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Materials & Passive Components and Devices 
Used in Pulsed Power Engineering
• Materials

– Conductors
– Insulators
– Magnetic material

• Passive components and devices
– Resistors
– Capacitors
– Inductors
– Transformers
– Transmission lines
– Loads

• Klystrons
• Beam kickers
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Materials
• Generally encounter three types of materials in pulsed power work

– Conductors
• Wires & cable
• Buss bars
• Shielding
• Resistors

– Insulators
• Cables and bushing
• Standoffs
• Capacitors

– Magnetic
• Inductors, transformers, and magnetic switches
• Ferrite and tape-wound

USPAS Pulsed Power Engineering    Burkhart & Kemp
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Calculating Resistance
• At low frequency, resistance (R) determined by:

– R = ρℓ/A  (ohm)
• Material resistivity, ρ (Ω•cm)
• Conductor length, ℓ (cm)
• Conductor cross-sectional area, A (cm2)

• At high frequency, effective conductor area decreased by “skin effect”
– Conducted current produces magnetic field
– Magnetic field induces eddy currents in conductor which oppose/cancel B
– Eddy currents decay due to material resistance, allow conducted current/magnetic 

field to penetrate material
– Skin depth, δ, is the effective conducted current penetration (B = Bapplied/e)
– δ = (2ρ/μω)½ (meters) for a current of a fixed frequency ω=2πf, 

= (6.6/f ½)[(μo/μ)(ρ/ρc)]½ or
≈ (2tρ/μ)½ (meters) for a pulsed current of duration t (sec)
• Material resistivity, ρ (Ω•m)
• Copper resistivity, ρc = 1.7 X 10-8 (Ω•m)
• Material permeability, μ (H/m)
• Permeability of frees space, μo = 4π X 10-7 (H/m)

– Litz wire is woven to minimize skin effects
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Resistivity of Common Materials
Material Resistivity @ 20o C

Aluminum 2.62 μΩ•cm

Be-Cu 5.4 – 11.5 μΩ•cm

Brass (66% Cu, 34% Zn) 3.9 μΩ•cm

Copper (OFHC) 1.72 μΩ•cm

Copper (water pipe) 2.1 μΩ•cm

Graphite (typical) 1.4 mΩ•cm

Gold 2.44 μΩ•cm

Indium 9 μΩ•cm

Iron 9.71 μΩ•cm

Silver 1.62 μΩ•cm

Stainless Steel (typical) 90 μΩ•cm

Steel (0.5% C) 13 – 22 μΩ•cm

Water (purified) 2 X 107 Ω•cm (maximum)

Water (tap) 104 Ω•cm 

Water/CuSO4 25 Ω•cm  (minimum)
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Insulator Properties
• Insulators are used to isolate and support conductors of differing 

electric potential
• Typically characterized by two properties

– Breakdown strength, EBD, electric field which will arc through the 
material

– Dielectric constant (relative), εr = ε/εo

• Regularly use solid, liquid and gaseous (and vacuum) insulators in 
pulsed power engineering
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Solid Dielectrics
• Can be used as structural elements
• Breakdown through material is irreparable
• Can also arc along surface, flashover, typically at E ≈ 0.5 EBD

• EBD limited by material imperfections, voids, where corona can occur 
and gradually degrade material.  Therefore EBD decreases with 
increasing material thickness, as the probability of defects increases.

• 100 V/mil < EBD < 1 kV/mil (typical, >0.1”)  (kV/mil ~ 0.4 MV/cm)
• 2 < εr < 10 (typical, excluding ceramic capacitor materials ~103)
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Solid Dielectric Properties

From NSRC Pulse Power Formulary
Y(X) ≡ Y • 10X
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Dielectric “Pool”: SNL Z-machine
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Liquid Dielectrics
• Breakdown damage can be “healed”

– Arcing may result in conductive (typically carbon) residue
– Circulation will disburse residue, reduce concentration below threshold
– Filtration/processing can remove contamination

• Oil is the most common liquid insulator used in pulsed power (you are 
not a pulsed power engineer until you have been up to your armpits in oil)

• Water and Ethylene Glycol are often used in PFLs and capacitors
– High dielectric constants increase pulse length and energy storage

• Water: εr = 81
• Ethylene Glycol: εr = 41

– Because of low resistivity, can only be used for pulse-charged applications
• RC = ρε ~ 2 μs maximum for water at 20o C (However, this can be increased 

to ~100 ms by mixing Ethylene Glycol, antifreeze, with the water and chilling 
the solution to near the freezing temperature.)

– Breakdown strength
• EBD is weakly pulse length dependent (see Pulsed Power Formulary)
• Typical pulsed operation: ~ 50 – 200 kV/cm (~half the strength of oil)
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Dielectric Oils
• Mineral oils

– Pulsed power work horse
– Many trade names (e.g. Sontex, Diala AX), some with additives, electrical 

properties vary little
– Polychlorinated Biphenyls (PCB) generally phased out in 60’s, but may be 

present in older systems (new systems usually labeled as “PCB free”)
– Increasing concern about the toxicity/environmental impact of these oils
– Some plastic and rubber compounds will swell if immersed in mineral oil
– Hydroscopic (absorbs water), but takes a lot to significantly degrade properties 

and can be removed by heating
– Properties also degraded by entrainment oil air (avoid centrifugal pumps)
– For best performance, should be circulated, filtered, de-watered and de-aerated
– Dielectric constant: εr = 2.2 (excellent match to many polymers)
– Breakdown strength

• EBD is weakly pulse length dependent (see Pulsed Power Formulary)
• Typical pulsed operation: ~ 100 – 400 kV/cm
• Typical dc operation: ~40 kV/cm

USPAS Pulsed Power Engineering    Burkhart & Kemp



June 13 - 17, 2011 12

Dielectric Oils (cont.)
• Silicon oils

– High quality
– Expensive

• Vegetable oils: castor, rapeseed, canola, etc.
– Increased usage
– Low toxicity/environmental impact
– Properties may vary significantly from mineral oils

• High viscosity, may not be functional at ambient temperatures
• May support bacterial growth
• Different dielectric constants; castor ~ 4.5

• Other “oils” used in high value applications (e.g. capacitors)
• Isopropyl biphenyl
• benzyltoluene diphenylethane 
• phenyl xylyl ethane 
• tricresyl phosphate 
• ethyl hexyl phthalate 
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Gaseous Dielectrics
• Breakdowns cause no permanent damage

– Used for high power switches; spark gaps, thyratrons
– Produces gas ionization
– Ion/electron recombination time ~ms (shorter at higher pressure)

• Dielectric constant: εr = 1 (low stored energy in stray capacitance)
• Corona (electrical discharge below the breakdown threshold) will 

ionize gas.  This can produce chemical radicals (e.g. O3) which can 
degrade system elements.

• Breakdown strength in air:
– EBD ≈ 25p + 6.7(p/d)½ (kV/cm)

• Gas pressure, p (atm absolute)
• Conductor spacing, d (cm)

– Relative breakdown strength of gases:
• Air 1.0
• Nitrogen 1.0
• SF6 2.7
• H2 0.5
• 30% SF6, 70% Air 2.0
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Magnetic Material Properties
• Permeability, μ

– μ(H/m) = B(T)/H(A/m)
– Often expressed as relative permeability, μr = μ/μo = B(G)/H(Oe)

• μr ≈ 25,000 for Fe, 400 for Carbon steel
– Permeability of free space, μo = 4π X 10-7 H/m

• Flux swing, ΔB
– Change in flux density a material can support before it saturates (μ→ μo)
– Typically from remnant flux (H=0), Br, to saturation flux, Bs: ΔB = Br + Bs

• Hysteresis loop
– Plot of B vs H
– Slope is μ
– Area is energy
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Magnetic Material Properties (cont.)
• Faraday’s law

– ∫ B • dA = ∫ V dt
– Ac ΔB = Vτ

• Cross sectional area of core, 
Ac

• Pulse voltage, V
• Pulse duration, τ

• Ampere’s law
– ∫ H • dℓ = I
– H = I/ℓm

• Magnetizing current, I
• Mean magnetic path length, 

ℓm = 2π (Ro- Ri) / ln(Ro/ Ri) 
(log mean circumference)
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Magnetic Materials
• Two types of material are typically used

– Ferrimagnetic materials: ferrite cores
• μr: ~500 – 2000 (typical)
• μr approximately constant to >MHz for some formulations
• ρ: ~109 Ω•cm
• ΔB: ~0.5 T

– Ferromagnetic materials: tape-wound cores
• ρ: ~10-5 Ω•cm

– Eddy currents impede field penetration into material (skin effect)
– Must be wound from thin (0.001”) ribbon interleaved with insulator
– Insulator does not have magnetic properties, effective area of magnetic 

material reduced by packing factor, η = insulator thickness/total tickness
• μr: >104

• μr strong function of frequency in MHz range for even best materials
• ΔB: >3 T

• Hysteresis characteristics of any material can be linearized by adding a 
gap to the core
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Ferrite
• Two dominant compositions

– NiZn
• Highest frequency response
• High frequency transformers & chokes, magnetic switching, induction accelerator cores
• CN20, CMD5005, PE-11B

– Fair-Rite 51
• Low-loss
• Modest frequency response (5 MHz)
• Not square

USPAS Pulsed Power Engineering    Burkhart & Kemp
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Ferrite
• Two dominant compositions

– MnZn
• Larger ΔB
• Switch-mode power supply transformers

– Fair-Rite 85
• Square loop
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Tape Wound Core Materials
• Crystalline

– Traditional core material
– Common formulations: Si-Fe and Ni-Fe
– Lowest cost
– Poorest high frequency performance

• Amorphous (Metglas ©)
– Developed in 70’s/80’s 
– Iron-based, Ni-Fe-based, and cobalt-based formulations
– Low loss
– Higher frequency response
– Magnetic properties very dependent on annealing
– Higher costs

• Nano-cyrstalline
– Iron-based
– Similar magnetic properties to Metglas
– Zero magnetostriction
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Crystalline Materials
• Si-Fe

– ΔB > 3 T
– μmax > 25,000
– Low frequency applications, 1 – 16 mil thickness

• Ni-Fe
– ΔB ~ 1.5 T
– μmax > 25,000 (>100,000 grain oriented material)
– Thin material, <1 mil, good at higher frequencies, but expensive
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Amorphous Materials
• 2605 SA1

– Most common Fe-based material 
– Modest high frequency response
– Lowest cost of the amorphous materials
– ΔB ~ 3 T
– μmax > 100,000

Typical impedance permeability curves
Longitudinal field anneal 

Typical dc hysteresis loops
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Amorphous Materials
• 2605CO

– Fe-based, with cobalt
– Exceptionally square loop with longitudinal field annealing (lost tech ?)
– Best material available for high frequency magnetic switching (0.7-mil)

• ΔB = 3.3 T
• μmax ~ 100,000 (dc)
• μmax ~ 6,000 (1 μs saturation)
• μmax ~ 1,000 (0.1 μs saturation)

• 2714A
– Co-based
– Very square, very low loss
– Best high frequency characteristics
– ΔB =1 T
– μmax ~ 500,000 (dc)
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Nano-crystaline Materials
• Similar high frequency permeability and squareness as 2605CO
• ΔB ~ 2 T
• μmax ~ 60,000 (dc)
• Major suppliers

– Hitachi “Finemet”
– Vacuumschmelze
– “Russian”

• Hitachi makes excellent cores (including toroids)
– Well annealed
– Well constructed (ceramic insulation)
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Passive Components and Devices
• Resistors
• Capacitors
• Inductors
• Transformers
• Transmission lines
• Loads

– Klystrons
– Beam kickers
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Resistors
• Resistor behavior

Ri(t) v(t)

C

L
R

v t( )= Ri t( ) High-Frequency Equivalent Circuit
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Resistor Types
• Film

– Commonly available
– Inexpensive
– Low active material mass → low energy capacity

• 1W carbon film: ~3 J
• 1W metal film: ~1 J

– High voltage film resistors often have a helical pattern → high inductance
• Alternative, non-inductive serpentine pattern (Caddock)

– SMD
• Usually trimmed with an “L-cut”, introduces inductance
• Tend to arc (and fail) at trim, due to V = L dI/dt

• Wire wound
– Very inductive
– Large power types (e.g. 225 W) can support large pulsed voltages, but if 

maintained at high voltage dc, will corona and eventually fail
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Resistor Types (cont.)
• Composition

– Large active material mass → large energy handling capacity
– Carbon Composition

• 2W “standard” no longer manufactured
• Voltage and power capacity varies by value

– 2W: ~80 J, >2 kV repetitive, ~10 kV non-repetitive
– Ceramic Composition

• Ohmite OX/OY
• Even better than carbon comps
• 2W: ~20 kV non-repetitive

– Bulk ceramic
• Stackpole → US Resistor → Kanthal Globar / Carborundum → Cesewid → 

Kanthal Globar, but also Asian and European manufacturers
• Vary composition for high voltage, high average power, and high peak power
• Special coatings for immersion in oil (prevents resistance change)
• Terminal shape and application critical for long life (corona prevention)
• Increase average power capacity, ~7X, by flowing water through bore
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Resistor Types (cont.)
• Water resistors

– Typically constructed with insulating tubing (plastic, flexible or rigid, or 
glass) envelope which contains water with electrodes at each end

– May be sealed, resistance usually not very stable, or recirculating which 
can be accurately adjusted

– Resistivity strongly dependent on water temperature
– “Salt” is added to provide carriers

• CuSO4

• Borax, environmentally benign
• NaCl
• KCl

– Current density on electrodes limited by carrier density (solubility limits)
– Exceeding jcritical (740 mA/cm2 for CuSO4) → electrode erosion and/or 

electrolysis
– Large specific energy deposition → heating → shock wave

• Beam sticks
– High power but high cost
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Capacitors
• Capacitor behavior

C L
R

q = CV

i t( )= C
dV t( )

dt
: i = C

∆V
∆t

V =
1
C

i t( )∫ dt

High-Frequency Equivalent Circuit
ESR ≡ parasitic resistance
ESL ≡ parasitic inductance
DF ≡ dissipation factor = RωC

Ci(t) v(t)
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Capacitor Types
• Coaxial cable

– Often acts as capacitor unintentionally
– C = τ/Z (transit time/impedance)

• Electrolytics
– Lossy above ~kHz
– Limited use in pulsed power, except slow circuits

• Mica
– High quality

• Stable
• Low loss

– Energy density: ~0.01 J/cm3

– Limited distribution, usually made to order
• Water

– High energy density
– Due to limited resistivity, only useful in short pulse applications
– Not commercially available
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Capacitor Types (cont.)
• Ceramic

– Available to 50 kV
– High average current types are available
– Energy density ~0.025 J/cm3

– Lifetime: ?
– Capacitance varies with voltage and temperature
– Stability characterized by “class”

• I, NPO, COG: most stable
• II, X7R, Y5P: more variation
• III: capacitance may decrease 50% at rated voltage

USPAS Pulsed Power Engineering    Burkhart & Kemp



June 13 - 17, 2011 32

Film Capacitors
• Most commonly used capacitor type for pulsed power applications
• Parameters

– Voltage: to 100 kV (typically)
– Current: to 0.25 MA
– Lifetime: function of

• Dielectric voltage stress: life α Ex, typically 5 < x < 9
• Temperature: life is halved for every 10o C increase (polypropylene)
• Voltage reversal (pulse discharge): dV/dt relative to dielectric relaxation time

• Construction
– Dielectric materials

• Paper (wicks “oil”)
• Polymers

– Polyester (Mylar®)
– Polypropylene, High Crystalline Polypropylene (HCPP) best
– Hazy films wick “oil”

• Oil/fluid (see page 9&10)
• Combinations of the above
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Film Capacitors (cont.)
• Construction (cont.)

– Conductors
• Foil

– Aluminum typical
– High currents
– Extended foil (instead of tabs) designs for very high current

• Metalization of dielectric films
– Lower cost
– Decrease volume
– Can be made “self-healing”, defects in <2% of film

» Internal breakdown in film ablates metalization: isolates defect
» Breakdown energy controlled by controlling metalization

    Pattern
    High resistivity metalization, to 0.2 kΩ/⁪

– Fabrication
• Wind (precision winding machines) on mandrel, annular 
• Flatten
• Interconnect: series/parallel sections, usually <10 kV/section
• Package
• Impregnate
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Film Capacitors (cont.)
• Film/Foil construction

– Standard for HV pulse discharge caps
– Energy density: 

• ~0.02 J/cm3, typical
• To ~1 J/cm3, for high energy density applications (short life)

– Life
• Scales as V7 for a given design
• >20 year or 1010 pulses possible, 104 to 105 more typical for high power caps

• Metalized film construction
– Higher ESR

• Lower current capacity
• Metalization pattern can be tailored to increase current capacity
• Can be combined with foil to increase current capacity

– Energy density: 
• 0.1 to 0.3 J/cm3, typical

– Life
• Scales as V9 for a given design
• >20 year or 1010 pulses possible

USPAS Pulsed Power Engineering    Burkhart & Kemp



June 13 - 17, 2011 35

Component Websites
• Capacitors

– NWL:  http://www.nwl.com
– Illinois Capacitor:  http://www.illcap.com/
– Cornell-Dubilier:  http://www.cornell-dubilier.com/film.htm
– Dearborn:  http://www.dei2000.com/
– Seacor:  http://www.seacorinc.com/
– Electronic Concepts:  http://www.ecicaps.com/
– Novacap: http://www.novacap.com/index.html
– CSI: http://www.csicapacitors.com/index.asp
– GA/Maxwell: http://www.maxwellcapacitors.com/
– WIMA: http://www.wima.com/en_index.php

• Resistors
– EBG Resistors:  http://www.ebgusa.com/
– RCD Components:  http://www.rcdcomp.com
– HVR Advanced Power Components:  http://www.hvrapc.com
– International Resistive Co.http://www.irctt.com
– Kanthal Globar:  http://www.globar.com
– Caddock Resistors:  http://www.caddock.com
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Inductors
• Inductor behavior

Li(t) v(t)

C

L
R

High-Frequency Equivalent Circuit

V t( ) = L
di t( )
dt

: V = L
∆i
∆t

i t( )=
1
L

V t( )dt∫
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Inductor Types
• Coaxial cable

– Often acts as inductor unintentionally
– L = τZ (transit time•impedance)

• Current loop
– 10 μH =
– L = N2 (a/100) [7.353 log(16a/d) – 6.386]  (μH)

• N turns
• On radius of a (inch)
• Of d (inch) diameter conductor, (a/d > 2.5)

• Toroid
– Closed field lines, minimize interaction with adjoining components
– L = (N2μℓ/2π) ln(b/a)  (H)

• N turns
• Toroid outer radius, b (m)
• Toroid inner radius, a (m)
• Toroid length/thickness, ℓ (m)

– Double ended for HV
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Inductor Types
• Solenoid

– Ideal: L = N2μ π r2 /ℓ (SI)
– Typical: L = N2 [r2/(9r + 10ℓ)  (μH)
– Generally: L = F N2 d (μH)

• Single-layer solenoid
• N turns
• Radius: r
• Diameter: d
• Length: ℓ
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Inductors
• Permeability

– Air core: μo
• Constant, independent of frequency and current (subject to parasitic effects)
• Low permeability

– “Cored” (i.e. filled with magnetic material)
• Vτ constraint
• μ = f (ω, I)
• μr as high as >105

– Compromise: gapped core
• Quality factor

– Q = ω L / ESR
– Energy loss per cycle / total stored energy

• Commercial inductors are generally made “to order”
– Magna Stangenes (Stangenes Industries)
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Transformers
     Ideal 
  1:N Pulse  
TransformerR

p
Rs

RL N1 N2

LLp LLs

Lp

Where:
Rp = resistance of primary winding
Rs = resistance of secondary winding
RL= magnetic core loss
Lp = inductance of primary winding (measured with secondary winding open)
Ls = inductance of secondary winding (measured with primary winding open)
LLp = leakage inductance of primary winding (measured with secondary shorted)
LLs = leakage inductance of secondary winding (measured with primary shorted)
leakage inductance is due to flux not linked by both primary and secondary windings
N1:N2 = 1:N = turns ratio of ideal transformer

Transformer model

Equivalent
Circuit
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Transformers
• Transformer model (cont.)      Ideal 

  1:N Pulse  
TransformerR

p
Rs

RL N1 N2

LLp LLs

Lp

Other parameters:
k= coefficient of coupling between primary and secondary inductors
M = mutual inductance between two inductors

M = k LpLs( )
LLp = 1− k( )Lp

LLs = 1− k( )Ls

Primary Circuit Load =
Zsec ondary

N 2

Vsec ondary = NVprimary
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Pulse Transformers
• Functions

– Voltage gain
– Impedance matching
– Teach humility

• Core
– Material limitations

• Vτ constraint
• μ = f (ω, I)

– Typically gapped
• Stray capacitance

– Primary to secondary
• In series with leakage inductance
• Operate below self-resonance

– Secondary inter-winding
• Load secondary

• Commercial pulse transformers are generally made to order

Stangenes Industries klystron transformer

USPAS Pulsed Power Engineering    Burkhart & Kemp



June 13 - 17, 2011 43

Inductive Adder Transformer Design Example
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Inductive Adder Transformer Design Example

• Transformer Design
– Select transformer geometry

• Want a very high coefficient of coupling between primary and secondary
– Single turn primary that totally encloses magnetic core

– Select magnetic core material
• Want low magnetizing current and leakage inductance so µr must be large
• Magnetic core should never saturate during burst (use large safety factor)
• Selected annealed MetGlass™ 2605-S3A   

– pulsed µr ~ 8000

– ∆B > BSAT to - Br ~ 2.8 T; use 0.5 T w/o interpulse reset

– ∆τ = 30 ns + 30 ns + 110 ns + 130 ns = 300 ns

  
Capacitor Bank

Power 
MOSFET 
(array)

+

Diode Clamping Snubber 
 

Secondary 
Current

Primary 
Loop Current

-

  
Stray 
Inductance

  
Fast 
Diode 
Clamp

Primary Leakage 
Inductance

Magnetizing 
Inductance

MOSFET 
Gate Drive 
Circuit

Variable 
Pulse Width 
Trigger

       1:1 
Transformer
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Inductive Adder Transformer Design Example

Pulsed BH Curve Data for Metglas™ SA1 and Nanocrystalline Magnetic Cores

Material V-s  with reset V-s with reset 
disconnected

Metglas™ SA1 6.84 x 10-3 6.05 x 10-3

Nanocrystalline (longitudinal anneal) 4.89 x 10-3 3.70 x 10-3

BH Curve - Metglas™ SA1
11.8µs PulseWidth, 8A Reset

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 2 4 6 8 10 12 14 16

H- Oersteds

BH Curve - Nanocrystalline
7.75µs PulseWidth, 8A Reset

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16

H- Oersteds
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Inductive Adder Transformer Design Example

∆τ =
NAm∆B

Vavg
=

NAm∆B
<V >

Am = 300ns
0.5T 720V = 4.3×10−4m2

Am = Ac PF( )
Ac ≈6.2x10-4m2   for PF ~  .7

  
Capacitor Bank

Power 
MOSFET 
(array)

+

Diode Clamping Snubber 
 

Secondary 
Current

Primary 
Loop Current

-

  
Stray 
Inductance

  
Fast 
Diode 
Clamp

Primary Leakage 
Inductance

Magnetizing 
Inductance

MOSFET 
Gate Drive 
Circuit

Variable 
Pulse Width 
Trigger

       1:1 
Transformer

Where:
Am is cross-section area of the 

magnetic core
Ac is cross-section area of total core
PF is core packing factor
Vavg is the average voltage across     

the transformer primary winding
∆B is the total available flux swing in 

the magnetic core
∆τ is the required hold-off time for 

the magnetic core
N is the number of turns on the primary
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Inductive Adder Transformer Design Example

• Saturated inductance

• Magnetization Current


LSAT ~ 200nH /m

1.1m
39.4

 
  

 
  n

7.14
4.45

LSAT = 2.65nH

Hc ~ 100A
m

= Im

lm

  @∆B
∆τ

~ 2T / µs

Im ~ 100A
m

.36m( ) ~ 36A

  
Capacitor Bank

Power 
MOSFET 
(array)

+

Diode Clamping Snubber 
 

Secondary 
Current

Primary 
Loop Current

-

  
Stray 
Inductance

  
Fast 
Diode 
Clamp

Primary Leakage 
Inductance

Magnetizing 
Inductance

MOSFET 
Gate Drive 
Circuit

Variable 
Pulse Width 
Trigger

       1:1 
Transformer
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Common Transmission Line Geometries
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Discrete Element Transmission Line Approximation
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Transmission Line Terminations

• Matched: R = ZO, VT = VI , VR = 0
• Open: R = ∞, VR = VI , VT = 0
• Short: R = 0, VR = -VI, VT = 0
• General

– VT = (2 R VI ) / (R + ZO)
– VR = VI [(R - ZO) / (R + ZO)]
– IT = (2 VI ) / (R + ZO)
– IR = VR / ZO = (VI / ZO)[(R - ZO) / (R + ZO)]

• VI : Incident voltage
• VR : Reflected voltage
• VT : Transmitted voltage
• VI = VT - VR

• II : Incident current = VI /ZO

• IR : Reflected current
• IT : Transmitted current
• II = IT + IR
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Transmission Line Termination (cont.)
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Transmission Line Termination (cont.)



June 13 - 17, 2011 53

Voltage Charged Transmission Line

• Section of transmission charged to voltage, Vo, “open” at both ends
• Equivalent model

– Propagating wave of voltage Vo/2 traveling left to right
– Encounters open at end of line and reflects, same polarity and equal magnitude
– Sum of left and right going waves is Vo

– When left to right going wave reaches open at end it reflects and replenishes right 
to left going wave

• Implication: if line is connect to matched load, VT = VI = Vo/2 
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Current Charged Transmission Line

• Section of transmission charged to current, Io, “shorted” at both ends
• Equivalent model

– Propagating wave of current Io/2 (and voltage Io Zo/2) traveling left to right
– Encounters open at end of line and reflects, opposite polarity and equal magnitude
– Sum of left and right going waves is I = Io and V = 0 
– When left to right going wave reaches short at end it reflects and replenishes right 

to left going wave
• Implication: if line is connect to matched load, IT = II = Io/2 and VT = Io Zo/2 
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Klystrons
• Purpose: convert low frequency electrical power to radio frequency EM 

power
• Capable of producing very high peak Rf power, up to ~100 MW, with a 

nearly constant phase and amplitude for the bulk of the output pulse
• Amplifiers: output regulation limited by input regulation

– Low level Rf (LLRF)
– Beam acceleration voltage

• Rf phase α beam voltage
• 0.1º phase stability typically required
• Necessitates beam voltage stability to <50 V on >100 kV, 0.05%  (LCLS 10 ppm)

– Beam focusing fields (typically solenoid current)
• Electron beam devices operating with space-charge limited emission

– Ibeam= μ V1.5

– Perveance, μ, typically ~10-6

– Z = V/I = 1/ μ V0.5

– Pbeam= VI = μ V2.5 = PRf /0.6 (typical)
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Beam Kickers
• Purpose: selectively deflect a portion of a charged particle beam into 

an alternative transport channel
• Two general types

– Lumped inductance
• Kicker is an electromagnet
• Beam deflected by magnetic field
• High current modulator

– Transmission line
• Kicker presents a fixed impedance to the modulator
• Terminated into a matched impedance to avoid reflections
• Typically uses both E and B to deflect beam
• No intrinsic rise/fall time, can be used in systems with small inter-bunch 

spacing
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