Transverse Resonances

- resonances mechanisms
- Linear coupling
- Resonance conditions
- $3^{\text {rd }}$ order resonances

Resonance mechanism

- Errors in the accelerators perturbs beam motions
- Coherent buildup of perturbations

Driven harmonic oscillator

- Equation of motion

$$
\frac{d^{2} x(t)}{d t^{2}}+\omega^{2} x(t)=f(t)=\sum_{m=0} C_{m} e^{i \omega_{m} t}
$$

- for $f(t)=C_{m} e^{i \omega_{m} t}$

$$
\frac{d^{2} x(t)}{d t^{2}}+\omega^{2} x(t)=C_{m} e^{i \omega_{m} t}
$$

- Assume solution is like $x(t)=A e^{i \omega t}+A_{m} e^{i \omega_{m} t}$

$$
A_{m}=\frac{C_{m}}{\omega^{2}-\omega_{m}^{2}}
$$

Resonance response

- Response of the harmonic oscillator to a periodic force is

Betatron oscillation

- Equation of motion

$$
\begin{aligned}
& x^{\prime \prime}+K(s) x=0 \quad K\left(s+L_{p}\right)=K(s) \\
& x=A \sqrt{\beta_{x}} \cos (\psi+\chi)
\end{aligned}
$$

- In the presence of field errors including mis-aglinments, the equation of motion then becomes
where

$$
x^{\prime \prime}+K(s) x=-\frac{\Delta B_{y}}{B \rho}
$$

$$
\begin{aligned}
& \Delta B_{y}=B_{0}(b_{0}+b_{1} x+\underbrace{}_{2} x^{2}+\ldots) \\
& \text { Dipole error quadrupole error } \text { sextupole error }
\end{aligned}
$$

Floquet Transformation

- Re-define () as:

$$
\begin{aligned}
& x^{\prime \prime}+K(s) x=0 \quad K\left(s+L_{p}\right)=K(s) \\
& \zeta(s)=x(s) / \sqrt{\beta_{x}(s)} \quad \phi(s)=\psi(s) / Q_{x} \quad \text { or } \phi^{\prime}=1 /\left(Q_{x} \beta_{x}\right)
\end{aligned}
$$

- In the presence of field errors including mis-aglinments, the equation of motion then becomes
where

$$
\frac{d^{2} \zeta}{d \phi^{2}}+Q_{x}^{2} \zeta=-Q_{x}^{2} \beta_{x}^{3 / 2} \frac{\Delta B_{y}}{B \rho}
$$

$$
\frac{d^{2} \zeta}{d \phi^{2}}+Q_{x}^{2} \zeta=-\frac{Q_{x}^{2} B_{0}}{B \rho}\left[b_{0}+\beta_{x} b_{1} \zeta+\beta_{x}^{2} b_{2} \zeta^{2}+\cdots\right]
$$

Resonance contd

- For each n :

$$
\frac{d^{2} \zeta}{d \phi^{2}}+Q_{x}^{2} \zeta=-\frac{Q_{x}^{2} \beta_{x}^{3 / 2}}{B \rho} \beta_{x}^{n} b_{n} \zeta^{n}
$$

- When the term on the right side of the equation contain same frequency as Qx , a resonance occurs. And the solution has a form of

$$
\zeta=A_{k} e^{-i Q_{x} \phi}
$$

- Express the perturbation term as:

$$
\begin{array}{r}
\beta_{x}^{(n+3) / 2} b_{n}=\sum_{k} c_{k} e^{i k \phi} \\
k-n Q_{x}=Q_{x} \quad k=(n+1) Q_{x}
\end{array}
$$

Resonance condition

- In the absence of coupling between horizontal and vertical

$$
k=(n+1) Q_{x, y}
$$

error	n	
dipole	0	$Q x, y=$ integer
quadrupole	1	$2 Q x, y=$ integer
Sextupole	2	$3 Q x, y=$ integer
Octupole	3	$4 Q x, y=$ integer

- In the presence of coupling between horizontal and vertical

$$
M Q_{x}+N Q_{y}=k
$$

Tune diagram

- the resonance strength decreases as the order goes higher
- the working point should be located in an area between resonances there are enough tune space to accommodate tune spread of the beam

Phase space: $\mathbf{3}^{\text {rd }}$ order resonance

In the phase space of x, Px
$x=A \sqrt{\beta_{x}} \cos \psi$
$P_{x}=\beta_{x} x^{\prime}+\alpha_{x} x=-A \sqrt{\beta_{x}} \sin \psi$

- separatrix: boundery between stable region and unstable region
- Fixed points: where

$$
\frac{d x}{d n}=\frac{d P_{x}}{d n}=0
$$

Phase space: $4^{\text {th }}$ order resonane

Phase space: 5resonane

Source of linear coupling

- Skew quadrupole

$$
\begin{aligned}
& B_{x}=-q x ; \quad B_{y}=q y \\
& x^{\prime \prime}+K_{x}(s)^{2} x=-\frac{B_{y} l}{B \rho}=-q y \\
& y^{\prime \prime}+K_{y}(s)^{2} y=\frac{B_{x} l}{B \rho}=-q x
\end{aligned}
$$

Coupled harmonic oscillator

- Equation of motion

$$
x^{\prime \prime}+\omega_{x}^{2} x=q^{2} y \quad y^{\prime \prime}+\omega_{y}^{2} y=q^{2} x
$$

- Assume solutions are:

$$
\begin{gathered}
x=A e^{i \omega t} \quad y=B e^{i \omega t} \\
-\omega^{2} A+\omega_{x}^{2} A=q^{2} B \quad-\omega^{2} B+\omega_{y}^{2} B=q^{2} A \\
\left(\omega_{x}^{2}-\omega^{2}\right)\left(\omega_{y}^{2}-\omega^{2}\right)=q^{4}
\end{gathered}
$$

$$
\omega^{2}=\frac{\omega_{x}^{2}+\omega_{y}^{2} \pm \sqrt{\left(\omega_{x}^{2}-\omega_{y}^{2}\right)^{2}+4 q^{4}}}{2}
$$

Coupled harmonic oscillator

$$
\omega^{2}=\frac{\omega_{x}^{2}+\omega_{y}^{2} \pm \sqrt{\left(\omega_{x}^{2}-\omega_{y}^{2}\right)^{2}+4 q^{4}}}{2}
$$

- The two frequencies of the harmonic oscillator are functions of the two $\quad \omega_{y}$ unperturbed frequencies
- When the unperturbed frequencies are the same, a minimum frequency difference

$$
\Delta \omega \approx \frac{q^{2}}{\omega}
$$

Example of a Coupled harmonic oscillator

