function of time*

General form $R(t) = e^{-\lambda(t)t}$

$$\frac{dR(t)}{dt} = -\frac{d\lambda(t)}{dt}e^{-\lambda(t)t} - \lambda(t)e^{-\lambda(t)t}$$
$$d\lambda(t)$$

$$\frac{d\lambda(t)}{dt} \text{ is } <<\lambda(t)$$

$$\frac{dR(t)}{dt} = -\lambda(t)e^{-\lambda(t)t} \quad but \ e^{-\lambda(t)t} = R(t)$$

 $\lambda(t) = \frac{-\frac{dR(t)}{dt}}{R(t)}$ If λ is a constant then the above reduces to $\lambda(t) = \lambda$

$$MTBF(t) = \frac{R(t)}{-\frac{dR(t)}{dt}}$$

Availability Improvement By Oversizing and Redundancy For the m out of n case, where $m \neq n$

n quantity of $\frac{m}{n}$ rated power supplies. Each power supply operates at $\frac{m}{n}$ rated P_R $P_O = \frac{m}{n} P_R$

$$MTBF_{O} = \frac{P_{R}}{P_{O}}MTBF_{R} = \frac{n}{m}MTBF_{R} \qquad \lambda_{O} = \frac{m}{n}\lambda_{R} \quad linear \ relationship \ is \ conservative$$

$$R_{Om/n}(t) = \sum_{k=m}^{n} \left(\frac{n!}{(n-k)!k!} \right) \left(e^{-\lambda_{O}t} \right)^{k} \left(1 - e^{-\lambda_{O}t} \right)^{n-k} = n e^{-m\lambda_{O}t} - m e^{-n\lambda_{O}t}$$

$$MTBF_{Om/n}(t) = \frac{ne^{-m\lambda_O t} - me^{-n\lambda_O t}}{mn\lambda_O e^{-m\lambda_O t} - mn\lambda_O e^{-n\lambda_O t}}$$

 $A_{Om/n}(t) = \frac{MTBF_{Om/n}(t)}{MTBF_{Om/n}(t) + MTTR}$

June 2012

Active Redundancy - One Full Rated Power Supply

For the case of 1 power supply with a power rating equal to the required operational power $P_{R} \models P_{O}$ $MTBF_{R} = MTBF_{O}$ $\lambda_{R} \neq \lambda_{O}$ $R_{O} = e^{-\lambda_{O} t} = e^{-\lambda_{R} t}$ $A_{O} = \frac{MTBF_{O}}{MTBF_{O} + MTTR} = \frac{MTBF_{R}}{MTBF_{R} + MTTR}$

Active Redundancy - One Out of Two Case

For the m=1 out of n=2 case

2-full rated rated power supplies. Each power supply operates at $\frac{1}{2}$ rated P_R

$$MTBF_{O} = \frac{P_{R}}{P_{O}}MTBF_{R} = 2MTBF_{R} \qquad \lambda_{O} = \frac{1}{2}\lambda_{R}$$

$$R_{O1/2}(t) = 2e^{-\lambda_{O}t} - e^{-2\lambda_{O}t}$$

$$MTBF_{O1/2}(t) = \frac{2e^{-\lambda_{O}t} - e^{-2\lambda_{O}t}}{2\lambda_{O}e^{-\lambda_{O}t} - 2\lambda_{O}e^{-2\lambda_{O}t}}$$

$$A_{O1/2}(t) = \frac{MTBF_{O1/2}(t)}{MTBF_{O1/2}(t) + MTTR}$$

For the m=2 out of n=3 case

3-1/2 rated power supplies. Each power supply operates at 2/3 rated P_R

$$MTBF_{O} = \frac{P_{R}}{P_{O}} MTBF_{R} = \frac{3}{2} MTBF_{R} \qquad \lambda_{O} = \frac{2}{3} \lambda_{R}$$

$$R_{O2/3}(t) = 3e^{-2\lambda_{O}t} - 2e^{-3\lambda_{O}t}$$

$$MTBF_{O2/3}(t) = \frac{3e^{-2\lambda_{O}t} - 2e^{-3\lambda_{O}t}}{6\lambda_{O}e^{-2\lambda_{O}t} - 6\lambda_{O}e^{-3\lambda_{O}t}}$$

$$A_{O2/3}(t) = \frac{MTBF_{O2/3}(t)}{MTBF_{O2/3}(t) + MTTR}$$

For the m=3 *out of* n=4 *case*

4-3/4 rated power supplies. Each power supply operates at 3/4 rated P_R

$$MTBF_{O} = \frac{P_{R}}{P_{O}}MTBF_{R} = \frac{4}{3}MTBF_{R} \qquad \lambda_{O} = \frac{3}{4}\lambda_{R}$$

$$R_{O3/4}(t) = 4e^{-3\lambda_{O}t} - 3e^{-4\lambda_{O}t}$$

$$MTBF_{O3/4}(t) = \frac{4e^{-3\lambda_{O}t} - 3e^{-4\lambda_{O}t}}{12\lambda_{O}e^{-3\lambda_{O}t} - 12\lambda_{O}e^{-4\lambda_{O}t}}$$

$$A_{O3/4}(t) = \frac{MTBF_{O3/4}(t)}{MTBF_{O3/4}(t) + MTTR}$$

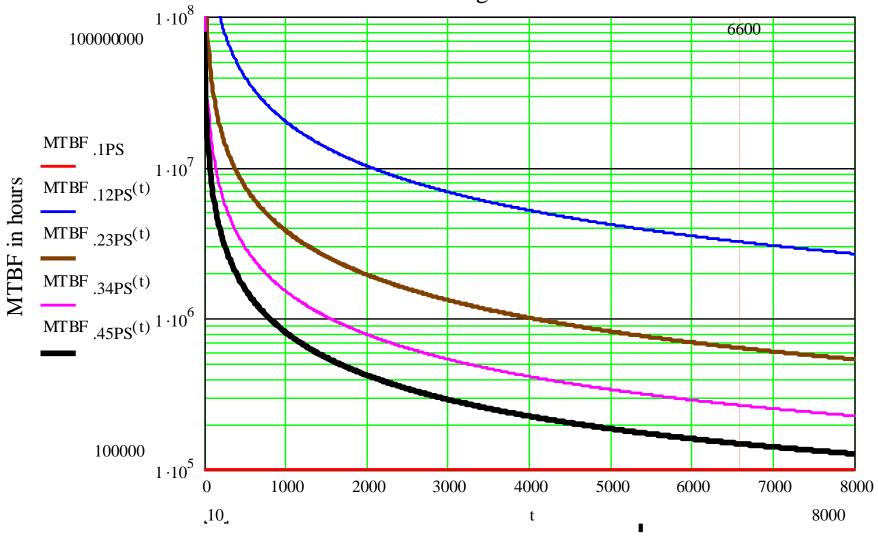
For the m=4 out of n=5 case

5-4/5 rated power supplies. Each power supply operates at 4/5 rated P_R

$$MTBF_{O} = \frac{P_{R}}{P_{O}}MTBF_{R} = \frac{5}{4}MTBF_{R} \qquad \lambda_{O} = \frac{4}{5}\lambda_{R}$$

$$R_{O4/5}(t) = 5e^{-4\lambda_{O}t} - 4e^{-5\lambda_{O}t}$$

$$MTBF_{O4/5}(t) = \frac{5e^{-4\lambda_{O}t} - 4e^{-5\lambda_{O}t}}{20\lambda_{O}e^{-4\lambda_{O}t} - 20\lambda_{O}e^{-5\lambda_{O}t}}$$

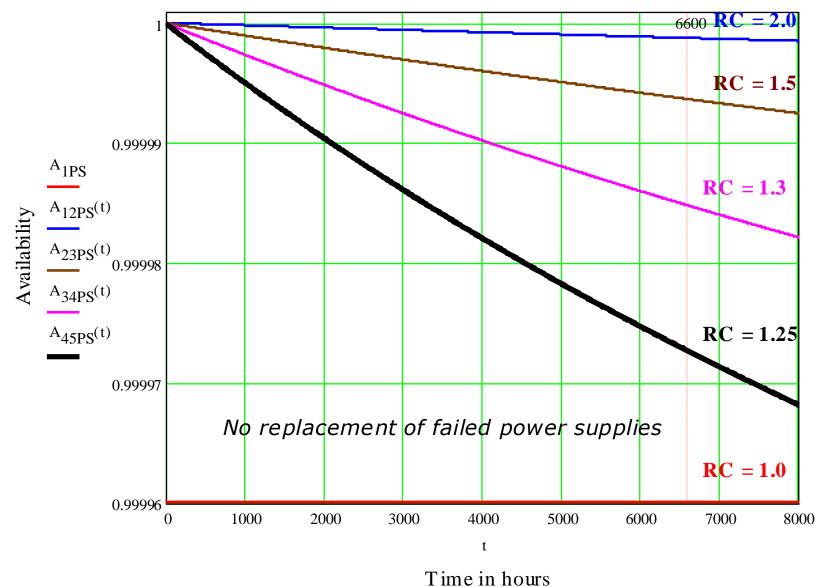

$$A_{O4/5}(t) = \frac{MTBF_{O4/5}(t)}{MTBF_{O4/5}(t) + MTTR}$$

Active Redundancy Power Supply Reliability Summary

PS		Redundant Power Supplies					
1FR	$\lambda_O = \lambda_R$	$R_{O} = e^{-\lambda_{O} t}$	$MTBF_{O} = MTBF_{R}$	$A_{o} = \frac{MTBF_{o}}{MTBF_{o} + MTTR}$			
1/2	$\lambda_O = \frac{1}{2} \lambda_R$	$R_{O1/2} = 2e^{-\lambda_O t} - e^{-2\lambda_O t}$	$MTBF_{O1/2}(t) = \frac{2e^{-\lambda_O t} - e^{-2\lambda_O t}}{2\lambda_O e^{-\lambda_O t} - 2\lambda_O e^{-2\lambda_O t}}$	$A_{O1/2}(t) = \frac{MTBF_{O1/2}(t)}{MTBF_{O1/2}(t) + MTTR}$			
2/3	$\lambda_O = \frac{2}{3} \lambda_R$	$R_{02/3} = 3e^{-2\lambda_0 t} - 2e^{-3\lambda_0 t}$	$MTBF_{O2/3}(t) = \frac{3e^{-2\lambda_O t} - 2e^{-3\lambda_O t}}{6\lambda_O e^{-2\lambda_O t} - 6\lambda_O e^{-3\lambda_O t}}$	$A_{O2/3}(t) = \frac{MTBF_{O2/3}(t)}{MTBF_{O2/3}(t) + MTTR}$			
			$MTBF_{O3/4}(t) = \frac{4e^{-3\lambda_O t} - 3e^{-4\lambda_O t}}{12\lambda_O e^{-3\lambda_O t} - 12\lambda_O e^{-4\lambda_O t}}$	$A_{O3/4}(t) = \frac{MTBF_{O3/4}(t)}{MTBF_{O3/4}(t) + MTTR}$			
4/5	$\lambda_o = \frac{4}{5} \lambda_R$	$R_{O4/5} = 5e^{-4\lambda_O t} - 4e^{-5\lambda_O t}$	$MTBF_{04/5}(t) = \frac{5e^{-4\lambda_0 t} - 4e^{-5\lambda_0 t}}{20\lambda_0 e^{-4\lambda_0 t} - 20\lambda_0 e^{-5\lambda_0 t}}$	$A_{04/5}(t) = \frac{MTBF_{04/5}(t)}{MTBF_{04/5}(t) + MTTR}$			

Active Redundancy MTBF Plot

Configuration MTBF

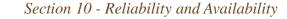


Time in hours

Section 10 - Reliability and Availability

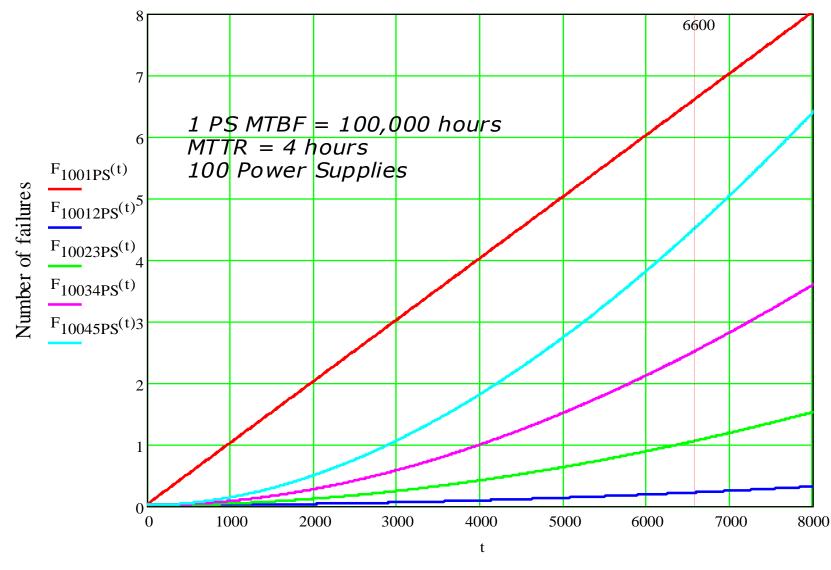
Active Redundancy - Availability

Configuration Availability



Active Redundancy - Availability of 100 Power Supplies

6600 0.9995 0.999 $A_{1001PS}(t)$ A_{10012PS}(t)^{0.9985} Availability $A_{10023PS}(t)$ 0.998 $A_{10034PS}(t)$ A_{10045PS}(t)0.9975 100 PS 1PS MTBF = 100,000 hours 0.997 MTTR = 4 hours0.9965 0.996 0 1000 2000 3000 4000 5000 6000 7000 8000 t


Configuration Availability

Time in hours

Active Redundancy - Number of PS Failures

Number of Failures

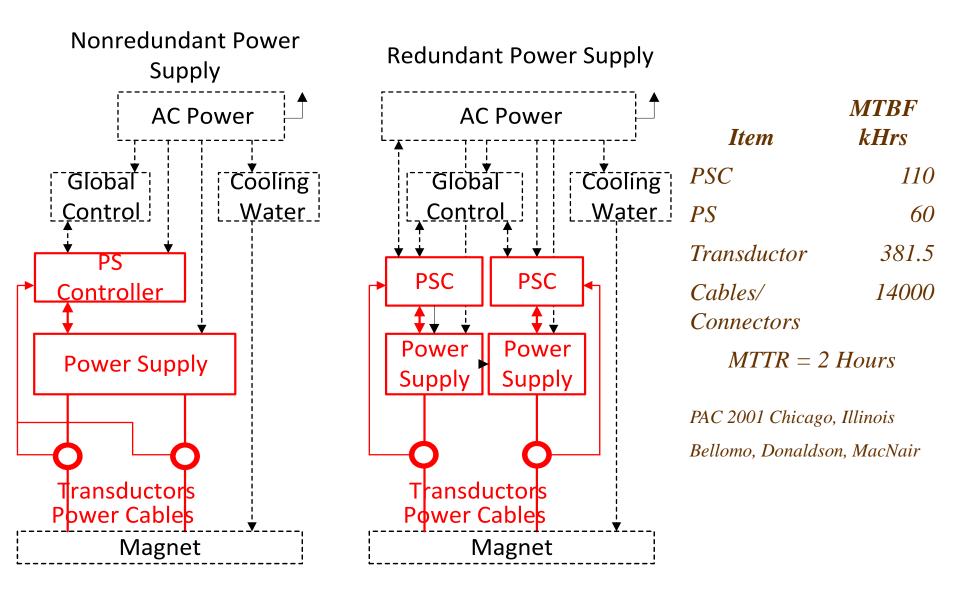
Time in hours

Homework Problem # 18

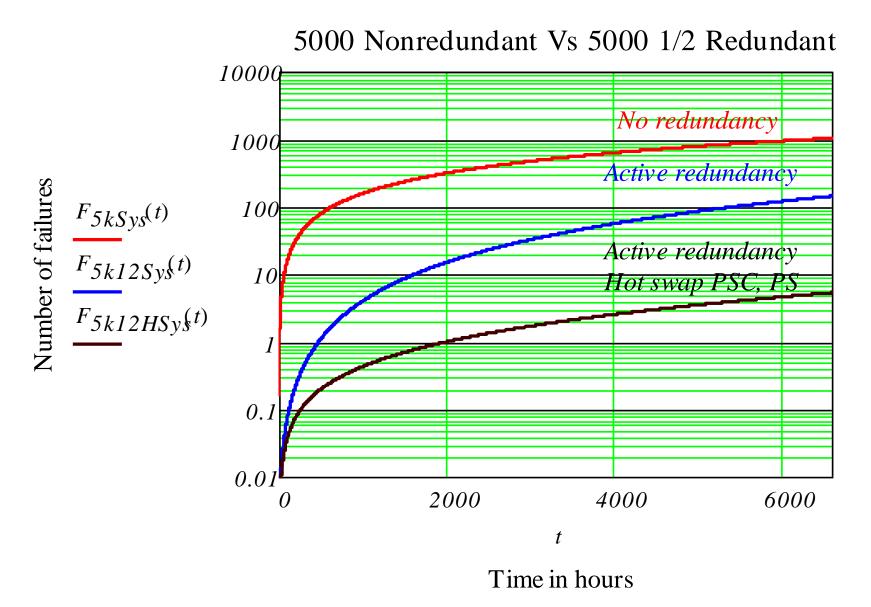
Two inverter stages in an uninterruptible power supply are to be connected in parallel. each is capable of full-load capability. The calculated failure rate of each stage is $\lambda = 200$ failures per million hours. A. What is the probability that each inverter will remain failure free for a mission time of 1000 hours and B) What is the probability that the system will operate failure free for 1000 hours?

Solution:

Homework Problem # 19

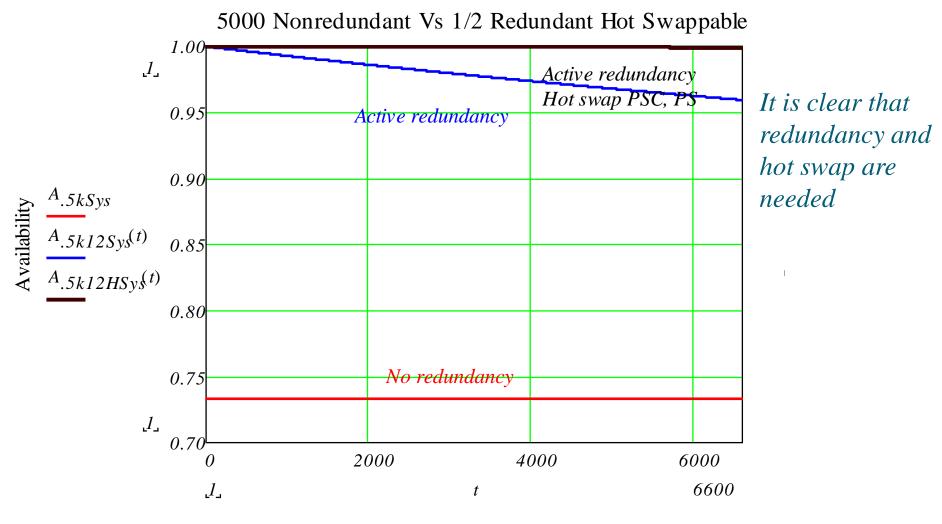

For a critical mission, 3 power supplies, each capable of supplying the total required output, are to be paralleled. The power supplies are also decoupled such that a failure of any power supply will not affect the output. The calculated failure rate of each power supply is 4 per million hours.

A) What is the probability that each power supply will operate failure free for 5 years? *B)* What is the probability that the system will operate failure free for 5 years? Solution below.


SLAC Next-Generation High Availability Power Supply

Dave MacNair SLAC National Accelerator Laboratory Power Conversion Department (PCD)

Why High Availability is Essential



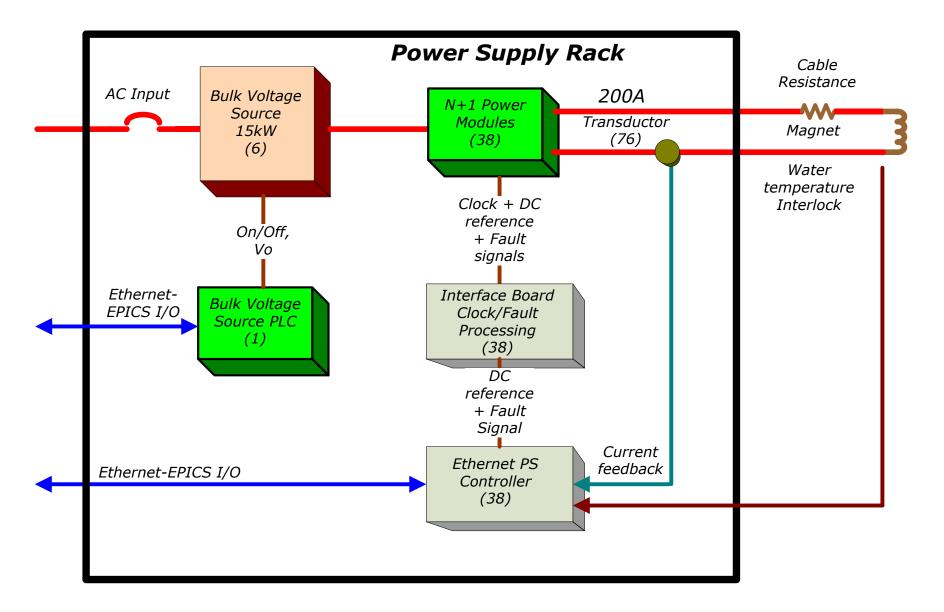
Redundancy is Essential

June 2012

Hot Swap is Essential

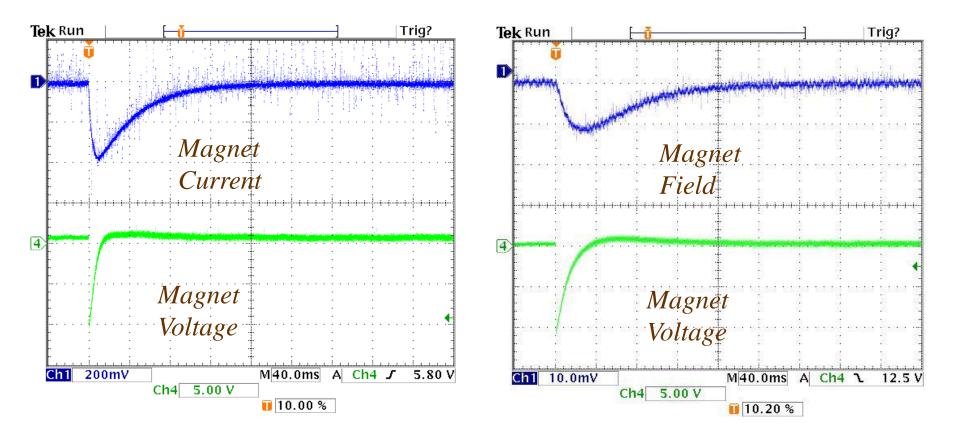
Time in hours

SLAC Projects with Non-redundant or Redundant Power Supplies


Non-redundant - PEP II, SPEAR 3, LCLS (1994 – 2006)

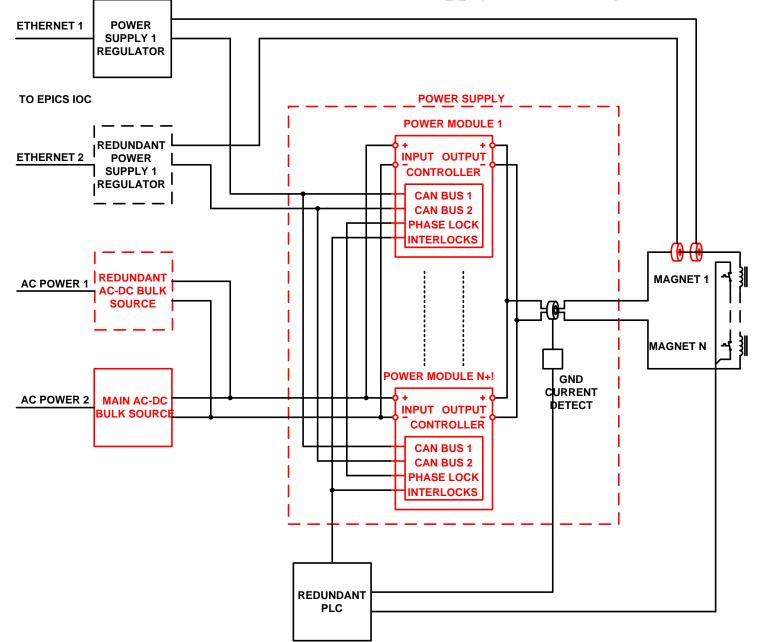
- •Power supply quantity is hundreds, not thousands
- Power supply availability budget is modest 98%
- Non-redundant supplies satisfied availability budget
- Redundant power systems not readily available from industry
- Redundant systems would not fit within cost and schedule constraints

Redundant - KEKATF 2 (2006 – 2008)


- Mock-up of ILC Final Focus accelerator
- Magnet power supplies ILC-like

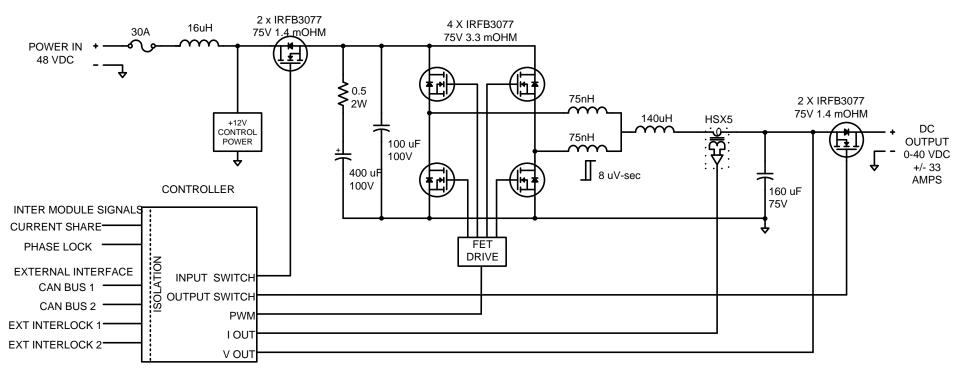
ATF2 Block Diagram

ATF2 – at KEK

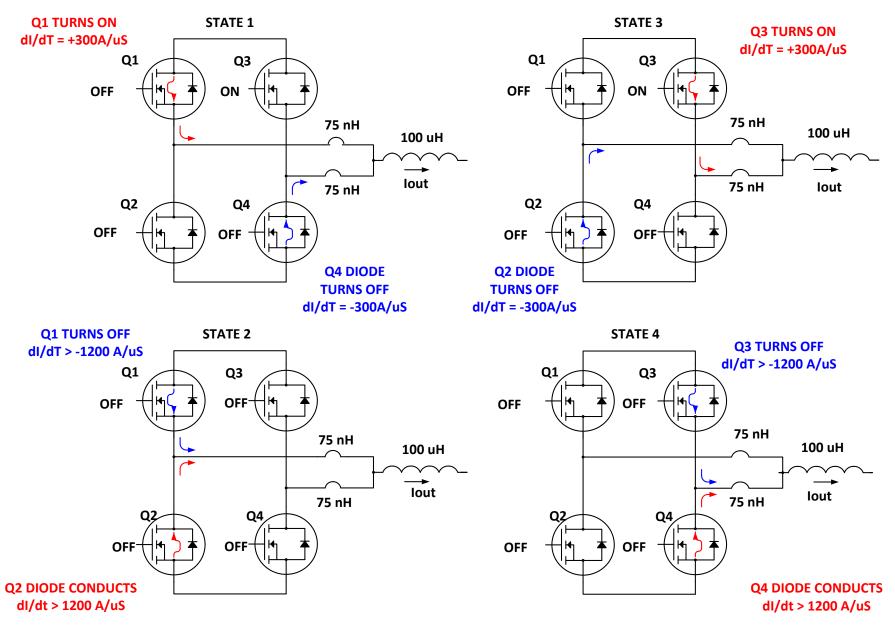

- During power module loss measured 6A magnet current drop at 150A
- 100 Gauss drop at 3.1 kilogauss. 200mS recovery with no overshoot, no re-standardize needed

Goals

- All components N+1 modular and redundant
- Power module hot-swappable
- Unipolar or bipolar output from a single unipolar bulk voltage source
- Imbedded controller with digital current regulation
- Capable of driving superconducting magnets
- High bandwidth for use in BBA or closed orbit correction systems
- High stability and precision output current
- High accuracy read-backs
- Scalable to higher output levels

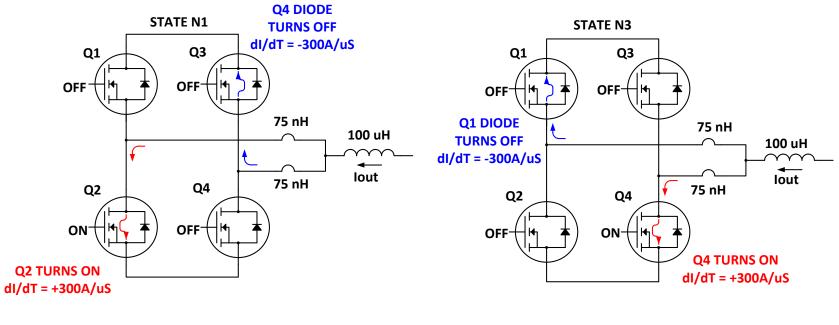

Applications

• ILC and other future accelerators

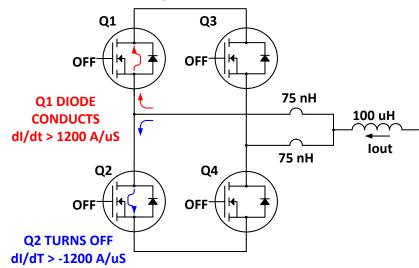


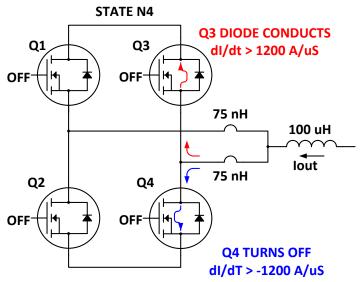
Section 10 - Reliability and Availability

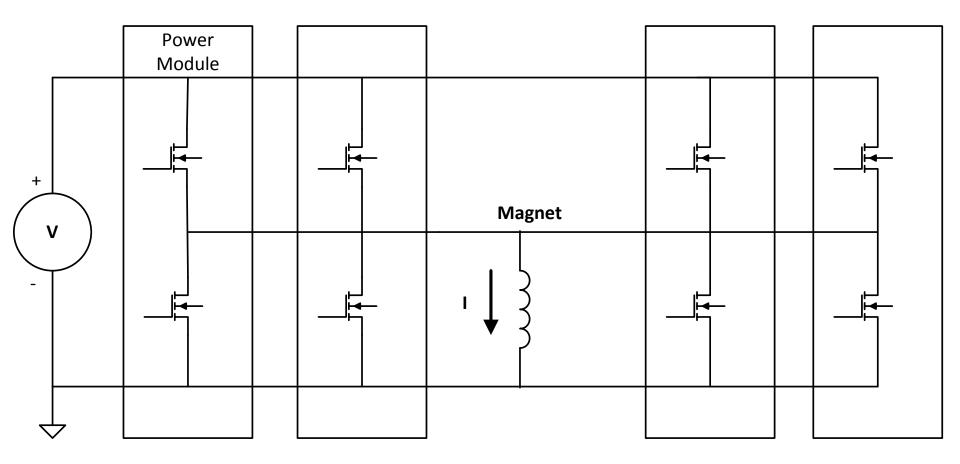
Next Generation Power Module Schematic

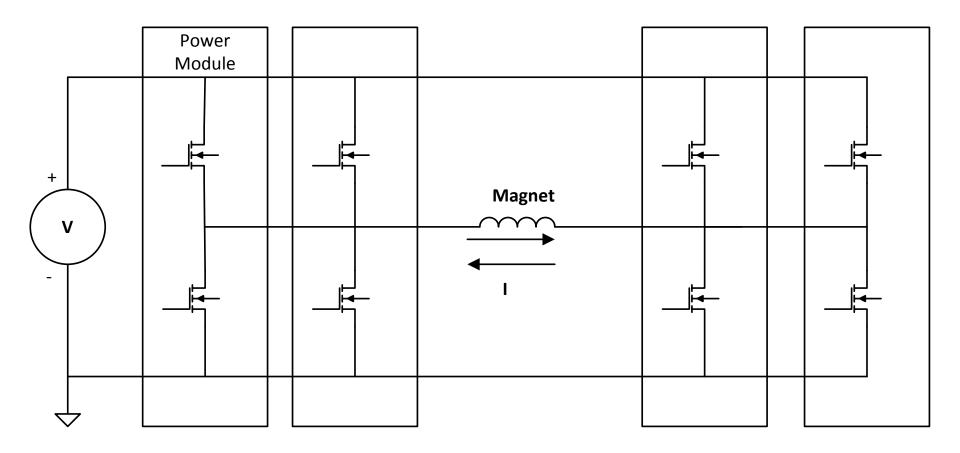


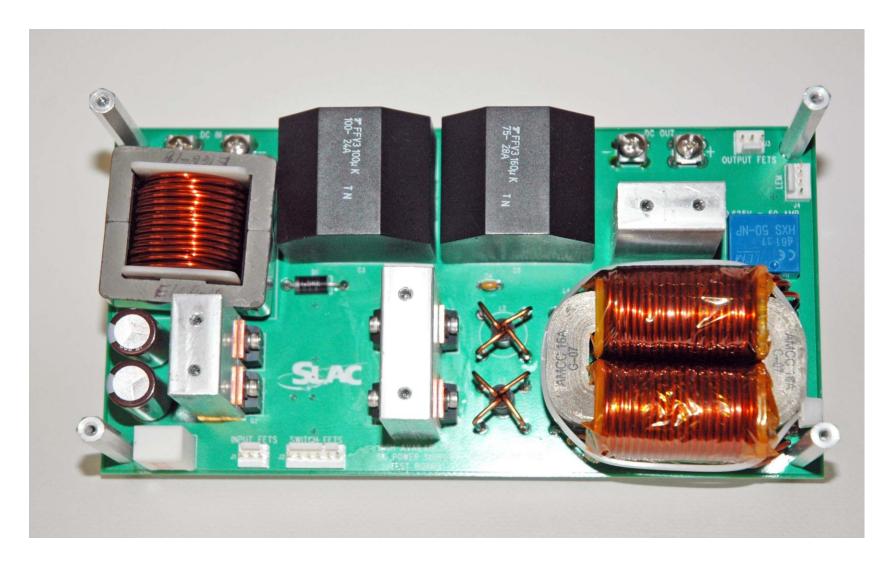
Next Generation Positive Output Current (Q1 - Q2 - Q3 - Q4)



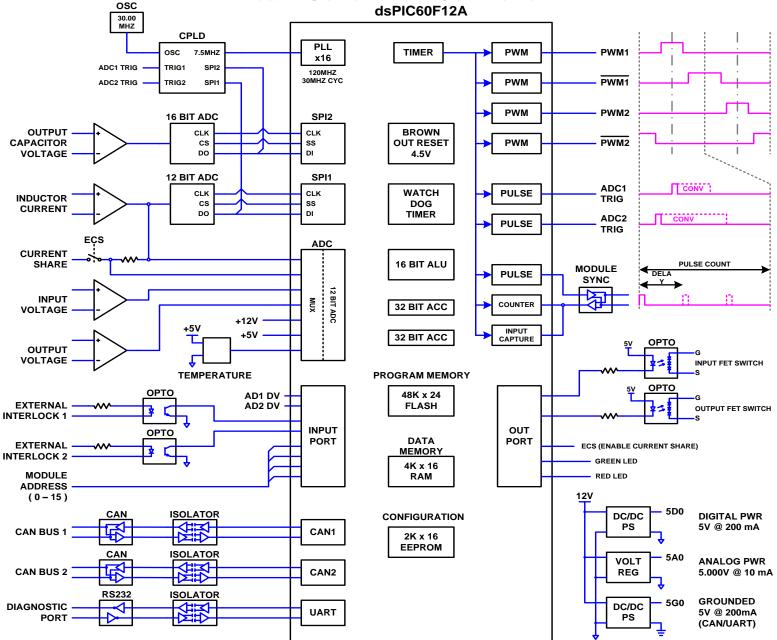

June 2012


Next Generation Negative Output Current (Q2 - Q1 - Q4 - Q3)



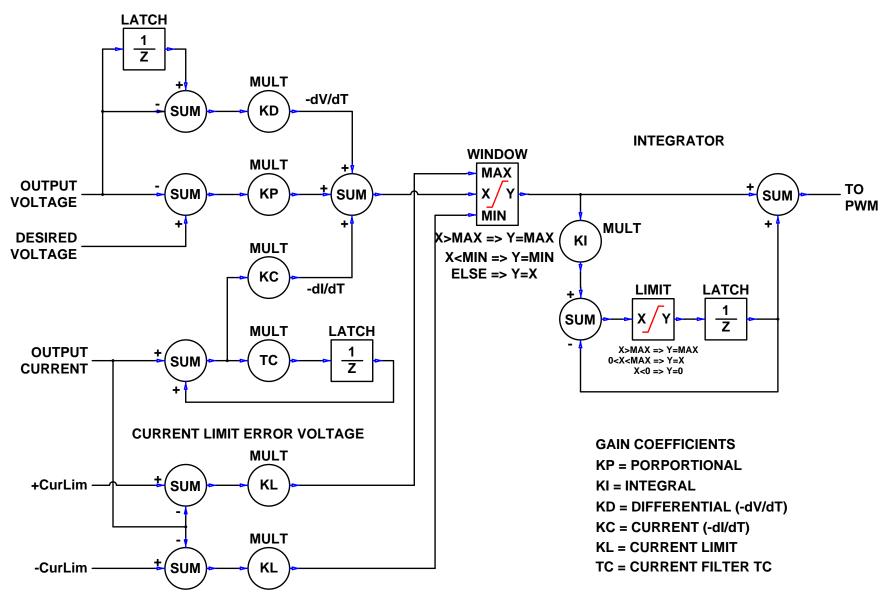


Next Generation Power Modules are "Bricks"

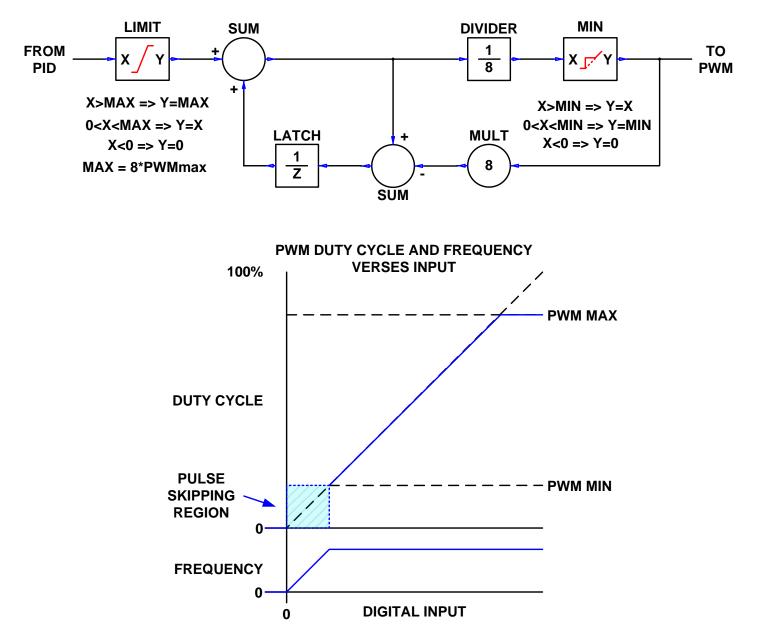


- *Input: 48V*
- *Output V: 0 to 40V*
- Output I: 0 to 33A
- Output P: 0 to 1,320W
- 2 " X 4 " X 8 "

Next Generation Power Module Layout



Next Generation Controller

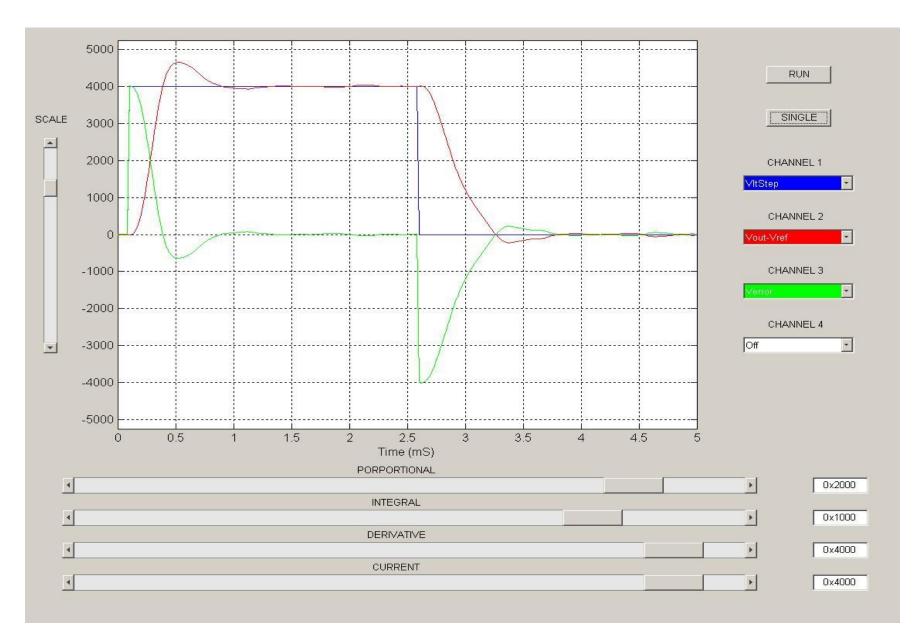


Next Generation PID Loops

VOLTAGE LOOP ERROR VOLTAGE

Next Generation PWM Control

Section 10 - Reliability and Availability


Next Generation Prototype Controller with Development Board

Next Generation – Controller Card

	I	13 m. 4				MTE
1[1 🗩 🖵 ?						
-00 🔽 (🕞))					
	21					
· · · · · · · · · · · · · · · · · · ·						
			[XIITTIDI. NOM	
STANFORD LINEAR A	CELERAT	OR CENTER	ASSEMBLY DRAWN	G TOP	SHEET 1	OF 4
U. S. DEPAITNEN			HIGH AVAILAI	ALITY P	OWER SU	PPLY
STANFORD UNIVERSITY	STANFORD,	CALIFORNIA	CONTROLLER			
ENER: NON MARK	DATE CA/D/R	APPROVAL				
DFTR:			SA-125-347	-98 VFF	2 1.0	
CHR:				20 121		

Next Generation – MATLAB Tuning Program

Program Status – As of January 2010

To date

- Five power modules with embedded controllers have been built
- The modules have been tested individually and run as pairs
- Demonstrated
 - 4 modules, 40V, 100A, 4,000W unipolar output then reconfigure
 - 4 modules, 40V, 33A, 1,320W bipolar output

Future

- Design the outer current control loop components
- Demonstrate operation of a completely redundant power supply

Confidence Levels

- *MTBF* previously discussed relates to the laws of large quantities and 50% confidence limits
- Confidence intervals are bounded with upper and lower limits. The broader the limits, the higher the confidence
- Electronic equipment, a one-sided, lower limit is appropriate

t= *time in hours*

f=number of failures

 $MTBF_{Predicted} = t / f$

 K_L from chi-square distribution

 $MTBF_{LL} = MTBF_{Predicted} * K_L$

K_L Multipliers For MTBF Confidence Levels

Failures	Lower Limit K _L				
f	60%	70%	80%	<i>90%</i>	95%
1	0.620	0.530	0.434	0.333	0.270
2	0.667	0.600	0.515	0.422	0.360
3	0.698	0.630	0.565	0.476	0.420
4	0.724	0.662	0.598	0.515	0.455
5	0.746	0.680	0.625	0.546	0.480
500	0.965	0.954	0.942	0.930	0.915

Excerpted and abridged from W. Grant Ireson, Reliability Handbook, McGraw-Hill, NY 1966

Confidence Limit Example

If a power supply is to operate for 3 years before the first failure, what is the MTBF prediction for an 80% confidence level? Repeat for a 90% confidence level.

Solution:

3 years = 26280 hours = $MTBF_{Test}$

From the confidence limit table $K_L = 0.434$ for 80% and f = 1

Therefore, $MTBF_{80\%} = MTBF_{Predicted} * 0.434 \ge 11,406$ hoursFor $MTBF_{90\%} = MTBF_{Predicted} * 0.333 \ge 8,751$ hours

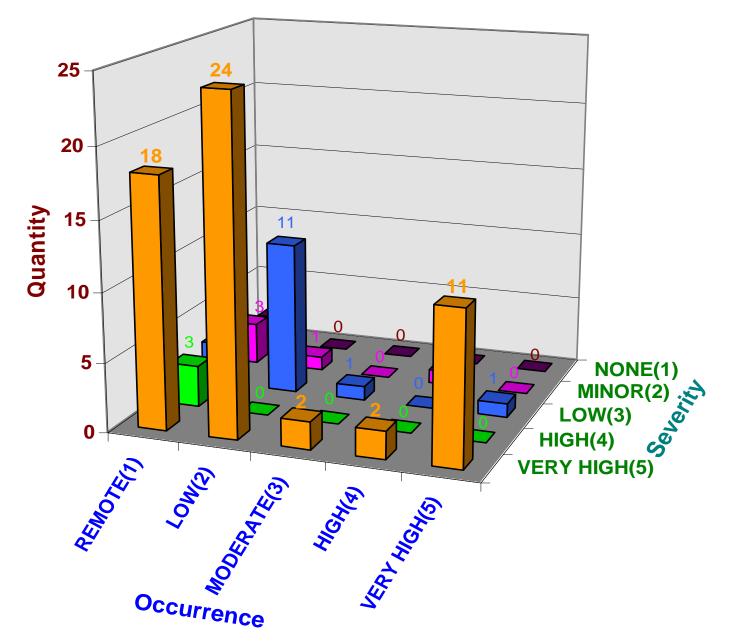
It is desired to claim with 90% confidence that the actual MTBF of a power supply is 2500 hours. What must be the predicted MTBF if the test is terminated at the first test failure?

FMECA is

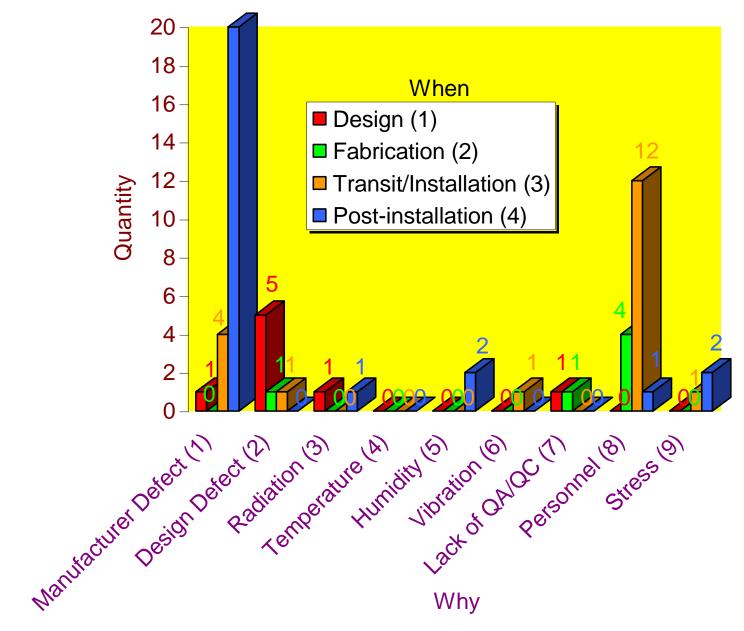
- A systematic way to prioritize the addressing of "weak links".
- An inductive, bottoms-up method of analyzing a system design or manufacturing process in order to properly evaluate the potential for failures

It Involves

• *Identifying all potential failure modes, determining the end effect of each potential failure mode, and determining the criticality of that failure effect.*

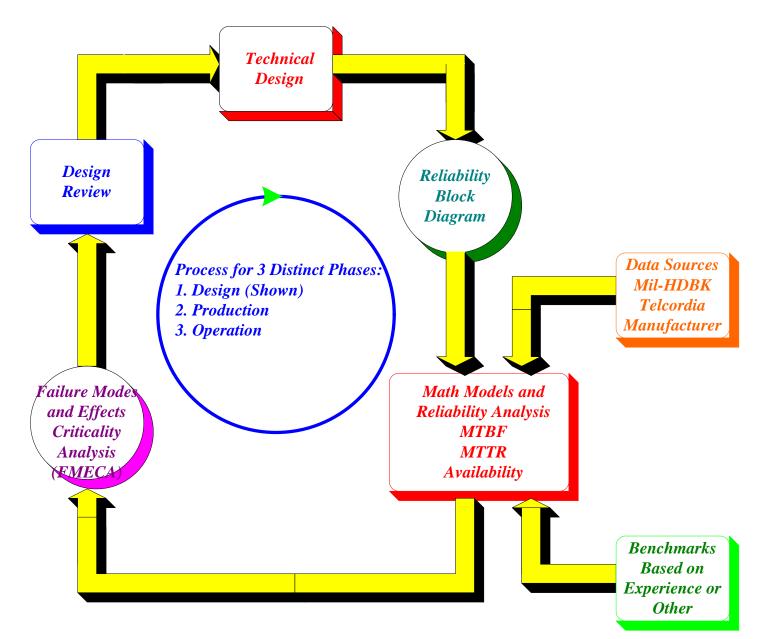

3 Major Iterations

• Used in the Design, Fabrication and Operation Stages


Fault Modes And Effects Criticality Analysis (FMECA)

Part Name/ #	Part Function	Potential Failure Mode	Potential Effects of Failure	S E V	Potential Causes of Failure	0 C C	Design Evaluation Technique		R P N	W H E N	W H Y
Coils	Provide magnetic field	coil to coil or coil to magnet steel short	magnet goes off line	5	coils moved during installation of magnet or adjacent beamline component, or alignment of magnet	5	protype test	1	25	3	2
Coils	Provide magnetic field	klixon trip due to overheating	magnet goes off line	5	inadequate water pressure differential across magnet	5	prototype test, calculation	1	25	1	2
Coils	Provide magnetic field	klixon trip due to overheating	magnet goes off line	5	too many loads on water circuit	5	prototype test, calculation	1	25	1	2
Coils	Provide magnetic field	klixon trip due to overheating	magnet goes off line	5	conducter sclerosis	3	n/a	1	15	4	9
Coils	Provide magnetic field	klixon trip due to overheating	magnet goes off line	5	foreign object in water line or coil which blocks water flow	2	n/a	1	10	4	8
Coils	Provide magnetic field	klixon trip due to overheating	magnet goes off line	5	damaged (crimped) coil which restricts water flow	2	n/a	1	10	3	8
Coils	Provide magnetic field	water leak	magnet goes off line due to ground fault	5	water hose brakes because of radiation damage	5	n/a	1	25	4	3
Coils	Provide magnetic field	water leak	magnet goes off line due to ground fault	5	corrosion in aluminum/copper conductor	2	n/a	1	10	4	9
Coils	Provide magnetic field	water leak	magnet goes off line due to ground fault	5	erosion of coil from excess water velocity	4	n/a	1	20	4	2
Coils	Provide magnetic field	water leak	magnet goes off line due to ground fault	5	break in braze joint between copper block and coil	3	prototype test	1	15	3	8
Fittings	Make water connection	water leak	magnet goes off line due to ground fault	5	cracked fittings from incorrect installation procedure	4	n/a	1	20	3	8
Jumpers	Connection between coils	short at jumper	magnet goes off line due to ground fault	5	sloppy installation	5	n/a	1	25	3	8
Jumpers	Connection between coils	short at jumper	magnet goes off line due to ground fault	5	poor design	5	design review, prototype	1	25	1	2
Jumpers	Connection between coils	loose jumpers	excessively high temperatures leading to melting of materials	5	poor design or incorrect procedures used at installation	5	n/a	1	25	3	8

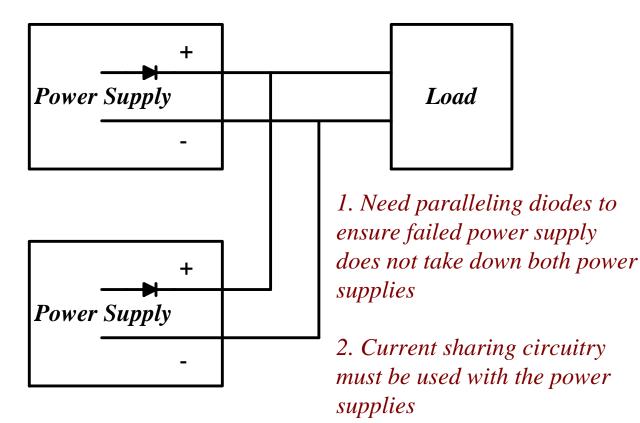
Fault Modes And Effects Criticality Analysis (FMECA)


FMECA When and Why Plot

June 2012

Section 10 - Reliability and Availability

Reliability Process Diagram



Maintainability

Cold swap – input bus and power supply must be off when it is exchanged

Warm swap – input bus is on but power supply is off when exchanged

Hot swap – input bus is on and power supply is on when exchanged. Typically used with redundant, full rated power supplies

Section 11 - Power Supply Specifications

List of Specifications for to be given to the Power Supply Designer			
Requirement Example			
1. Site conditions	<i>Elevation, ambient temperature range, humidity, seismic requirements</i>		
2. Intended use and system	Storage ring accelerator dipole magnet power supply		
3. Function	DC or pulsed, voltage or current source		
4. Load parameters and description	Inductance, capacitance and resistance		
5. Output ratings	Maximum voltage, current, operating or pulse time, pulse width and repetition rate		
6. Input voltage and phases	208V, 1 \$\overline{\phi}\$ 208V, 3 \$\overline{\phi}\$ 480V, 3 \$\overline{\phi}\$		
7. Efficiency	Up to 94% achievable at full load output		

List of Specifications for to be given to the Power Supply Designer			
Requirement	Example		
8. Input power factor	Up to 0.95 achievable for 6 pulse		
	Up to 0.97 achievable for 12 pulse		
9. Input line THD	< 5% voltage		
	<24% current		
10. Conducted EMI 10kHz to 30MHz	MIL-STD-461E		
	FCC Class A Industrial		
	FCC Class B Residential		
11. Line regulation	0.05 % of rated output voltage change for a 5% line voltage change. Recovery in 500μ S		
12. Short-term (1 to 24 hour) stability	Allowable voltage or current deviation - 10s of ppm achievable		
13. Output voltage ripple (PARD)	DC to 1 MHz, peak-to-peak, 0.05 % of rated voltage output		

Power Supply Specifications

List of Specifications for to be given to the Power Supply Designer			
Requirement	Example		
14. Output pulse amplitude stability			
15. Output pulse – to pulse deviation in time (jitter)	<i>1 nanosecond for solid-state converters.</i> <i>10s of nanoseconds for thyratron triggers</i>		
16. Load regulation	0.05 % of rated output voltage change for 10 % line change. Recovery in 500µ S		
17. Type of control system	Analog, mixed analog-digital, all digital Communication bus		
18. Interlocks	 Low input voltage - loss of input phase Output over voltage - over current Excessive ground current Insufficient cooling air flow - cabinet over temperature Insufficient cooling water flow - cooling water over temperature 		

List of Specifications for to be given to the Power Supply Designer			
Requirement	Example		
19. Interlocks (continued)	•MPS fault •PPS violated •Cabinet doors open		
20. Cooling methods	Water cooling for biggest power dissipating devices (IGBTs, rectifiers, chokes) <50 kW – all air cooled > 50kW – some measure of water cooling		
21. Front panel controls	 Local / remote operation Output voltage or current Ground current limit Output current limit 		

List of Specifications for to be given to the Power Supply Designer				
Requirement	Example			
22. Front panel displays	•Output voltage			
	•Output current			
	•Ground current			
	•Voltage or current mode			
	• Current limited operation			
23. Component deratings	Voltage, current and power			
24. Mean time between failure (MTBF)	MTBF = 1/(sum of all parts failure rates)			
25. Mean time to repair (MTTR)	Establish from MTBF and operational Availability requirement			
26. Availability				
27. Maintainability				

List of Specifications for to be given to the Power Supply Designer			
Requirement Example			
28. Physical size	Based on output power – typically 1 to 4 W / cu in		
29. Rack or free-standing	< 17kW rack-mounted > 17kW free-standing		
30. Compliance with UL or other nationally-recognized inspection/test laboratories	Underwriters Laboratories - UL National Recognized Test Laboratory - NRTL		
31. Seismic	Must satisfy site earthquake design criteria Damage criteria and response spectra curves - separate or combined accelerations		
32. Quality Assurance	Must satisfy project quality assurance/quality control criteria		

Section 12 - References

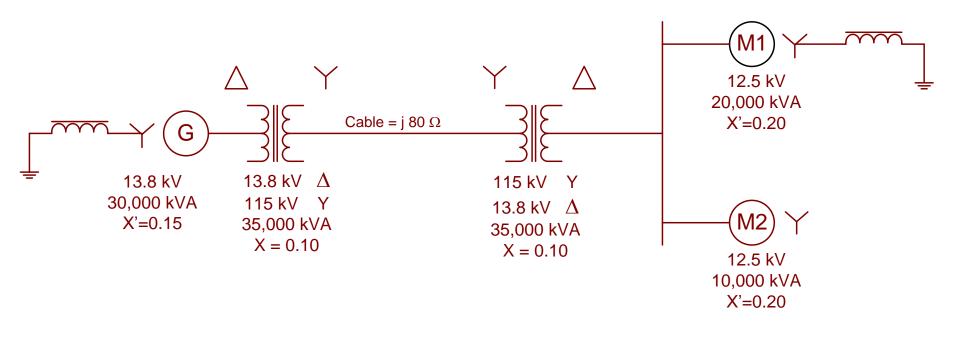
References And Useful Textbooks

References	Used in
Elements Of Power System Analysis, Stevenson, McGraw-Hill	Textbook
IEEE 90 - IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. Institute of Electrical and Electronics Engineers. New York, NY: 1990	Textbook
"Power Electronic Converter Harmonics", Derek Paice, IEEE Press, 1996	Textbook
Rectifier Circuits Theory And Design, Johannes Schaefer, John Wiley & Sons, Inc NY	Textbook
Switchmode Power Supply Handbook, Keith Billings, McGraw-Hill, February 1999, ISBN 0070067198	Textbook
EMI and Emissions: Rules, Regulations and Options, Daryl Gerke and Bill Kimmel, Electronic Design News, February 2001	Section 3
EMI Control Methodology and Procedures, Donald White and Michel Mardiguian, Interference Control Technologies, 4th Edition	Section 3
http://www.iijnet.or.jp/murata/index.html for feedtrhu filters	Section 3

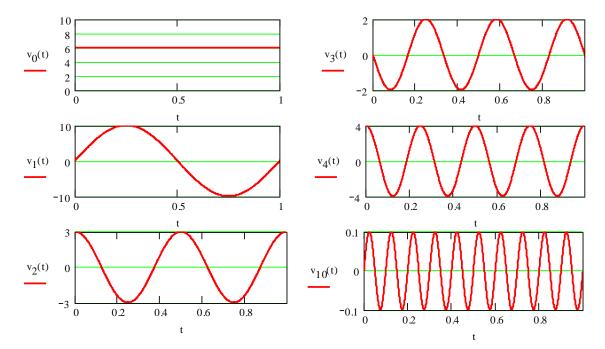
References	Used in
"Case Studies on Mitigating Harmonics in ASD Systems to Meet IEEE519-1992 Standards", Mahesh Swamy, Steven Rossiter, Michael Spencer, Michael Richardson - IEEE Industry Application Society Proceedings October 1994	Section 3
IEEE 519 – 1992 "Standard Practices and Requirements for Harmonic Control in Electrical Power Systems"	Section 3
Circuit Techniques for Improving the Switching Loci of Transistor Switches in Switching Regulators, E.T. Calkin and B.H. Hamilton, IEEE Transactions On Industry Applications, July 1976	Section 4
How to Select a Heatsink http://www.aavidthermalloy.com/technical/papers/pdfs/select.pdf	Section 4
IGBT Theory : http://www.elec.gla.ac.uk/groups/dev_mod/papers/igbt/igbt.html	Section 4
Magnetics Designer for Transformers, chokes and inductors,Intusoft Corporation http://www.i-t.com/engsw/intusoft/magdesgn.htm	Section 4

Useful Textbooks And References

References	Used in
Power Electronics Modeling Software, Integrated Engineering Software, http://www.integratedsoft.com	Section 4
PSPICE simulator for switching regulators, Linear Technologies, http://www.linear.com/insider	Section 4
PSPICE circuit simulator, Micro-Cap, Spectrum Software, http://www.spectrum-soft.com	Section 4
Zero Voltage Switching Resonant Power Supplies <u>http://www-s.ti.com/sc/psheets/slua159/slua159.pdf</u>	Section 4
SCSI information <u>http://www.scsita.org/aboutscsi/index01.html</u>	Section 5
MIL-STD-1629 "Procedures for Performing a Failure Mode, Effects, and Criticality Analysis".	Section 7
<u>RelCalc by T-Cubed</u>	Section 7
<u>Relex by Relex Software</u>	Section 7


Useful Textbooks And References

References	Used in
Table of Laplace Transforms <u>http://www.vibrationdata.com/Laplace.htm</u>	Section 6
Table of Fourier Transforms http://mathworld.wolfram.com/FourierTransform.html	Section 6


Section 13 - Homework Problems

Referring to the one-line diagram below, determine the line currents in the:

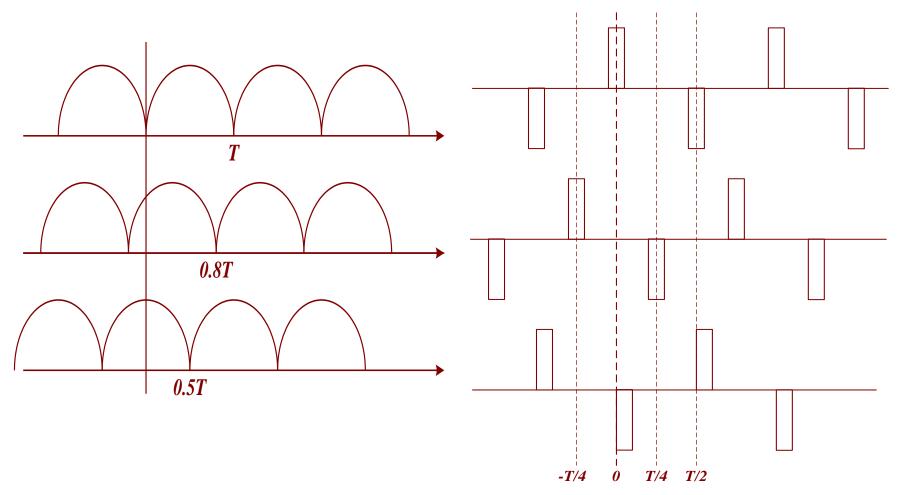
A. Generator B. Transmission Line C. M1 D. M2

A waveform v(t) was analyzed and found to consist of 6 components as shown here.

a. Write the Fourier series for v(t) in terms of $\omega = (2*\pi)/T$

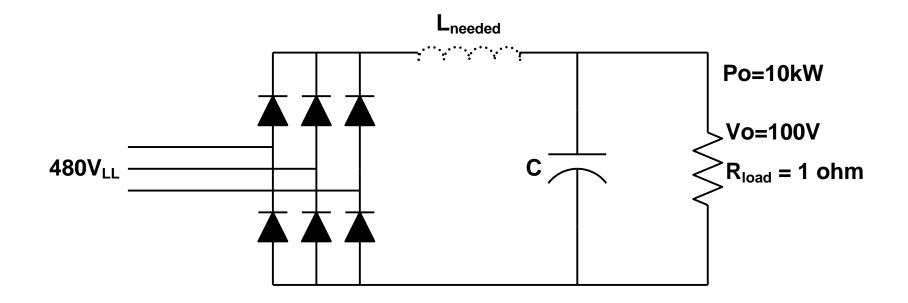
b. Show the harmonic content graphically by plotting the frequency spectrum

c. Give the numerical result of

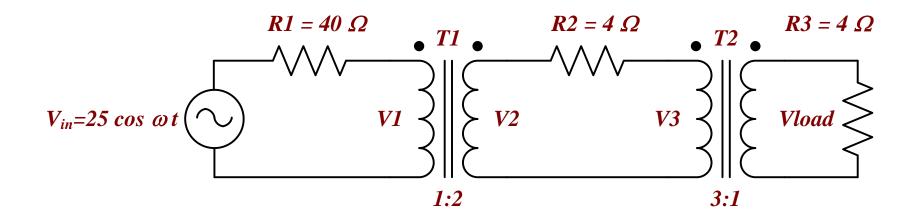

$$b_3 = \frac{2}{T} \int_0^T v(t) \sin 3\omega t \, dt \qquad Help: \int \sin^2(3\omega t) \, dt = \frac{1}{3} * \frac{\frac{1}{2} \cos(3\omega t) \sin(3\omega t) + \frac{3}{2} \omega t}{\omega}$$

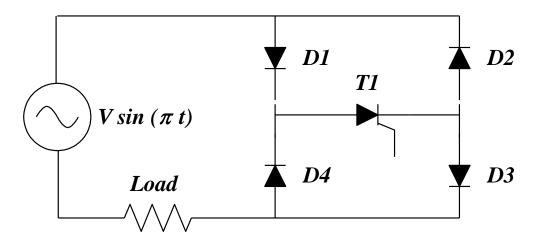
$$\boldsymbol{b}_4 = \frac{2}{T} \int_0^T \boldsymbol{v}(t) \sin 4\omega t \, dt \qquad Help: \int \cos(4\omega t) \sin(4\omega t) \, dt = \frac{-1}{8} \frac{\cos^2(4\omega t)}{\omega}$$

June 2012

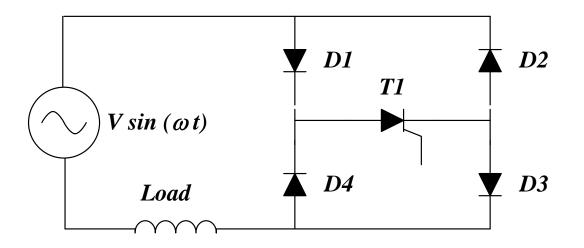

Section 13 - Homework Problems

Each waveform below can be written as a Fourier series. The result depends upon the choice of origin. For each of the 6 cases, state the type of symmetry present, non-zero coefficients and the expected harmonics.

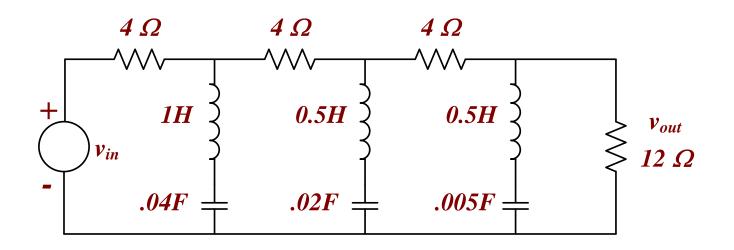

A uniform magnetic field B is normal to the plane of a circular ring 10 cm in diameter made of #10 AWG copper wire having a diameter of 0.10 inches. At what rate must B change with time if an induced current of 10 A is to appear in the ring? The resistivity of copper is about 1.67 $\mu \Omega$ – cm.


A 10 kW, 3 ϕ power supply has an efficiency of 90% and operates with a leading power factor of 0.8. Determine the size of a added inductor needed to improve the power factor to 0.95.

- A 1000kVA, 12.47kV to 480V, 60Hz three phase transformer has an impedance of 5%. Calculate:
- *a. The actual impedance and leakage inductance referred to the primary winding*
- b. The actual impedance and leakage inductance referred to the secondary winding
- c. The magnetizing inductance referred to the primary winding


Calculate the output voltage in the circuit shown below.

Assume ideal components in the phase-controlled circuit above. For a purely resistive load:

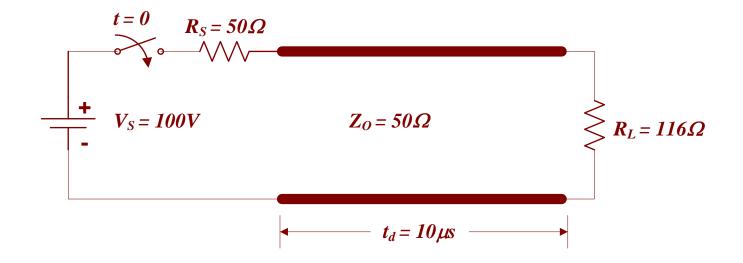

- A. Explain how the circuit operates
- B. Draw the load voltage waveform and determine the boundary conditions of the delay angle α
- C. Calculate the average load voltage and average load current as a function of α
- D. Find the RMS value of the load current.

Assume ideal components in the phase-controlled circuit above. For a purely inductive load:

- A. Explain how the circuit operates.
- B. Draw the load voltage and load current waveforms and determine the boundary conditions of the delay angle α
- C. Calculate the average load voltage and average load current as a function of α
- D. Find the RMS value of the load current.

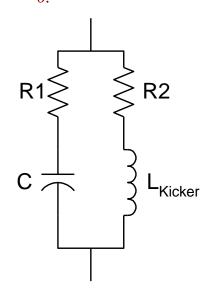
Given the circuit below:

$$h(t) = \frac{v_{out}(t)}{v_{in}(t)} \qquad H(j\omega) = \frac{V_{out}(j\omega)}{V_{in}(j\omega)}$$


Sketch $|H(j\omega)|$ versus ω

A 100kW power supply is 80% efficient. Approximately 50% of the power supply heat loss is removed by cooling water.

- How much heat is dissipated to building air and how much heat is removed by the water system.
- Calculate the water flow rate needed to limit the water temperature rise to 8°C maximum.


- A. An artificial transmission line can be formed using lumped Ls and Cs. Calculate the delay of an artificial line composed of 8 sections of inductances L=4mH per section and capacitance C=40pF per section.
- B. The frequency of a signal applied to a two-wire transmission cable is 3GHz. What is the signal wavelength if the cable dielectric is air? Hint relative permittivity of air is 1
- C. What is the signal wavelength if the cable dielectric has a relative permittivity of 3.6?

For the transmission line shown below, calculate the Reflection Coefficients Γ , the reflected voltages and the voltage and current along the line versus time.

A controlled impedance transmission line often drives a kicker. The kicker is usually well modeled as an inductor. A matching circuit can be built around the kicker and its inductance so that this circuit, including the kicker magnet, has constant, frequency independent, impedance which is matched to the transmission line.

Assuming that the transmission line impedance is Z_0 and the kicker inductance is L_{Kicker} derive the values of R1, R2, and C necessary to make a frequency independent (constant) impedance Z_0 .

Section 13 - Homework Problems

A. What is the significance of the value
$$\sqrt{\frac{\mu_o}{\varepsilon_o}}$$
 ?

B. What is the significance of the values $\frac{1}{\sqrt{\mu_o \varepsilon_o}}$ and $\sqrt{L^*C}$?

C. Calculate the speed of light in mediums with dielectric constants of: $\varepsilon_r = 1$ $\varepsilon_r = 2$ $\varepsilon_r = 4$ $\varepsilon_r = 8$ $\varepsilon_r = 16$

Homework Problem:

A. At least 2 of 4 parallel power supplies in an accelerator must continue to operate for the system to be successful. Let $R_i = 0.9$. Find the probability of success.

B. Solve for three out four for success

C. Solve for four out of four for success

Calculate the MTBF of a "typically commercial" 5 kW, switchmode power supply with EMI filter and appropriate electromechanical safety features amounting to 10% of the total number of components. The power supply operates at 50C ambient temperature. The power supply consists of the following components with the listed failure rates.:

- 2 each ICs, plastic linear, $\lambda = 3.64$
- 1 each opto-isolator, $\lambda = 1.32$
- 2 each hermetic sealed power switch transistors, $\lambda = 0.033$
- 2 each plastic power transistors, $\lambda = 0.026$
- 4 each plastic signal transistors, $\lambda = 0.0052$
- 2 each hermetic sealed power diodes, $\lambda = 0.064$
- 8 each plastic power diodes, $\lambda = 0.019$
- 6 each hermetic sealed switch diodes, $\lambda = 0.0024$
- 32 each composition resistors, $\lambda = 0.0032$
- 3 each potentiometers, commercial, $\lambda = 0.3$
- 8 each pulse type magnets, 130C rated, $\lambda = 0.044$
- 12 each ceramic capacitors, commercial, $\lambda = 0.042$
- 3 each film capacitors, commercial, $\lambda = 0.2$
- 9 each Al electrolytics, commercial, $\lambda = 0.48$

Homework Problem # 18

Two inverter stages in an uninterruptible power supply are to be connected in parallel. each is capable of full-load capability. The calculated failure rate of each stage is $\lambda = 200$ failures per million hours. A. What is the probability that each inverter will remain failure free for a mission time of 1000 hours and B) What is the probability that the system will operate failure free for 1000 hours?

Solution:

Homework Problem # 19

For a critical mission, 3 power supplies, each capable of supplying the total required output, are to be paralleled. The power supplies are also decoupled such that a failure of any power supply will not affect the output. The calculated failure rate of each power supply is 4 per million hours.

A) What is the probability that each power supply will operate failure free for 5 years? *B)* What is the probability that the system will operate failure free for 5 years? Solution below.

It is desired to claim with 90% confidence that the actual MTBF of a power supply is 2500 hours. What must be the predicted MTBF if the test is terminated at the first test failure?