
transverse motion: betatron oscillation 

  The general case of equation of motion in an accelerator  

€ 

x' '+kx = 0

€ 

x(s) = Acos( ks+ χ)

€ 

x'(s) = −A k sin( ks+ χ)

€ 

x(s) = Acosh( ks+ χ)

€ 

x'(s) = −A k sinh( ks+ χ)

  For k > 0 

Where k can also be negative 

  For k < 0 



Hill's equation 

  In an accelerator which consists individual magnets, the 
equation of motion can be expressed as,   

  Here, k(s) is an periodic function of Lp, which is the length of 
the periodicity of the lattice, i.e. the magnet arrangement. It 
can be the circumference of machine or part of it. 

  Similar to harmonic oscillator, expect solution as 

  or: 

€ 

x' '+k(s)x = 0

€ 

k(s+ Lp ) = k(s)

€ 

x(s) = A βx s( ) cos(ψ(s) + χ)

€ 

βx (s+ Lp ) = βx (s)

€ 

x(s) = A(s)cos(ψ(s) + χ)



Hill’s equation: cont’d 

€ 

x'(s) = −A βx s( )ψ '(s)sin(ψ(s) + χ) +
β 'x s( )
2

A 1/βx s( ) cos(ψ(s) + χ)

€ 

ψ'(s) =
1

βx (s)

€ 

βx ' '
2
βx −

βx
' 2

4
+ kβx

2 =1

  with 

  Hill’s equation                               is satisfied 

€ 

x' '+k(s)x = 0

€ 

x(s) = A βx s( ) cos(ψ(s) + χ)

€ 

x'(s) = −A 1/βx s( ) sin(ψ(s) + χ) +
β 'x s( )
2

A 1/βx s( ) cos(ψ(s) + χ)



Betatron oscillation 

  Beta function           : 
  Describes the envelope of the betatron oscillation in an accelerator 

  Phase advance: 

  Betatron tune: number of betatron oscillations in one orbital turn  

€ 

βx (s)

€ 

ψ(s) =
1

βx (s)0

s
∫ ds

€ 

Qx =
ψ(0 |C)
2π

=
ds

βx (s)
∫ /2π =

R
〈βx 〉



Hill’s equation: cont’d 

€ 

x0 = −A β0 cosχ

€ 

x0
' = −

A
β0
sin χ +

β0
'

2
A
β0
cosχ

€ 

cosχ = −
x0

A β0

€ 

sinχ =
β0
'

2A β0
x0 −

β0
A

x0
'

€ 

x(s) = −
β s( )
β0
(cosΔψ+α0 sinΔψ) x0 − β s( )β0 sinΔψ x0

'

  With: 

€ 

α s( ) = −
β' s( )
2



Transfer Matrix of beam transport 

  Proof the transport matrix from point 0 to point s is 

€ 

x(s)
x '(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

β(s)
β0
(cosΔψ +α0 sinΔψ) β0β(s) sinΔψ

−
1+α0α(s)
β0β(s)

sinΔψ +
α0 −α(s)
β0β(s)

cosΔψ β0
β(s)

(cosΔψ −α(s)sinΔψ)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

x0
x'0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

x(s) = A βx s( ) cos(ψ(s) + χ)

€ 

x'(s) = −A 1/βx s( ) sin(ψ(s) + χ) +
β 'x s( )
2

A 1/βx s( ) cos(ψ(s) + χ)

  with: 



One Turn Map 

  Transfer matrix of one orbital turn 

€ 

x(s0 + C)
x '(s0 + C)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

(cos2πQx +αx,s0
sin2πQx ) βx,s0 sin2πQx

−
1+αx,s0

2

βx,s0

sin2πQx (cos2πQx −αx,s0
sin2πQx )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

x(s0)
x '(s0)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

Tr(Ms,s+C ) = 2cos2πQx

€ 

1
2
Tr(Ms,s+C ) ≤1.0

Stable condition 

  With Qx is the betatron tune, # of betatron oscillations in one 
orbital revolution 

€ 

2πQx =
1
β s( )

ds∫



Stability of transverse motion 

  Matrix from point 1 to point 2 

  

€ 

Ms2 |s1
= MnM2M1

  Stable motion requires each transfer matrix to be stable, i.e. its 
eigen values are in form of oscillation 

€ 

|M − λI | = 0

€ 

I =
1 0
0 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

λ2 −Tr M( )λ + det M( ) = 0

€ 

det M( ) =1

€ 

λ =
1
2
Tr M( ) ±

1
4
[Tr M( )]2 −1

€ 

1
2
Tr(M) ≤1.0

With  and  



Closed Orbit 

  Closed orbit: 

€ 

x(s+ C)
x '(s+ C)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

x(s)
x'(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

x(s+ C)
x '(s+ C)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = M(s+ C,s)

x(s)
x '(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 



Phase space 

€ 

βx x '
2 +γ x x

2 + 2αx xx'= ε

€ 

βxγ x =1+αx
2

  In a space of x-x’, the betatron oscillation projects an ellipse 

where 

€ 

αx = −
1
2
βx
'

  The are of the ellipse is  

€ 

πε

€ 

εxβx
€ 

εx /βx
X’ 

X 



Courant-Snyder parameters 

€ 

ε = βx x '
2 +γ x x

2 + 2αx xx'

  The set of parameter (βx,	  αx	  and	  γx) which describe the phase 
space ellipse 

  Courant-Snyder invariant: the area of the ellipse 



Phase space transformation 

  In a drift space from point 1 to point 2 
X’ 

s 

X’ 
  Effect of a focusing quadrupole 

Focusing quad 

s 



How to measure betatron oscillation 

  How to measure betatron tune? 

  How to measure beta function? 

  How to measure beam emittance? 



Dispersion function 

  Transverse trajectory is function of particle momentum.   

€ 

x' '− ρ + x
ρ2

= −
qBy

γm
(1+

x
ρ
)2

€ 

By = B0 + B' x

€ 

x' '+ 1
ρ2
2p0 − p

p
+

B'
Bρ0

p0
p

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ x =

1
ρ
Δp
p

€ 

x = D(s)Δp
p

€ 

D(s+ C) = D(s)

€ 

D' '+ 1
ρ2
2p0 − p

p
+

B'
Bρ0

p0
p

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ D =

1
ρ



Dispersion function: cont’d 

  In drift space 

   dispersion function has a constant slope   

€ 

1
ρ

= 0

€ 

B'= 0and  

€ 

⇒ D' '= 0

  In dipoles,  

€ 

1
ρ
≠ 0

€ 

B'= 0and  

€ 

D' '+[ 1
ρ2
2p0 − p

p
]D =

1
ρ



Dispersion function: cont’d 

  For a focusing quad,  

   dispersion function oscillates sinusoidally   
€ 

1
ρ

= 0

€ 

B'> 0and  

€ 

⇒ D' '+B' p0
p
D = 0

  For a defocusing quad,  

   dispersion function evolves exponentially    
€ 

1
ρ

= 0

€ 

B'< 0and  

€ 

⇒ D' '−B' p0
p
D = 0



Effects of Errors 

-  dipole errors  
-  quadrupole errors 
-  resonance 



Closed orbit distortion 

  Dipole kicks can cause particle’s trajectory deviate away from 
the designed orbit 
-  Dipole error 
-  Quadrupole misalignment 

€ 

x(s)
x '(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = M(s,s0)[M(s0,s)

x(s)
x '(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

0
θ

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ ]

  Assuming a circular ring with a single 
dipole error,  closed orbit then becomes: 

s0 

BPM 

s 



Closed orbit: single dipole error 

€ 

x(s0)
x '(s0)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = M(s0 + C,s0)

x(s0)
x '(s0)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

0
θ

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

  Let’s first solve the closed orbit at the location where the 
dipole error is 

€ 

x(s) = βx (s0)βx (s)
θ

2sinπQx

cos ψ(s,s0) −πQx[ ]
€ 

x(s0) = βx (s0)
θ

2sinπQx

cosπQx

  The closed orbit distortion reaches its maximum at the 
opposite side of the dipole error location  



Closed orbit distortion 

  In the case of multiple dipole errors distributed around the 
ring. The closed orbit is 

€ 

x(s) = βx (s) βx (si)
i
∑ θi

2sinπQx

cos ψ(si,s0) −πQx[ ]

  Amplitude of the closed orbit distortion is inversely 
proportion to sinπQx,y 
- No stable orbit if tune is integer! 



Measure closed orbit 

  Distribute beam position monitors around ring. 



Control closed orbit 

  minimized the closed orbit distortion. 
  Large closed orbit distortions cause limitation on the 

physical aperture  
  Need dipole correctors and beam position monitors 

distributed around the ring 
  Assuming we have m beam position monitors and n 

dipole correctors, the response at each beam 
position monitor from the n correctors is:  

€ 

xk = βx,k βx,i
θi

2sinπQx

cos ψ(si,s0) −πQx[ ]
k=1

n

∑



Control closed orbit 

  Or, 

  To cancel the closed orbit measured at all the bpms, the 
correctors are then 

  

€ 

θ1
θ2

θn

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= M−1( )

x1
x2

xm

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

  

€ 

x1
x2

xm

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= M( )

θ1
θ2

θn

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 



Quadrupole errors 

  Misalignment of quadrupoles 
-  dipole-like error: kx 
-  results in closed orbit distortion 

  Gradient error: 
- Cause betatron tune shift 
-  induce beta function deviation: beta beat 



Beta beat 

  In a circular ring with a gradient error at s0, the tune shift is 
s0 

s 

€ 

M(s+ C,s) = M(s,s0)
1 0
−Δk 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ M(s0,s)

€ 

βx (s)sin2πQx = βx0(s)sin2πQx0 +

Δk βx0(s)βx0(s0)
2

[cos(2πQx0 + 2 |Δψs,s0 |)]

€ 

Δβ
β

= Δk βx0(s0)
2sin2πQx0

cos(2πQx0 + 2 |Δψs,s0 |)

Unstable betatron motion if tune is half integer! 


