transverse motion: betatron oscillation

- The general case of equation of motion in an accelerator

$$
x^{\prime \prime}+k x=0 \quad \text { Where } k \text { can also be negative }
$$

- For k > 0

$$
x(s)=A \cos (\sqrt{k} s+\chi) \quad x^{\prime}(s)=-A \sqrt{k} \sin (\sqrt{k} s+\chi)
$$

- For k < 0

$$
x(s)=A \cosh (\sqrt{k} s+\chi) \quad x^{\prime}(s)=-A \sqrt{k} \sinh (\sqrt{k} s+\chi)
$$

Hill's equation

- In an accelerator which consists individual magnets, the equation of motion can be expressed as,

$$
x^{\prime \prime}+k(s) x=0 \quad k\left(s+L_{p}\right)=k(s)
$$

- Here, $k(s)$ is an periodic function of L_{p}, which is the length of the periodicity of the lattice, i.e. the magnet arrangement. It can be the circumference of machine or part of it.
- Similar to harmonic oscillator, expect solution as

$$
x(s)=A(s) \cos (\psi(s)+\chi)
$$

| or:

$$
x(s)=A \sqrt{\beta_{x}(s)} \cos (\psi(s)+\chi) \quad \beta_{x}\left(s+L_{p}\right)=\beta_{x}(s)
$$

Hill's equation: cont'd

$$
x^{\prime}(s)=-A \sqrt{\beta_{x}(s)} \psi^{\prime}(s) \sin (\psi(s)+\chi)+\frac{\beta_{x}^{\prime}(s)}{2} A \sqrt{1 / \beta_{x}(s)} \cos (\psi(s)+\chi)
$$

- with

$$
\psi^{\prime}(s)=\frac{1}{\beta_{x}(s)} \quad \frac{\beta_{x}^{\prime \prime}}{2} \beta_{x}-\frac{\beta_{x}^{\prime 2}}{4}+k \beta_{x}^{2}=1
$$

- Hill's equation $x^{\prime \prime}+k(s) x=0$ is satisfied

$$
\begin{gathered}
x(s)=A \sqrt{\beta_{x}(s)} \cos (\psi(s)+\chi) \\
x^{\prime}(s)=-A \sqrt{1 / \beta_{x}(s)} \sin (\psi(s)+\chi)+\frac{\beta_{x}^{\prime}(s)}{2} A \sqrt{1 / \beta_{x}(s)} \cos (\psi(s)+\chi)
\end{gathered}
$$

Betatron oscillation

- Beta function $\beta_{x}(s)$:
- Describes the envelope of the betatron oscillation in an accelerator

- Phase advance:

$$
\psi(s)=\int_{0}^{s} \frac{1}{\beta_{x}(s)} d s
$$

- Betatron tune: number of betatron oscillations in one orbital turn

$$
Q_{x}=\frac{\psi(0 \mid C)}{2 \pi}=\oint \frac{d s}{\beta_{x}(s)} / 2 \pi=\frac{R}{\left\langle\beta_{x}\right\rangle}
$$

Hill's equation: cont'd

$$
\begin{gathered}
x_{0}=-A \sqrt{\beta_{0}} \cos \chi \quad x_{0}^{\prime}=-\frac{A}{\sqrt{\beta_{0}}} \sin \chi+\frac{\beta_{0}}{2} \frac{A}{\sqrt{\beta_{0}}} \cos \chi \\
\cos \chi=-\frac{x_{0}}{A \sqrt{\beta_{0}}} \quad \sin \chi=\frac{\beta_{0}^{\prime}}{2 A \sqrt{\beta_{0}}} x_{0}-\frac{\sqrt{\beta_{0}}}{A} x_{0}^{\prime} \\
x(s)=-\sqrt{\frac{\beta(s)}{\beta_{0}}}\left(\cos \Delta \psi+\alpha_{0} \sin \Delta \psi\right) x_{0}-\sqrt{\beta(s) \beta_{0}} \sin \Delta \psi x_{0}^{\prime}
\end{gathered}
$$

- With:

$$
\alpha(s)=-\frac{\beta^{\prime}(s)}{2}
$$

Transfer Matrix of beam transport

- Proof the transport matrix from point 0 to point s is

$$
\binom{x(s)}{x^{\prime}(s)}=\left(\begin{array}{cc}
\sqrt{\frac{\beta(s)}{\beta_{0}}}\left(\cos \Delta \psi+\alpha_{0} \sin \Delta \psi\right) & \sqrt{\beta_{0} \beta(s)} \sin \Delta \psi \\
-\frac{1+\alpha_{0} \alpha(s)}{\sqrt{\beta_{0} \beta(s)}} \sin \Delta \psi+\frac{\alpha_{0}-\alpha(s)}{\sqrt{\beta_{0} \beta(s)}} \cos \Delta \psi & \sqrt{\frac{\beta_{0}}{\beta(s)}}(\cos \Delta \psi-\alpha(s) \sin \Delta \psi)
\end{array}\right)\binom{x_{0}}{x_{0}^{\prime}}
$$

| with:

$$
\begin{aligned}
& x(s)=A \sqrt{\beta_{x}(s)} \cos (\psi(s)+\chi) \\
& x^{\prime}(s)=-A \sqrt{1 / \beta_{x}(s)} \sin (\psi(s)+\chi)+\frac{\beta_{x}^{\prime}(s)}{2} A \sqrt{1 / \beta_{x}(s)} \cos (\psi(s)+\chi)
\end{aligned}
$$

One Turn Map

- Transfer matrix of one orbital turn

$$
\binom{x\left(s_{0}+C\right)}{x^{\prime}\left(s_{0}+C\right)}=\left(\begin{array}{cc}
\left(\cos 2 \pi Q_{x}+\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right) & \beta_{x, s_{0}} \sin 2 \pi Q_{x} \\
-\frac{1+\alpha_{x, s_{0}}^{2}}{\beta_{x, s_{0}}} \sin 2 \pi Q_{x} & \left(\cos 2 \pi Q_{x}-\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right)
\end{array}\right)\binom{x\left(s_{0}\right)}{x^{\prime}\left(s_{0}\right)}
$$

- With Qx is the betatron tune, \# of betatron oscillations in one orbital revolution

$$
2 \pi Q_{x}=\int \frac{1}{\beta(s)} d s
$$

$$
\operatorname{Tr}\left(M_{s, s+C}\right)=2 \cos 2 \pi Q_{x} \quad \text { Stable condition }\left|\frac{1}{2} \operatorname{Tr}\left(M_{s, s+C}\right)\right| \leq 1.0
$$

Stability of transverse motion

- Matrix from point I to point 2

$$
M_{s_{2} \mid s_{1}}=M_{n} \cdots M_{2} M_{1}
$$

- Stable motion requires each transfer matrix to be stable, i.e. its eigen values are in form of oscillation

$$
\begin{gathered}
|M-\lambda I|=0 \quad \text { With } I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and } \operatorname{det}(M)=1 \\
\lambda^{2}-\operatorname{Tr}(M) \lambda+\operatorname{det}(M)=0 \\
\lambda=\frac{1}{2} \operatorname{Tr}(M) \pm \sqrt{\frac{1}{4}[\operatorname{Tr}(M)]^{2}-1} \quad\left|\frac{1}{2} \operatorname{Tr}(M)\right| \leq 1.0
\end{gathered}
$$

Closed Orbit

- Closed orbit:

$$
\begin{gathered}
\binom{x(s+C)}{x^{\prime}(s+C)}=\binom{x(s)}{x^{\prime}(s)} \\
\binom{x(s+C)}{x^{\prime}(s+C)}=M(s+C, s)\binom{x(s)}{x^{\prime}(s)}
\end{gathered}
$$

Phase space

- In a space of $x-x^{\prime}$, the betatron oscillation projects an ellipse
where

$$
\begin{aligned}
& \alpha_{x}=-\frac{1}{2} \beta_{x}^{\prime} \\
& \beta_{x} \gamma_{x}=1+\alpha_{x}^{2}
\end{aligned}
$$

- The are of the ellipse is $\pi \varepsilon$

Courant-Snyder parameters

- The set of parameter $\left(\beta_{x}, a_{x}\right.$ and $\left.\gamma_{x}\right)$ which describe the phase space ellipse
- Courant-Snyder invariant: the area of the ellipse

$$
\varepsilon=\beta_{x} x^{\prime 2}+\gamma_{x} x^{2}+2 \alpha_{x} x x^{\prime}
$$

Phase space transformation

- In a drift space from point I to point 2

- fffect $^{\text {of a }}$ focusing quadrupole

How to measure betatron oscillation

- How to measure betatron tune?
- How to measure beta function?
- How to measure beam emittance?

Dispersion function

- Transverse trajectory is function of particle momentum.

$$
\begin{aligned}
& x^{\prime \prime}-\frac{\rho+x}{\rho^{2}}=-\frac{q B_{y}}{\gamma m}\left(1+\frac{x}{\rho}\right)^{2} \quad B_{y}=B_{0}+B^{\prime} x \\
& x^{\prime \prime}+\left[\frac{1}{\rho^{2}} \frac{2 p_{0}-p}{p}+\frac{B^{\prime}}{B \rho_{0}} \frac{p_{0}}{p}\right] x=\frac{1}{\rho} \frac{\Delta p}{p} \\
& x=D(s) \frac{\Delta p}{p} \quad D(s+C)=D(s) \\
& D^{\prime \prime}+\left[\frac{1}{\rho^{2}} \frac{2 p_{0}-p}{p}+\frac{B^{\prime}}{B \rho_{0}} \frac{p_{0}}{p}\right] D=\frac{1}{\rho}
\end{aligned}
$$

Dispersion function: cont'd

- In drift space

$$
\frac{1}{\rho}=0 \quad \text { and } \quad B^{\prime}=0 \Rightarrow \quad D^{\prime \prime}=0
$$

dispersion function has a constant slope

- In dipoles,

$$
\begin{aligned}
& \frac{1}{\rho} \neq 0 \quad \text { and } \quad B^{\prime}=0 \\
& \quad D^{\prime \prime}+\left[\frac{1}{\rho^{2}} \frac{2 p_{0}-p}{p}\right] D=\frac{1}{\rho}
\end{aligned}
$$

Dispersion function: cont'd

- For a focusing quad,

$$
\frac{1}{\rho}=0 \quad \text { and } \quad B^{\prime}>0 \quad \Rightarrow D^{\prime \prime}+B^{\prime} \frac{p_{0}}{p} D=0
$$

dispersion function oscillates sinusoidally

- For a defocusing quad,

$$
\frac{1}{\rho}=0 \quad \text { and } \quad B^{\prime}<0 \quad \Rightarrow D^{\prime \prime}-B^{\prime} \frac{p_{0}}{p} D=0
$$

dispersion function evolves exponentially

Effects of Errors

- dipole errors
- quadrupole errors
- resonance

Closed orbit distortion

- Dipole kicks can cause particle's trajectory deviate away from the designed orbit
- Dipole error
- Quadrupole misalignment
- Assuming a circular ring with a single dipole error, closed orbit then becomes:

$$
\binom{x(s)}{x^{\prime}(s)}=M\left(s, s_{0}\right)\left[M\left(s_{0}, s\right)\binom{x(s)}{x^{\prime}(s)}+\binom{0}{\theta}\right]
$$

Closed orbit: single dipole error

- Let's first solve the closed orbit at the location where the dipole error is

$$
\begin{aligned}
\binom{x\left(s_{0}\right)}{x^{\prime}\left(s_{0}\right)} & =M\left(s_{0}+C, s_{0}\right)\binom{x\left(s_{0}\right)}{x^{\prime}\left(s_{0}\right)}+\binom{0}{\theta} \\
x\left(s_{0}\right) & =\beta_{x}\left(s_{0}\right) \frac{\theta}{2 \sin \pi Q_{x}} \cos \pi Q_{x}
\end{aligned}
$$

$$
x(s)=\sqrt{\beta_{x}\left(s_{0}\right) \beta_{x}(s)} \frac{\theta}{2 \sin \pi Q_{x}} \cos \left[\psi\left(s, s_{0}\right)-\pi Q_{x}\right]
$$

- The closed orbit distortion reaches its maximum at the opposite side of the dipole error location

Closed orbit distortion

- In the case of multiple dipole errors distributed around the ring. The closed orbit is

$$
x(s)=\sqrt{\beta_{x}(s)} \sum_{i} \sqrt{\beta_{x}\left(s_{i}\right)} \frac{\theta_{i}}{2 \sin \pi Q_{x}} \cos \left[\psi\left(s_{i}, s_{0}\right)-\pi Q_{x}\right]
$$

- Amplitude of the closed orbit distortion is inversely proportion to $\sin \pi Q_{x, y}$
- No stable orbit if tune is integer!

Measure closed orbit

- Distribute beam position monitors around ring.

Control closed orbit

- minimized the closed orbit distortion.
- Large closed orbit distortions cause limitation on the physical aperture
- Need dipole correctors and beam position monitors distributed around the ring
- Assuming we have m beam position monitors and n dipole correctors, the response at each beam position monitor from the n correctors is:

$$
x_{k}=\sqrt{\beta_{x, k}} \sum_{k=1}^{n} \sqrt{\beta_{x, i}} \frac{\theta_{i}}{2 \sin \pi Q_{x}} \cos \left[\psi\left(s_{i}, s_{0}\right)-\pi Q_{x}\right]
$$

Control closed orbit

- Or,

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)=(M)\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{n}
\end{array}\right)
$$

- To cancel the closed orbit measured at all the bpms, the correctors are then

$$
\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{n}
\end{array}\right)=\left(M^{-1}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)
$$

Quadrupole errors

- Misalignment of quadrupoles
- dipole-like error:kx
- results in closed orbit distortion
- Gradient error:
- Cause betatron tune shift
- induce beta function deviation: beta beat

Beta beat

- In a circular ring with a gradient error at $s 0$, the tune shiff is

$$
\begin{aligned}
& M(s+C, s)=M\left(s, s_{0}\right)\left(\begin{array}{cc}
1 & 0 \\
-\Delta k & 1
\end{array}\right) M\left(s_{0}, s\right) \\
& \beta_{x}(s) \sin 2 \pi Q_{x}=\beta_{x 0}(s) \sin 2 \pi Q_{x 0}+ \\
& \Delta k \frac{\beta_{x 0}(s) \beta_{x 0}\left(s_{0}\right)}{2}\left[\cos \left(2 \pi Q_{x 0}+2 \mid \Delta \psi_{s, s 0} \mathrm{I}\right)\right]
\end{aligned}
$$

$$
\frac{\Delta \beta}{\beta}=\Delta k \frac{\beta_{x 0}\left(s_{0}\right)}{2 \sin 2 \pi Q_{x 0}} \cos \left(2 \pi Q_{x 0}+2 \mid \Delta \psi_{s, s 0} \mathrm{I}\right)
$$

Unstable betatron motion if tune is half integer!

