transverse motion: betatron oscillation

> The general case of equation of motion in an accelerator

x''+kx=0 Where k can also be negative

For k > 0

 $x(s) = A\cos(\sqrt{k}s + \chi) \quad x'(s) = -A\sqrt{k}\sin(\sqrt{k}s + \chi)$ For k < 0

 $x(s) = A\cosh(\sqrt{k}s + \chi)$ $x'(s) = -A\sqrt{k}\sinh(\sqrt{k}s + \chi)$

Hill's equation

In an accelerator which consists individual magnets, the equation of motion can be expressed as,

$$x''+k(s)x = 0$$
 $k(s+L_p) = k(s)$

- Here, k(s) is an periodic function of L_p, which is the length of the periodicity of the lattice, i.e. the magnet arrangement. It can be the circumference of machine or part of it.
- Similar to harmonic oscillator, expect solution as

$$x(s) = A(s)\cos(\psi(s) + \chi)$$

or:

$$x(s) = A\sqrt{\beta_x(s)}\cos(\psi(s) + \chi)$$
 $\beta_x(s + L_p) = \beta_x(s)$

Hill's equation: cont'd

$$x'(s) = -A\sqrt{\beta_x(s)}\psi'(s)\sin(\psi(s) + \chi) + \frac{\beta'_x(s)}{2}A\sqrt{1/\beta_x(s)}\cos(\psi(s) + \chi)$$

with

$$\psi'(s) = \frac{1}{\beta_x(s)}$$
 $\frac{\beta_x''}{2}\beta_x - \frac{\beta_x'^2}{4} + k\beta_x^2 = 1$

• Hill's equation x''+k(s)x=0 is satisfied

$$x(s) = A\sqrt{\beta_x(s)}\cos(\psi(s) + \chi)$$
$$x'(s) = -A\sqrt{1/\beta_x(s)}\sin(\psi(s) + \chi) + \frac{\beta'_x(s)}{2}A\sqrt{1/\beta_x(s)}\cos(\psi(s) + \chi)$$

Betatron oscillation

- Beta function $\beta_x(s)$:
 Describes the envelope of the betatron oscillation in an accelerator
 ($\beta^{1/2}$ ($\beta^{1/2}$ Final Acceleration ($\beta^{1/2}$)
 <p
- Betatron tune: number of betatron oscillations in one orbital turn

$$Q_x = \frac{\psi(0 \mid C)}{2\pi} = \oint \frac{ds}{\beta_x(s)} / 2\pi = \frac{R}{\langle \beta_x \rangle}$$

Hill's equation: cont'd

$$x(s) = -\sqrt{\frac{\beta(s)}{\beta_0}} (\cos \Delta \psi + \alpha_0 \sin \Delta \psi) x_0 - \sqrt{\beta(s)\beta_0} \sin \Delta \psi x_0'$$

With:

$$\alpha(s) = -\frac{\beta'(s)}{2}$$

Transfer Matrix of beam transport

Proof the transport matrix from point 0 to point s is

$$\begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{\beta(s)}{\beta_0}} (\cos \Delta \psi + \alpha_0 \sin \Delta \psi) & \sqrt{\beta_0 \beta(s)} \sin \Delta \psi \\ -\frac{1 + \alpha_0 \alpha(s)}{\sqrt{\beta_0 \beta(s)}} \sin \Delta \psi + \frac{\alpha_0 - \alpha(s)}{\sqrt{\beta_0 \beta(s)}} \cos \Delta \psi & \sqrt{\frac{\beta_0}{\beta(s)}} (\cos \Delta \psi - \alpha(s) \sin \Delta \psi) \end{pmatrix} \begin{pmatrix} x_0 \\ x'_0 \end{pmatrix}$$

• with:

$$x(s) = A\sqrt{\beta_x(s)}\cos(\psi(s) + \chi)$$
$$x'(s) = -A\sqrt{1/\beta_x(s)}\sin(\psi(s) + \chi) + \frac{\beta'_x(s)}{2}A\sqrt{1/\beta_x(s)}\cos(\psi(s) + \chi)$$

One Turn Map

Transfer matrix of one orbital turn

$$\begin{pmatrix} x(s_0 + C) \\ x'(s_0 + C) \end{pmatrix} = \begin{pmatrix} (\cos 2\pi Q_x + \alpha_{x,s_0} \sin 2\pi Q_x) & \beta_{x,s_0} \sin 2\pi Q_x \\ -\frac{1 + \alpha_{x,s_0}^2}{\beta_{x,s_0}} \sin 2\pi Q_x & (\cos 2\pi Q_x - \alpha_{x,s_0} \sin 2\pi Q_x) \end{pmatrix} \begin{pmatrix} x(s_0) \\ x'(s_0) \end{pmatrix}$$

With Qx is the betatron tune, # of betatron oscillations in one orbital revolution

$$2\pi Q_x = \int \frac{1}{\beta(s)} ds$$

.

Stable condition
$$Tr(M_{s,s+C}) = 2\cos 2\pi Q_x \quad \blacksquare \quad \blacksquare \quad \left| \frac{1}{2} Tr(M_{s,s+C}) \right| \le 1.0$$

Stability of transverse motion

Matrix from point I to point 2

$$M_{s_2|s_1} = M_n \cdots M_2 M_1$$

Stable motion requires each transfer matrix to be stable, i.e. its eigen values are in form of oscillation

$$|M - \lambda I| = 0$$
 With $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $det(M) = 1$

$$\lambda^2 - Tr(M)\lambda + \det(M) = 0$$

$$\lambda = \frac{1}{2} Tr(M) \pm \sqrt{\frac{1}{4} [Tr(M)]^2 - 1} \qquad \qquad \left| \frac{1}{2} Tr(M) \right| \le 1.0$$

Closed Orbit

Closed orbit:

$$\begin{pmatrix} x(s+C) \\ x'(s+C) \end{pmatrix} = \begin{pmatrix} x(s) \\ x'(s) \end{pmatrix}$$

$$\begin{pmatrix} x(s+C) \\ x'(s+C) \end{pmatrix} = M(s+C,s) \begin{pmatrix} x(s) \\ x'(s) \end{pmatrix}$$

Phase space

In a space of x-x', the betatron oscillation projects an ellipse

Courant-Snyder parameters

- The set of parameter ($\beta_{x_{x}} \alpha_{x}$ and γ_{x}) which describe the phase space ellipse
- Courant-Snyder invariant: the area of the ellipse

$$\varepsilon = \beta_x x'^2 + \gamma_x x^2 + 2\alpha_x x x'$$

Phase space transformation

How to measure betatron oscillation

How to measure betatron tune?

How to measure beta function?

How to measure beam emittance?

Dispersion function

Transverse trajectory is function of particle momentum.

$$x'' - \frac{\rho + x}{\rho^2} = -\frac{qB_y}{\gamma m} (1 + \frac{x}{\rho})^2 \qquad B_y = B_0 + B'x$$
$$x'' + \left[\frac{1}{\rho^2} \frac{2p_0 - p}{p} + \frac{B'}{B\rho_0} \frac{p_0}{p}\right] x = \frac{1}{\rho} \frac{\Delta p}{p}$$
$$x = D(s) \frac{\Delta p}{p} \qquad D(s + C) = D(s)$$
$$D'' + \left[\frac{1}{\rho^2} \frac{2p_0 - p}{p} + \frac{B'}{B\rho_0} \frac{p_0}{p}\right] D = \frac{1}{\rho}$$

Dispersion function: cont'd

In drift space

$$\frac{1}{\rho} = 0$$
 and $B' = 0 \implies D'' = 0$

dispersion function has a constant slope

In dipoles, $\frac{1}{\rho} \neq 0 \quad \text{and} \quad B' = 0$ $D'' + \left[\frac{1}{\rho^2} \frac{2p_0 - p}{p}\right] D = \frac{1}{\rho}$

Dispersion function: cont'd

For a focusing quad,

$$\frac{1}{\rho} = 0 \quad \text{and} \quad B' > 0 \qquad \Longrightarrow D'' + B' \frac{p_0}{p} D = 0$$

dispersion function oscillates sinusoidally

For a defocusing quad,

$$\frac{1}{\rho} = 0$$
 and $B' < 0$ $\Rightarrow D'' - B' \frac{p_0}{p} D = 0$

dispersion function evolves exponentially

- dipole errors
- quadrupole errors
- resonance

Closed orbit distortion

- Dipole kicks can cause particle's trajectory deviate away from the designed orbit
 - Dipole error
 - Quadrupole misalignment
- Assuming a circular ring with a single dipole error, closed orbit then becomes:

$$\binom{x(s)}{x'(s)} = M(s,s_0)[M(s_0,s)\binom{x(s)}{x'(s)} + \binom{0}{\theta}]$$

RDN/

Closed orbit: single dipole error

 Let's first solve the closed orbit at the location where the dipole error is

$$\begin{pmatrix} x(s_0) \\ x'(s_0) \end{pmatrix} = M(s_0 + C, s_0) \begin{pmatrix} x(s_0) \\ x'(s_0) \end{pmatrix} + \begin{pmatrix} 0 \\ \theta \end{pmatrix}$$

$$x(s_0) = \beta_x(s_0) \frac{\theta}{2\sin \pi Q_x} \cos \pi Q_x$$

$$x(s) = \sqrt{\beta_x(s_0)\beta_x(s)} \frac{\theta}{2\sin\pi Q_x} \cos[\psi(s,s_0) - \pi Q_x]$$

The closed orbit distortion reaches its maximum at the opposite side of the dipole error location

Closed orbit distortion

In the case of multiple dipole errors distributed around the ring. The closed orbit is

$$x(s) = \sqrt{\beta_x(s)} \sum_i \sqrt{\beta_x(s_i)} \frac{\theta_i}{2\sin \pi Q_x} \cos[\psi(s_i, s_0) - \pi Q_x]$$

- Amplitude of the closed orbit distortion is inversely proportion to $sin \pi Q_{x,y}$
 - No stable orbit if tune is integer!

Measure closed orbit

Distribute beam position monitors around ring.

Control closed orbit

minimized the closed orbit distortion.

- Large closed orbit distortions cause limitation on the physical aperture
- Need dipole correctors and beam position monitors distributed around the ring
 - Assuming we have m beam position monitors and n dipole correctors, the response at each beam position monitor from the n correctors is:

$$x_k = \sqrt{\beta_{x,k}} \sum_{k=1}^n \sqrt{\beta_{x,i}} \frac{\theta_i}{2\sin \pi Q_x} \cos[\psi(s_i, s_0) - \pi Q_x]$$

Control closed orbit

• Or, $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = (M) \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{pmatrix}$

• To cancel the closed orbit measured at all the bpms, the correctors are then

$$\begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{pmatrix} = \left(M^{-1} \right) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$

Quadrupole errors

- Misalignment of quadrupoles
 - dipole-like error: kx
 - results in closed orbit distortion
- Gradient error:
 - Cause betatron tune shift
 - induce beta function deviation: beta beat

Beta beat

▶ In a circular ring with a gradient error at s0, the tune shift is

S₀

$$M(s+C,s) = M(s,s_0) \begin{pmatrix} 1 & 0 \\ -\Delta k & 1 \end{pmatrix} M(s_0,s)$$

$$\beta_{x}(s)\sin 2\pi Q_{x} = \beta_{x0}(s)\sin 2\pi Q_{x0} + \Delta k \frac{\beta_{x0}(s)\beta_{x0}(s_{0})}{2} [\cos(2\pi Q_{x0} + 2|\Delta \psi_{s,s0}|)]$$

$$\frac{\Delta\beta}{\beta} = \Delta k \frac{\beta_{x0}(s_0)}{2\sin 2\pi Q_{x0}} \cos(2\pi Q_{x0} + 2|\Delta\psi_{s,s0}|)$$

Unstable betatron motion if tune is half integer!