
Transverse Resonances 

-  resonances mechanisms 
-  Linear coupling 
-  Resonance conditions 
-  3rd order resonances 



Resonance mechanism 

  Errors in the accelerators perturbs beam motions 
  Coherent buildup of perturbations 



Driven harmonic oscillator 

  Equation of motion 

€ 

d2x(t)
dt 2

+ω 2x(t) = f (t)

€ 

f (t) = Cme
iωmt

€ 

x(t) = Aeiωt + Ame
iωmt
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d2x(t)
dt 2

+ω 2x(t) = Cme
iωmt
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= Cme
iωmt
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  Assume solution is like 
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Am =
Cm

ω 2 −ωm
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Resonance response 

€ 

x(t) = Aeiωt +
Cm

ω 2 −ωm
2

  Response of the harmonic oscillator to a periodic force is 
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ωm
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ωm

€ 

ω



Betatron oscillation 

  Equation of motion 

  In the presence of field errors including mis-aglinments, the 
equation of motion then becomes 

€ 

x = A βx cos(ψ + χ)

€ 

x' '+K(s)x = 0

€ 

K(s+ Lp ) = K(s)

€ 

x' '+K(s)x = −
ΔBy

Bρ

€ 

ΔBy = B0(b0 + b1x + b2x
2 + ....)

Dipole error�  quadrupole error� sextupole error�

where 



Floquet Transformation 

  Re-define () as:  

  In the presence of field errors including mis-aglinments, the 
equation of motion then becomes 

€ 

ζ (s) = x(s) / βx (s)

€ 

x' '+K(s)x = 0

€ 

K(s+ Lp ) = K(s)

€ 

d2ζ
dφ 2

+Qx
2ζ = −Qx

2βx
3 / 2 ΔBy

Bρwhere 

€ 

φ(s) =ψ(s) /Qx or φ'=1/(Qxβx )

  

€ 

d2ζ
dφ 2

+Qx
2ζ = −

Qx
2B0
Bρ

[b0 + βxb1ζ + βx
2b2ζ

2 +]



Resonance contd 

  For each n: 

  When the term on the right side of the equation contain same 
frequency as Qx, a resonance occurs.  And the solution has a form of   

€ 

βx
(n+3)/ 2bn = ck

k
∑ eikφ

€ 

k − nQx =Qx

€ 

d2ζ
dφ 2

+Qx
2ζ = −

Qx
2βx

3 / 2

Bρ
βx
nbnζ

n

  Express the perturbation term as:  

€ 

ζ = Ake
−iQxφ

€ 

k = (n +1)Qx



Resonance condition 

error n 
dipole 0 Qx,y=integer 

quadrupole 1 2Qx,y=integer 

Sextupole 2 3Qx,y=integer 

Octupole 3 4Qx,y=integer 

  In the absence of coupling between horizontal and vertical 

€ 

k = (n +1)Qx,y

  In the presence of coupling between horizontal and vertical 

€ 

MQx + NQy = k



Tune diagram 

•  the resonance strength  
  decreases as the order  
  goes higher 

•  the working point should 
  be located in an area  
  between resonances 
  there are enough tune  
  space to accommodate  
  tune spread of the beam 



Phase space: 3rd order resonance 

X’ 

Px 

€ 

Px = βx x '+αx x = −A βx sinψ

€ 

x = A βx cosψ

In the phase space of x, Px 

•  separatrix: boundery between 
                    stable region and 
                    unstable region 
•  Fixed points: where  

€ 

dx
dn

=
dPx
dn

= 0



Phase space: 4th order resonane 



Phase space: 5resonane 

x 

X’ 



Source of linear coupling 

  Skew quadrupole 

€ 

x' '+Kx (s)
2 x = −

Byl
Bρ

= −qy

€ 

y' '+Ky (s)
2 y =

Bxl
Bρ

= −qx
€ 

Bx = −qx; By = qy



Coupled harmonic oscillator 

  Equation of motion 

€ 

x' '+ωx
2x = q2y

€ 

y' '+ωy
2y = q2x

  Assume solutions are: 

€ 

x = Aeiωt

€ 

y = Beiωt

€ 

−ω 2A +ωx
2A = q2B

€ 

−ω 2B +ωy
2B = q2A

€ 

(ωx
2 −ω 2)(ωy

2 −ω 2) = q4

€ 

ω 2 =
ωx
2 +ωy

2 ± (ωx
2 −ωy

2)2 + 4q4

2



Coupled harmonic oscillator 

  The two frequencies of the 
harmonic oscillator are 
functions of the two 
unperturbed frequencies 

  When the unperturbed 
frequencies are the same, a 
minimum frequency 
difference 

€ 

ω 2 =
ωx
2 +ωy

2 ± (ωx
2 −ωy

2)2 + 4q4

2

€ 

ωx

€ 

ωy

€ 

ω1

€ 

ω2

€ 

Δω ≈
q2

ω



Example of a Coupled harmonic oscillator 
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