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Ideal Switch
• V = ∞
• I = ∞
• Closing/opening time = 0
• L = C = R = 0
• Simple to control
• No delay or jitter
• Lasts forever
• Never fails
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Switches
• Electromechanical
• Vacuum
• Gas

– Spark gap
– Thyratron
– Ignitron
– Plasma Opening

• Solid state
– Diodes

• Diode opening switch
– Thyrsitors

• Electrically triggered
• Optically triggered
• dV/dt triggered

– Transistors
• IGBT
• MOSFET
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Switches
• Electromechanical

– Open relay
• To very high voltages, set by size of device
• Commercial devices to ~0.5 MV, ~50 kA

– Ross Engineering Corp.
• Closing time ~10’s of ms typical

– Large jitter, ~ms typical
• Closure usually completed by arcing

– Poor opening switch
• Commonly used as engineered ground

– Vacuum relay
• Models that can open under load are available
• Commercial devices

– Maximum voltage ~0.1 MV
– Maximum current ~0.1 kA
– Tyco-kilovac
– Gigavac
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Gas/Vacuum Switch Performance vs. Pressure
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Vacuum Tube (Switch Tube)
• Space-charge limited current flow

– VON α V1.5

– High power tubes have high dissipation
• Similar opening/closing characteristics
• Maximum voltage ~0.15 MV
• Maximum current ~0.5 kA, more typically << 100 A
• HV grid drive
• Decreasing availability
• High Cost
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Spark Gaps
• Closing switch
• Generally inexpensive - in simplest form: two electrodes with a gap
• Can operated from vacuum to high pressure (both sides of Paschen Curve) 
• Can use almost any gas or gas mixture as a dielectric. (air, dry nitrogen, SF6, CO2, etc.)  

There are also liquid spark gaps (shock wave).
• Wide operating range

– kV to MV
– Amps to MA

• Time jitter ranges from ns for triggered gaps to 100’s of µs (or longer) for self-breaking 
overvoltage gaps

– Low jitter
• Trigger voltage ~ switch voltage
• High dV/dt trigger

• Repetition rates - usually single shot but low kHz possible for burst mode
• Larc ~ 15 nH/cm

– Rail-gap switch with multiple arc channels → lower inductance
• Lifetime limited

– Erosion of electrodes (tungsten, copper, stainless steel, steel, brass, molybdenum, special alloys)
– Debris across insulating surfaces

• Performance affected by temperature, pressure, electrode materials, surface condition of 
electrode, condition of insulators, operating conditions, etc.

• Devices are commercially available
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Spark Gaps
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Thyratrons
• Closing switch, forward drop ~100 V
• High voltage: kV to ~ 100kV (normally ~ 30-40kV per internal gap)
• Maximum peak current 20-40 kA
• Gas filled: 0.1-5.0 torr hydrogen or deuterium and hot cathode

– Operate on the low pressure side of Paschen minimum
• High repetition rate: limited by recovery time after conduction of 30-100µs
• Low jitter (<1ns) with appropriate trigger
• Limited di/dt (emission limitations of hot cathode)
• Turn-on time (anode voltage fall time)

– 20 ns typical
– ~5 ns for special tubes

• Lifetime usually limited by cathode depletion (1-2 years of continuously on 
operation) or loss of ability to control gas pressure (causes misfires, reduction of 
standoff voltage capability)

• Limited pulse duration  
• Low average current rating
• Significant voltage reversal (>4 kV) during recovery can damage tube

USPAS Pulsed Power Engineering    Burkhart & Kemp



June 13 - 17, 2011 10

Thyratrons
• Envelope: glass or ceramic (high 

power tubes)
• Anode materials: molybdenum, copper
• Grid materials: copper, molybdenum
• Cathode material: BaO, SrO, CaO 

coating on tungsten or barium 
aluminate impregnated tungsten

• Reservoir (maintains gas pressure over 
life of tube) is a hydride material such 
as titanium, tantalum, etc.

Control 
Grid

Anode

Cathode
Filaments

Glass or  
Ceramic 
Envelope
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Thyratrons
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Thyratron -Operation
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Thyratron - Operation
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Thyratrons
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Thyratrons
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Thyratrons - Definition of Terms
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Thyratrons - Definition of Terms
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Thyratron Tradeoffs

USPAS Pulsed Power Engineering    Burkhart & Kemp



June 13 - 17, 2011 19

Ignitron
• Mercury filled switch
• Low pressure device:  ~0.001 Torr @ 70º F
• High voltage, high current (kA to 100’s kA)
• Very simple device with many operational issues

– Mounting (must be mounted vertically)  
– Vibration
– Anode needs to be heated to keep mercury evaporated off
– Ringing discharge affects lifetime
– Has rep-rate limits and requires temperature control

• Operating voltage affected by tube pressure and electrode condition
• Current affected by plasma instabilities 
• Jitter and turn-on delays issues

Anode material - molybdenum or graphite
Grids - graphite
Igniter - boron carbide

Simple ignitron
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Plasma Opening Switch (POS)
• Initially, a high density plasma forms a low-conductivity channel 

(switch closed)
• Plasma conductivity is rapidly increased, ~10 to 100 ns, opening the 

switch
• Opening mechanisms

– Plasma erosion switch: plasma source is turned off, conductive particles 
are swept out by applied fields (plasma erodes), switch opens

– Applied fields inhibit the flow of conductive particles (electrons) across 
switch

• Used primarily in effects simulators
• Voltage: >MV
• Current: >MA
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Solid-state Devices - General Observations
• Low jitter (ns)
• Switching speed varies from very fast (ns) to slow(100’s µs)
• Limited in peak power capability. High voltage requires series stacks 

and high peak current requires parallel arrays.
• Usually high average current capability (compared with thyratrons)
• Both closing devices and opening devices available
• Most can operate at high repetition rate
• Low cost in terms of average power rating
• Long lifetime if operated within peak ratings, but usually catastrophic 

failure when voltage ratings exceeded
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Diode Opening Switch
• Solid state equivalent to POS
• Forward bias junction, switch closed
• Reverse bias switch, carriers swept 

from junction, when carriers are 
depleted, switch is open

• Any diode will work, but, ideally 
junction carrier density remains 
constant until all remaining carriers 
are swept out of gap

– Dependent on doping profile across 
junction

– Carrier crossing time (500 V, Si 
junction): ~0.5 ns

• Electrons ~3X faster than holes
– Drift Step Recovery Diode/Device 

(DSRD), approximates ideal

DSRD: (a) design and “plasma” 
distribution,     dc bias,     pulse 
bias, (b) “plasma” distribution at 
start of reverse bias 
Grekhov, et.al., 2004 PMC
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Thyristors
• Closing switch
• Maximum voltage: 

– Silicon: ~6.5 kV, limited by defects
– Silicon carbide: ~20 kV, not commercially available

• Maximum current
– RMS: ~5 kA
– Pulsed: 10 to 100X (or more) greater (pulse length dependent)

• Low forward drop, <3 V (typical), low loss
• Simple to trigger
• All types of thyristors can be triggered by applying high dV/dt
• Generally, slow switch for pulsed power applications
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Thyristors (cont.)
• Silicon Controlled Rectifier (SCR)

– Simple, powerful, relatively inexpensive
– Switching speed

• Phase Control: intended for 50/60 Hz operation
• Inverter grade: ~10 μs (typical)

– Triggering
• Low energy trigger switches device, will remain on as long as Iconducted>Ithreshold

• Electrical
– ~3 V
– <mA small devices, <A largest devices

• Optical

• Closing/opening devices
– Gate turn-off thyristor (GTO)
– Integrated gate commutated thyristor (IGCT)
– Limited use in pulsed power
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Fast Thyristors
• Higher energy trigger → faster carrier injection and faster turn on
• Reverse blocking diode thyristor (RBDT) (Break over diode, BOD)

– Triggered by high dV/dt ~ 1012 V/s
– Turn on time < μs

• Photon initiated (optical) thyristor
– Triggered by intense optical pulse that liberates carriers throughout junction 
– Turn on time << μs

McDonald, IPMC2006
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Bulk Semiconductor Switches
• Bulk semiconductor materials; Si, GaAs, diamond-like carbon, can be 

used as a switch
• Carriers can be produced through the bulk of the material by 

depositing energy; photons (laser) or electron beam, to trigger the 
switch

• If trigger induces carrier avalanching, then can only operate as a 
closing switch, if not avalanching, then removal of trigger source will 
cause switch to open

• Not commercially available at present, but subject to ongoing 
investigation and development

• Potential for very high power solid state switch
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Power Transistors
• Hard switch: closes and opens
• Bi-polar devices

– Minority carrier devices
– Conduction characterized by 

VCE < 3 V (typical)
– NPN/PNP power transistors 

generally replaced by 
Insulated Gate Bipolar 
Transistors (IGBT)

• Lower drive power
• Available at higher voltage, 

current and power
• Field effect transistors

– Majority carrier devices
– Metal Oxide Semiconductor 

Field Effect Transistor 
(MOSFET)

– Conduction characterized by 
RDS-ON ~ Ω

Gate

Collector

Emitter

Gate

Collector

Emitter

Symbol Equivalent Circuit

Gate

Drain

Source

Symbol  (N-type)
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IGBT
• Wide-spread use in power electronics → availability of high power 

modules
– Voltages: 600 V, 1.2 kV, 1.7 kV, 3.3 kV, 4.5 kV, 6.5 kV
– Currents: to ~kA average

• Pulsed current, ~μs pulse duration, to ~10X greater
– Configurations: single die, single switch-parallel die, chopper, bridge

• Switching characteristics
– Turn on

• Ultra-fast (single die): as fast as ~50 ns
• Power modules: ~0.5 μs (with sophisticated triggering)

– Turn off
• Initial turn off is fast, ~turn on time
• Tail: following initial turn off, a low current tail (~ A to 10’s of A) due to 

carrier recombination may persist for μs to 10’s of μs, full voltage across 
device → high dissipation

– Switching losses typically dominate device dissipation, small devices may 
operate to ~MHz, power modules typically operate at 10 to 50 kHz or less
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IGBT (cont.)
• Switching

– Insulated gate structure, capacitive load to trigger circuit
– Threshold (to turn on) ~5 V
– Maximum gate voltage ~30 V (higher voltage may punch through oxide)
– Typically bias gate to 10 – 15 V

• Saturation current (VCE increases dramatically for I > ISAT) α VGE

• Low ISAT limits fault current, protects device/system
• VCE only weakly dependent on VGE

– Optimum (fastest, lowest loss) triggering
• 2-stage: 

– HV (50 to >100 V): initiates current flow to gate (parasitic L)
– 2nd ary drive holds gate at 10 – 15 V

• Bi-polar, fast turn off requires inverse pulse
• Does not significantly reduce tail
• Turn off slowly from fault condition, may loose control if L dI/dt is too high
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IGBT (cont.)
• Easily damaged by reverse voltage (>100 V)

– Include anti-parallel diode in circuit
– Integrated into modules

• “Traction motor” modules
– “Single wide”: 12 chips: 8 IGBT/4 diode
– Internal interconnections may promote oscillations between chips under 

fault conditions
• Exercise caution when connecting in parallel

– Often have negative coefficient of VCE with temperature
– Device carrying excess current than neighbors will get hotter, forward 

voltage will drop, and it will carry even more current
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IGBT Reliability Considerations
• Collector-Emitter voltage, VCE

– Exceeding, even momentarily, will damage/destroy device
– Usually limit nominal off-state voltage to 67% of VCE

• Cosmic ray withstand voltage
– Statistical probability dies will be struck by cosmic ray, if V > withstand 

voltage, die will fail.  Limits “normal” voltage across device.
– Not always on data sheet, ask manufacturer, typically ~60% of VCE

• Partial discharge rating/insulation capability
– International standard sets minimum voltage cycle that results in 10 pC 

internal discharge for package rating (e.g. 3.3 kV device).  Exceeding 
voltage will shorten device life.

• Thermal
– Exceeding maximum die temperature will result in rapid failure of device
– Thermal cycling

• Die temperature variations (as device cycles on/off) fatigue bond wires
• Manufacturer can provide data to determine impact on life for a calculated cycle
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IGBT Data Sheet
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IGBT Data Sheet (cont.)
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IGBT Data Sheet (cont.)
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MOSFET
• Fastest commercial solid state switch available

– Intrinsic turn on/off time ~ns set by RDS-ONCOUTPUT time constant (carrier 
junction crossing time much faster)

– Effective switching time limited by input capacitance, stray packaging 
inductance, and dIS/dt to ≥10 ns

• Maximum voltage: 1200 V
– Avalanche rated, limited excursion to V > VDSS will not damage device
– Can operate at near VDSS

• Maximum current: ~0.1 kA (higher for modules and lower voltage FETs)
– Pulsed current limited to ~4X average rating due to increase in RDS-ON

• “Intrinsic” reverse body diode, acts as anti-parallel diode
– FREDFET: improved reverse body diode, soft recovery 

• Well suited for parallel operation, positive coefficient of VDS with 
temperature
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MOSFET Model for Fast Switching
• Data sheet information

– Drain-source breakdown voltage: VDSS

– Drain current
• Continuous: ID

• Pulsed: IDM

– RDS-ON @ ID

– Input capacitance: CISS = CGD + CGS

– Output capacitance: COSS = CDS

– Reverse transfer capacitance (Miller 
capacitance): CRSS = CGD

• Typical values for 1 kV TO-247/264
– LD: <1 nH
– LG & LS: ~6 nH
– CISS: ~few nF
– COSS & CRSS: ~few 100 pF
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MOSFET Fast Switching
• Input capacitance and parasitic inductance form resonant circuit

– ω < 109, therefore τr ~ few ns will excite the resonance
– Z ~ few ohm, therefore need significant gate resistance to damp

• Inductive voltage due to rising source current: LSdIS/dt
– 50 A in 10 ns would induce ~30 V across source inductance
– Inductive voltage subtracts from applied gate voltage

• Effects are internal to package
– May not see true causes of slow MOSFET turn on

• Remediations
– Use a bi-polar high voltage gate drive (limited by gate breakdown)
– Use high gate drive resistance (balance with drive current requirements)
– Use a larger number of smaller MOSFETs in parallel
– Integrate driver into MOSFET package

• Commercial units show little gain
• Hybrid circuits can achieve ~1 ns risetime
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Hybrid MOSFET/Driver for Ultra-Fast Switching

Hybrid schematic: totem pole driver, 
output MOSFET, and load

Hybrid circuit; dual drivers on each side 
of PCB, MOSFET on bottom-side of 
PCB, load at bottom of photo

Tang & Burkhart, IPMC2008
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MOSFET Data Sheet
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MOSFET Data Sheet
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Interpretation of Hybrid MOSFET Data During Nanosecond Switching

• No switching until VGS
exceeds threshold

• Switching is effectively 
complete before Miller 
capacitance is fully charged 
(~20 nC < Q < 60 nC)

• Ultra-fast is unlike normal 
MOSFET switching
– Switching time depends on 

“linear” behavior of device
– Sensitive to

• Transistor gain, gm

• Die temperature
• Device-to-device 

variations

V gate, V load vs Q gate
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High Power Switching with Solid State Switches
• Peak switching power of commercial devices is limited

– Array, series/parallel, devices to increase power
– Use alternative topologies

• Arrays
– Parallel

• MOSFETs well suited
• IGBTs may present challenges

– Series
• Prevent overvoltage of individual elements under ALL CONDITIONS

– Derate device operating: reduces effective device power
– Add protection (e.g. RC snubber): reduces switching speed
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Commercial Suppliers
• Semiconductors

– Power Semiconductors (MOSFETs, IGBTs, Thyristors)
• APT:  http://www.advancedpower.com/ → Microsemi: http://www.microsemi.com/
• EUPEC:http://www.eupec.com/index.html → Infineon: http://www.infineon.com/
• Powerex/Mitsubishi:  http://www.pwrx.com/
• DYNEX:  http://www.dynexsemi.com/
• ST Microelectronics:  http://us.st.com/stonline/index.shtml
• Westcode:  http://www.westcode.com/
• International Rectifier:  http://www.irf.com/
• Toshiba:  http://www.toshiba.com
• ABB:  http://www.abb.com
• IXYS/DEI: http://www.ixys.com/

– Driver Circuits
• IXYS/DEI: http://www.ixys.com/
• Vishay/Siliconix:  http://www.vishay.com/
• Intersil/Elantec:  http://www.intersil.com
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