USPAS CYCLOTRONS June 2011

Timothy Koeth koeth@umd.edu

Thank you to:
Timothy Antaya, MIT
Timothy Ponter, IBA

Institute for Research in
Electronics
${ }_{6}$ Applied Physics

Rutgers
The State University of New Jersey
STARTING NOTES

- This is the foundation for a week-long cyclotron course. Please, help me make it better:
- Feed back during and after
- What would you like to hear more about?
- Trying to couple theory with real life examples
- Practical and engineering questions?

CYCLOTRONS - OUTLINE

- Why Cyclotrons in 2011?
- Brief History
- How the cyclotron works
- Theory
- Components
- Examples
- Types of cyclotrons \& Examples
- Classical "Lawrence Cyclotron"
- Synchrocyclotron
- Azimuthally Varying Field \& Isochronous Cyclotrons
- "Secrets of the trade" as we go

WHY?

- Many applications
- High Energy Physics: Daedalus Neutrino Expt
- 1 MW @ 1 GeV (state of the art)
- Medical applications
- Isotope production for treatment and diagnostics (Tc-99 problem)
- Direct beam cancer therapy (95% success with 250 MeV proton eye treatment)
- Power Applications
- Accelerator driven systems
- Transmutation of long lived waste
- Security
- NNSA active interrogation - looking for fissile materials
- Industrial needs
- 4 Billion $\$ \$ \$ / y$ ear industry, > 50% is in the cyclotron business
- Cost \& Efficiency - Cyclotrons are the best deal around !
- State-of-the-art 9T (250 MeV) synchrocyclotron ~ $1 \mathrm{M} \$ \rightarrow 0.4$ cents per MeV (to use an equivalent SC Linac would be about $1 \mathrm{M} \$ / \mathrm{MeV}$)
- Total Power Requirement~ 100 kW
- Educational Value - priceless!
"They're the coolest type of particle accelerator"
- Prof. Mark Yuly, Physics Chair of Houghton College

IN PERSPECTIVE

"Read this book and you will learn all that there is to accelerator physics"

- former prof.

Classical Electrodynamics
 THIRD EDITION

John David Jackson

"Build one of these, and you will experience [almost] all there is of accelerator physics"

- TWK

SOMETHING FOR EVERYONE

Applicable to all of accelerator physics

Timothy Antaya Phase Diagram:

Focusing, Resonances, Phase Space Evolution, Space-Charge Challenges

Basic Science, Medicine, Security...

"Start the Ball Rolling"

1927: Lord Rutherford requested a "copious supply" of projectiles more energetic than natural alpha and beta particles. At the opening of their High Tension Laboratory, Rutherford went on to reiterate the goal:

> What we require is an apparatus to give us a potential of the order of 10 million volts which can be safely accommodated in a reasonably sized room and operated by a few kilowatts of power. We require too an exhausted tube capable of withstanding this voltage... I see no reason why such a requirement cannot be made practical. ${ }^{1}$

MANY FAILED ATTEMPTS

Just one example:

1928: Curt Urban, Arno Brasch, and Fritz Lange successfully achieved 15 MV by harnessing lightning in the Italian Alps !

FIG. 2.1 Brasch and Lange's lightning catcher. E and H are the spheres between which the discharge occurs; AE, the antenna; a,a, insulators; b,b, conductors; d, a grounded wire. Brasch and Lange, Zs. f. Phys., 70 (1931), 17.

The two who survived the experiment went on to design an accelerator tube capable of withstanding that voltage.

WIDEROE LINAC

1929: Rolf Wideroe

R. Wideroe proposed an accelerator by using an alternating voltage across several accelerating "gaps."

It was not without myriad of problems

- Focusing of the beam
- Vacuum leaks
- Oscillating high voltages
- Length
- Imagination

His professor refused any further work because it was "sure to fail."

Never the less, thankfully Wideroe still published his idea in Archiv fur Electrotechnic

Wideroe in the 1960's having the last laugh...

ERNEST ORLANDO LAWRENCE 1909-1958

(2 hours shy of 17 years before I was born)

PLATE 1.4 Lawrence as a young associate professor. University Archives, TBL.

In April 1929, UC Berkley's youngest Physics professor happened across Archiv fur Electrotechnic.
Not able to read German he just looked at the diagrams and pictures of the journal.

Immediately after seeing Wideroe's schematic, Ernest fully comprehended it's implications.

HOW DOES THE CYCLOTRON WORK?

The cyclotron as seen by the...

... the inventor

HOW THE CYCLOTRON WORKS

Major Components of a Cyclotron

HOW THE CYCLOTRON WORKS

A Mechanical Analog to the Cyclotron:

FIO. 24. In this mechanical analog of the cyclotron the ball undergoes acceleration each time it rolls down the sloping section jotning the two movable platforns, which correspond to the accelerating clectrodes of the real machine. When corroctly timed, the cam mechanism raises each platform as the ball traverses the spiral groove; thus the ball conserves its speed and makes a down-hill parsage at the next crossing. The operation is quite similar to that of the movable bowling-alley track shown in Fig. 15, B.

Derivation of Cyclotron Theory at the board.

mAGNETIC RESONANCE ACCEL.

$$
\begin{aligned}
& \vec{F}_{\text {centriptal }}=\frac{m \bar{v}^{2}}{r} \hat{r} \quad \vec{F}_{\text {magnetic }}=q(\vec{v} \times \vec{B}) \\
& \vec{F}_{\text {magnetic }}=\vec{F}_{\text {centriptal }}=\frac{m \bar{v}^{2}}{r} \hat{r}=q(\vec{v} \times \vec{B}) \\
& \text { SIMION DEMO }
\end{aligned}
$$

$$
f_{c y c}=\frac{\omega_{c y c}}{2 \pi}=\frac{q B}{2 \pi m}
$$

$$
E(r)=\frac{q^{2} B^{2} r^{2}}{2 m}
$$

In the non-relativistic scenario, revolution frequency is independent of radius !
Energy scales $\sim \boldsymbol{B}^{2}, r^{2} \rightarrow$ higher fields, larger pole diameter

Cyclotron Progression

The Cyclotron evolilved at Berkeley:

4"	80 keV protons	1931
$11^{\prime \prime}$	1 MeV protons	1932
$27^{\prime \prime}$	5.5 MeV d	1937
$37^{\prime \prime}$	8.0 MeV व'	1938
$60^{\prime \prime}$	16 MeV d	1939
$184^{\prime \prime}$	$>100 \mathrm{MeV} \mathrm{p}$	1946

THE MAGNET !

The cyclotron as seen by the...

... the mechanical engineer

MAGNETIC FIELD OF H-MAGNET

Rutgers 19-inch Cyclotron Magnet (coils not shown). 6 tons

Typical Iron-based magnet
Saturation 1.3 Tesla (13,000 Gauss)

If field is maxed out, then we need a bigger magnet...

MAGNETIC FIELD OF H-MAGNET

Soft iron "contains" the field.
Note low flux density in corners.

ARGONNE NATL LAB 60-INCH - 1952

265 tons, 10.8 MeV protons $\left(\mathrm{H}_{2}\right)$, 21.6 MeV Deuterons
Shown extracting into air. "Sounds like bacon sizzeling !" - Al Youngs

The Harvard 95-inch Cyclotron - 1949

FIG. II-2 MAGNET ASSEMBLED AT WATERTOWN ARSENAL, MINUS COILS AND POLE TIPS. THE CENTER POST IS A TEMPORARY PIECE.
$168 \mathrm{MeV}, 641$ tons

Fermi's 170-Inch Cyclotron - 1951

460 MeV proton, 2,200 tons

Dubna 700 MeV Phasotron Synchrocyclotron, protons.

7,000 tons
$1980,18 \times 10^{6}$ rubles

Gatchina Synchrocyclotron 1000 MeV Protons, 10,000 tons

How far can this madness go ?

SUPERCONDUCTING CYCLOTRON

Developed by Timothy Antaya of MIT 9 Tesla superconducting magnet $f_{\text {cyc }} \sim 140 \mathrm{MHz}$
250 MeV protons 2011

THE MEDIAN PLANE

Plane of vertical symmetry: Median Plane $\quad z=0$

AKA Accelerating Plane Valid for all types of cyclotrons

Need to verify MP after construction. Beam will do it, but you don't want to get to that point!

LOCATING THE MEDIAN PLANE

ADJUSTING THE MEDIAN PLANE

Intentional current imbalance in the excitation coils can raise/lower the median plane.
-Bring the median plane to the ion source
-Or, bring the median plane to the extraction channel height.

More about the magnetic field later ...

RUTGERS I2-INCH CHAMBER

Deflector HVFeed-through
RF Pickup Probe

CYCLOTRON RF

The cyclotron as seen by the...

This could be a full lecture topic

THE ELECTRIC FIELD

The DEE-DEE or DEE-Dummy DEE gap is the region of acceleration.

In our discussion

- Acceleration is delta function (neglect transit time effects)
- Ignore focusing effects (in reality, they are only pertinent at the early stages)
- The accelerating voltage oscillates in the Radio Frequency (RF) regime
- Neglecting beam loading (You can't! $10 \mathrm{MeV} @ 1 \mathrm{~mA}=10 \mathrm{~kW}$ of beam power)

There is a practical limit to the maximum electric field ($\sim 100 \mathrm{kV} / \mathrm{cm}$ max!)

- smaller DEE \rightarrow limited aperture
- larger vacuum chamber \rightarrow bigger magnet
- There typically is a minimum DEE voltage requirement and/or a specific value

THE CYCLOTRON RF SYSTEM

$$
f_{c y c}=\frac{q B}{2 \pi m}=\sim 15 \mathrm{MHz} \quad f_{o}=\frac{1}{2 \pi \sqrt{L C}}
$$

Drive
Signal \& Amplifier Chain

Why use a resonant circuit?

$$
Q=\frac{\omega L}{R_{A C}}=\frac{\omega U}{\langle P\rangle} \quad \begin{aligned}
& \text { To develop high voltages } \\
& \text { with modest } \mathrm{RF} \text { power. }
\end{aligned}
$$

The highest voltage for given power occurs when: $Q_{\text {loaded }}=\frac{1}{2} Q_{o}$

Main	Timebsse soo ne/div	$\begin{gathered} \text { Delay/Pos } \\ -120.000 \text { ns } \end{gathered}$	Reference Left	
Channel Channel 3	Senaitivity $50.0 \mathrm{mV} / \mathrm{dIV}$ $200 \mathrm{mV} / \mathrm{div}$		$\begin{aligned} & \text { Probe } \\ & 1.000: 1 \\ & 1.000: 1 \end{aligned}$	Coupling dc (1M ohm) de (IM ohm)
		ect ofF)		

RF POWER CALCULATIONS

Ohm's law: $\quad P=I_{r m s}^{2} R=V_{r m s}^{2} / R \quad \longrightarrow \quad I_{r m s}=\sqrt{\frac{P}{R}}$
Definition of Resonance: $\quad\left\langle U_{B}\right\rangle=\left\langle U_{E}\right\rangle=>\frac{1}{2} L I^{2}=\frac{1}{2} C V^{2} \quad f=\frac{1}{2 \pi \sqrt{L C}}$

L

$$
V_{r m s}=I_{r m s} \sqrt{\frac{L}{C}}=\sqrt{\frac{P L}{R_{a c} C}}
$$

$$
V_{p e a k}=\sqrt{\frac{2 P L}{R_{a c} C}} \quad \begin{aligned}
& \text {-Decrease capacitance } \\
& \text {-Reduce } \mathrm{R}_{\mathrm{Ac}} \\
& \text {-Voltage goes as Sqrt of power }
\end{aligned}
$$

ARGUMENT FOR 2-DEES

Single 'ended' system:

2 DEE system:

Electrical equivalent

L

$$
\begin{array}{cc}
\frac{1}{C_{\text {equiv }}}=\frac{1}{C_{1}}+\frac{1}{C_{2}} & C_{1}=C_{2}=C \\
C_{\text {equiv }}=\frac{1}{2} C & V_{\text {peak }}=\sqrt{\frac{2 P L}{R_{a c} C}}
\end{array}
$$

\rightarrow Halves the power requirement for a given DEE voltage.

QUARTER WAVE RESONATORS

So far lumped values:

The Cyclotron Corporation

HARMONIC NUMBER

$$
f_{c y c}=H \frac{\omega_{c y c}}{2 \pi}=H \frac{q B}{2 \pi m}
$$

Where H is an odd integer, $1,3,5, \ldots$

- Higher frequency
- smaller RF components.
- Land in Commercially available regime
- However the RF bucket is smaller.
- Use multiple odd-harmonics: Fourier series to reduce energy spread.

WHAT DEE VOLTAGE IS NEEDED?

Scale: inches

MINIMUM DEE VOLTAGE

In addition to clearing the chimney, there is another requirement placed on the DEE voltage.
There is a phase slippage associated with the reduced W.F. Field \& relativity. (this is another full lecture)

The phase slippage per turn can be written as

$$
\frac{d \phi}{d N}=2 \pi\left(\frac{\omega_{R F}-\omega_{c y c}}{\omega_{c y c}}\right)=2 \pi\left(\frac{B_{0}-B}{B}+\frac{B_{0} T}{B E_{0}}\right)
$$

The maximum phase slippage allowed $\pi / 2$
Unless one intentionally chooses the RF frequency such that the ions are initially advanced by $\pi / 2 \rightarrow$ extending permissible phase slippage to π ! This is an exploitation of phase stability which executes $1 / 2$ synchrotron oscillation.

$$
\int \frac{d \phi}{d N}=2 \pi\left(\frac{\omega_{R F}-\omega_{c y c}}{\omega_{c y c}}\right)<\pi
$$

MINIMUM DEE VOLTAGE

Green dots are a strobe at the RF frequency showing ion's locations once per cycle.

Initially ions are showing up to the gap early, receiving less and less kick.

Their revolution frequency briefly matches the RF frequency

They begin to show up later and later and ultimately:

$$
\int \frac{d \phi}{d N}=0
$$

SIMION DEMO

Of Phase slippage

THE ION SOURCE

- Internal Sources
- Hot Filament \rightarrow e- emission to ionization
- Good for modulated beam
- Poor relative lifetime
- Useful for low Z
- P.I.G. 'cold cathode' \rightarrow e- emission
- Long warm up time - minutes
- Excellent lifetime
- Useful for low to medium Z
- High intensity
- External Sources
- Electron Cyclotron Resonance
- Good beam quality (low emittance)
- Several sources - (i.e. backups)
- The entire periodic table \& high charge states (q / m) [also pure]
- Suffers from space charge limitation

Ion Sources are an entire lecture topic

HOT FILAMENT EXAMPLES

Hot filament at the bottom or top of chamber
Electrons follow the B-field lines
lonize ambient or supplied gas along the way

ION SOURCE PARAMETERS

Fig. 6. Ion output as a function of arc current.

Fig. 4. Ion source efficiency as a function of arc current.

Fig. 5. The effect of hydrogen flow on ion output.
"knobs"

- arc current (in current limit)
- gas flow

Practical limits

- source destruction from heat
- space charge

P.I.G. ION SOURCE CONSTRUCTION

PIG Ion Sources

Figure 8.1 Schematic of the PIG source and its power supplies
 (now it is a single Tantalum piece)

Tantalum active electrode with dogleg bend at chimney base.

SYMMETRY OF CHIMNEY \& PULLERS

Initial conditions require attention!

A vertically symmetric chimney is required!

PSF modeling showing enhanced E-field at chimney.

A vertical misalignment of the pullers w.r.t. to the chimney pulls the beam downward:

Side port view of pullers.

PSF model of misalignment.

Same view during operation,

EXAMPLE WITH BEAM

Note ion beam's downward slope while rotating in B-field

Ions are hitting

the bottom of the
dummy DEE, thus
being lost.
Photo by Tim Koeth

DEE VOLTAGE VERIFICATION

-In the $1^{\text {st }}$ half revolution

$$
E(r)=\frac{q B^{2}}{2 m} r^{2}=\frac{1}{2} V_{p-p}
$$

ORBIT STABILITY

What happens to ions which leave the ion source with an angle, or above or below the median plane ?

EOL and MS Livingston got real lucky !

1931: Although the cyclotron worked, the beam intensity was very weak. Lawrence $:$: - Prof. Lawrence: must have wire grids, and shims for a uniform magnetic field !
-Student Livingston removed the grids while Lawrence was out of town \rightarrow beam intensity shot up.

Livingston took this remarkable finding to Lawrence. To which Lawrence responded: "It's obvious what is happening..."

Diagram indicating the focussing action of the electric field between the accelerating electrodes.

Diagram indicating focussing action of magnetic field.

Intentionally introduce radial B-field component at the cost of an vertical gradient: to be coined weak focusing.

The cyclotron as seen by the...

Derivation of Weak Focusing at the board.

WHAT ARE LIMITS OF STABILITY ?

How far displaced can one stray from the Equilibrium Orbit and maintain the beam?

Use numerical tools to find the EO and limits of stability

- Radial first (find EO \& radial limits)
- Axial second
- Additionally, identify resonances

How ? Launch many particles in a static field (shut off RF for now), let them propagate for a while and follow their evolution

If it is too cumbersome to record each time step of each particle, just record their behavior at one location in the machine \& plot phase space (r, r^{\prime} and z, z^{\prime}) - this provides a time-independent characterization of the beam

WARNING: Simulations are Frienemies !!!
Do not implicitly trust them! (simulate with one eye open)
Check and double check
Benchmark them against the experiment !

To locate the EO, a radial distribution of a given energy was launched in the median plane. The following is a screen shot of the initial radial particle distribution; almost completing one revolution.

Ele	Horz	Edge	Y	
	Box	Hidden	Clip	

$\square \equiv$ Zoom \square Rel

```
\square \text { Where}
\square \text { Where}



12-inch WF field
\(B_{0}=1 \mathrm{~T}\)
50 keV protons
Radial distribution


Same SIMION model some time later...
Note greater procession of larger radial offsets


\section*{}

Record radial position and angle wrt to the tangent along a reference radial line every crossing.


\section*{PLOT PHASE [TRACE] SPACE}
\(1^{\text {st }}\) plot \(r\) vs. \(r\),

Strong non-linear
EO Identified ~ 30 mm


\section*{LOCATING EO}

The 50 keV EO was found at \(r=32.495 \mathrm{~mm}\) - \(\begin{aligned} & \text { Use programs } \\ & \text { Record data }\end{aligned}\) \(\square\) Dots Del

\title{
OTHER STABLE ORBIT FOUND
}



50 keV proton
\(r_{0}=95 \mathrm{~mm}\)
\(\mathrm{EO}=33 \mathrm{~mm}\)
Procession in B-
field gradient


\section*{Radial Phase Space Plots}










r-prime Phase Space, 550 keV protons

r-prime Phase Space, 600 keV protons


\section*{AN INTERESTING OBSERVATION}

Plot the weak focusing field's EO from PSF/SIMION (blue dots) against the EO of a uniform field (solid red line). Both fields have a peak central field of 0.997 Tesla.


\section*{VERTICAL PHASE SPACE PLOTS}

Now that we know the E.O. we will launch a vertical sequence of mono-energetic ions at their equilbrium orbit. Shown here is the \(1^{\text {st }}\) turn of \(\sim 20\) ions from a top view (again, RF is off) Data Recording... \(\square\) Pause step TQual: \(\quad \begin{aligned} & \text { The } \\ & \text { Use programs } \\ & \text { Record data }\end{aligned}\)


The 3D Iso view. Note the upper and lower extreme ions are lost on the Dummy DEE face.
 Display: XY ZY XZ 30 Iso PE Z220 -230 +230 Print Qual: 3

All initial trajectories are parallel with median plane (i.e. start at maximum betatron amplitude)


Note that the ions are approaching a focus \(-\sim 1.5\) revolutions complete. Q: Imagine the ions come to a focus in 2 turns - what is field index \(n\) ?














\section*{WEAK FOCUSING EXAMPLE}

Intentionally introduce radial B-field component:


Fig. 6-7. Radially decreasing magnetic field between poles of a cyclotron magnet, showing shims for field correction.
Poisson Superfish (PSF) modeling of tapered pole tips


Pole tips with radial slope


\section*{Weak Focusing Field Index}


\section*{EXAMPLE OF OPERATION}
\(1^{\text {st }}\) successful operation was recorded by slowly sweeping B-field to locate resonance condition. September 16, 1999:


Faraday cup insertion set to intercept beam at 300keV.

\section*{EXAMPLE OF BEAM}


Transversely viewing the beam on a phosphor screen

Observed beam spot above median plane.

\section*{WHAT IS THIS?}

\[
\left.\begin{array}{rl}
f= & 14.864 \mathrm{MHz} \\
B_{o}= & 0.977 \text { Tesla } \\
\text { RF Power: } 300 \mathrm{~W} \\
& (7,500 \mathrm{~V} p-p)
\end{array}\right] \begin{aligned}
& r_{0}= 8.6 \mathrm{~cm}(338 \mathrm{keV}) \\
& r_{1}=9.2 \mathrm{~cm}(387 \mathrm{keV}) \\
& r_{2}=9.6 \mathrm{~cm}(421 \mathrm{keV})
\end{aligned}
\]

15 second exposure while positioner was slid in and out.

\section*{EXPECTED BETATRON MOTION} Ion Energy [eV]: \(\quad E(r)=\frac{q B^{2}}{2 m} r^{2}\)
Take derivative: \(\quad \frac{\partial r(E)}{\partial E}=\frac{1}{\alpha} \frac{\partial}{\partial E} \sqrt{E}=\frac{1}{2 \alpha \sqrt{E}} \quad\) where \(\quad \alpha^{2}=\frac{q B^{2}}{2 m}\) Turns spacing: \(\quad \Delta r(E)=\frac{\Delta E}{2 \alpha \sqrt{E}} \quad\) Or since \(\mathrm{E}(r): \quad \Delta r(r)=\frac{\Delta E m}{q B^{2} r}\) where \(\Delta E\) is energy gained per rev, or just DEE \(\mathrm{V}_{\mathrm{p}-\mathrm{p}}\) Using our operating values:
\[
\Delta r(r)=\frac{(7500 e V)(1.67 E-27) \frac{1}{(1.6 E-27)(0.977)^{2}} \frac{1}{r} \quad \text { or } \quad \Delta r(r)=(8.2 E-5) \frac{1}{r}, ~}{1}
\]

Vertical Betatron Relationship:
\[
\begin{aligned}
& f_{\beta-v e r t}=\sqrt{n} f_{0} \\
& T_{\beta-v e r t}=\frac{1}{\sqrt{n}} T_{0}
\end{aligned}
\]
\(\sqrt{n}\) phase advance in one ion revolution

\begin{tabular}{|c|c|c|}
\hline\(r[\mathrm{~cm}]\) & \(\mathrm{n}(\mathrm{r})\) & Fraction of Betatron Period \\
\hline\(\underline{8.6}\) & \(\underline{0.025}\) & \(\underline{0}\) \\
\hline 8.7 & 0.026 & 0.2 \\
\hline 8.8 & 0.026 & 0.3 \\
\hline 8.9 & 0.027 & 0.5 \\
\hline 9.0 & 0.028 & 0.6 \\
\hline 9.1 & 0.030 & 0.8 \\
\hline\(\underline{9.2}\) & \(\underline{0.031}\) & 1.0 \\
\hline 9.2 & 0.033 & 1.2 \\
\hline 9.3 & 0.034 & 1.3 \\
\hline 9.4 & 0.037 & 1.5 \\
\hline 9.5 & 0.039 & 1.7 \\
\hline\(\underline{9.6}\) & \(\underline{0.041}\) & \(\underline{1.9}\) \\
\hline 9.7 & 0.042 & 2.1 \\
\hline
\end{tabular}

Almost a Perfect Match!

\section*{1937: Robert R. Wilson (a diversion)}
was a graduate student under E. O. Lawrence at Berkeley. As part of his Ph.D. work he calculated the effects of magnetic and electric focusing in the cyclotron. He even sketched the calculated trajectories for differing initial offsets:



\section*{EXTRACTION: ELECTROSTATIC DEFLECTOR}


Home Work Problem

RELATIVITY

\section*{A LIMIT TO THE CLASSICAL CYCLOTRON}

Relativistic mass increase imposes an upper limit to the classical weak-focusing cyclotron - on the order of 10 MeV protons.
There are a few ways to over come this limitation
< read Rose \& Bethe, and Lawrence's response >
I. The Synchrocyclotron: Let the RF frequency w decrease as the energy increases
- \(\omega=\omega_{0} / \gamma\)
- Utilize the same magnetic field as the weak focusing cyclotron
- Relies on Phase Stability ! (much lower DEE voltage)

The center is relativistically correct in the center
\[
\omega_{0}=\frac{q B}{M_{0}}
\]

During acceleration the RF frequency changes with the mass increase
\[
\omega_{r f}=\frac{\omega_{0}}{\gamma}=\frac{q B}{\gamma M_{0}}=\omega
\]

The frequency change is always synchronously matched to the mass increase

\section*{SYNCHROCYCLOTRON}

The RF frequency begins at the highest value and drops during acceleration
Consider 250 MeV Protons ( \(\gamma=1.26\) ) in a SC 5 Tesla W.F. magnet (Bfinal 90\% B0)
\(f_{0}=\omega_{0} / 2 \pi=15.4 \mathrm{MHz} \cdot 5 \mathrm{~T}=77 \mathrm{MHZ} \rightarrow 1 \mathrm{RF}\) period \(=12 \mathrm{~ns}\)
\(f_{\text {final }}=\sim 0.9 \mathrm{~B}_{0} \mathrm{e} / 1.26 \mathrm{M}_{0}=54 \mathrm{MHz} \rightarrow 1 \mathrm{RF}\) period \(=18 \mathrm{~ns}\)

Assume 10,000 turns to attain 250 MeV
one full acceleration cycle \(\sim 15 \mathrm{~ns} \times 10,000=150 \mu \mathrm{~s}\).

With RF recovery time: 1000 acceleration cycles per second \(\rightarrow 15 \%\) duty cycle Relativity cured, but at the cost of low beam intensity.


\section*{SYNCHROCYCLOTRON RF (AKA FM CYCLOTRON)}

Electrical equivalent



\section*{II. AZIMUTHALLY MODUALTED DEE}

A ‘cure’ for relativistic mass increase in WF cyclotrons.


B-K Electrode: In simple terms, if the ion won't come to the gap, then bring the gap to the ions. There are limits...

\section*{SIMION Tracks Using the Curved DEE}


Heidi's Presentation at the NYCSeF - March 2010


\section*{III. AZIMUTHALLY VAR YING FIELD}

\section*{The cyclotron as seen by the...}


\section*{THOMAS CYCLOTRON EXAMPLE}

\begin{tabular}{l|c|c} 
& Thomas cyclotron & FFAG \(/\) AGS \\
\hline Periodic \(B(\theta)\) & Yes & Yes \(/\) No \\
Alternating \(\partial B / \partial r\) & Yes & Yes \\
Axial force & \(q \mathrm{v}, B_{\theta}\) & \(q \mathrm{v}_{\theta} B_{r}\) \\
Lens pattern & FFFFFFF & FDFDFDFD \\
Edge focusing & Dominant & Negligible \\
AG focusing & Negligible & Dominant \\
\hline
\end{tabular}


\section*{FINDING THE EQUILIBRIUM ORBIT}


\title{
Finding the Equilibrium Orbit
}

After the four ions have processed for a while, several things become evident. First, the field must be stable for the ions to be able to so wildly process.

Second, it is obvious to the eye that one of the ions was launched close to the EO. The darkest 'ring' is the ion trajectory closest to being on the EO.

Third, the largest orbit shows the characteristic of the 4-sector AVF field with a square envelope.


Now, to plot the phase space, we record the position and angle of the ion as it crosses a radial plane. These are the locations of the red dots.

\section*{THOMAS POLE PHASE SPACE MAP}


\section*{FIND FIXED POINTS BY CAREFUL SEARCHING:} connect the dots to follow 'flow' - red circles indicate starting location




Showing that about 20 degrees of RF (out of 360 ) can successfully accelerate ions to the periphery. This does not include the ion source obstruction.


\section*{LETS COMPARE POLE TIPS:}

Weak Focusing


AVF


We've launched 50 keV protons at differing radii for the above B-field configurations.
-We'll find the limits of stability
-We'll identify the Equilibrium Orbits
-Launch a vertical distribution on the equilibrium orbit to find the vertical acceptance
-Circles identify starting location indicating direction of flow
-Finally, in all three cases a single particle's (with identical initial conditions) trace-space is identified by a red orbit, aiding the comparison.

\section*{WEAK FOCUSING RADIAL PHASE SPACE}


\section*{AVF RADIAL PHASE SPACE}


\section*{SPIRAL AVF RADIAL PHASE SPACE}


\section*{WEAK FOCUSING VER TICAL PHASE SPACE}


\section*{AVF VERTICAL PHASE SPACE}


\section*{SPIRAL AVF VERTICAL PHASE SPACE}


\section*{WHAT DOES THIS MEAN?}

Let's explain through an example. Two identical 50 keV ions are launched, one in the Weak Focusing field (black trace), the other in the AVF field (red trace) with the same angle ( \(z^{\prime}\) ). We've recorded the vertical motion ( \(z\) ) as they circulate.


It is clear that the ions in the AVF field have a much smaller vertical excursion. This means the AVF field can accept a larger angular spread in ions, providing an overall greater beam intensity. Note that the frequency of oscillation is higher in the AVF field.

\section*{III-B ISOCHRONOUS CYCLOTRON}

The Isochronous cyclotron is a special case of the Spiral AVF configuration.

Raise the magnetic field with radius such that the relativistic mass increase is just cancelled.
- Make \(B=\gamma B_{o} \rightarrow\) magnetic field must increase with radius
\(-\omega=q B / M=q \gamma B / \gamma M_{o}=q B / M_{o}=\mathrm{constant}\)
- If the field increases with radius, magnetic structure must be different.

Use the energy-mass conservation of \(E^{2}=p^{2} c^{2}+E_{o}{ }^{2}\) and since \(B_{f}=B_{o}\left(1+T_{f} / E_{o}\right)\) we can show that:
\[
B=\frac{B_{o}}{\left[1-(Z / A)^{2}(r / a)^{2}\right]^{1 / 2}}
\]
where \(a=E_{d} / e c B_{o}\)
To first order \(B \sim B_{o}\left[1+(r / a)^{2}\right]\)
Clearly \(\mathrm{n}<0\), axially unstable !!!

\section*{ISOCHRONOUS CYCLOTRON}

A peculiar consequence of the isochronous cyclotron.
The momentum compaction factor have the value of \(\alpha=1 / \gamma^{2}\)
Plug this into the relationship between revolution period change and momentum change we see that:
\[
\frac{d \tau}{t}=\left(\frac{1}{\alpha}-\frac{1}{\gamma^{2}}\right) \frac{d p}{p}=0
\]
\(\mathrm{d} \tau / \tau=0\) : the acceleration period is unrelated to the change in momentum and there is not phase stability!
- If the energy gain is wrong, there is no correction
- Isochronous cyclotrons must have a designed energy gain per turn
- Energy gain errors, such as RF-gap crossing time must be suppressed

The isochronous field and the energy gain per turn must match. The turn number is fixed as is the orbit shape for a given ion and final energy.

\section*{ISOCHRONOUS CYCLOTRON}

Define an average field index: \(\quad k=\frac{r}{\langle B\rangle} \frac{d\langle B\rangle}{d r}=-n\)
Flutter - the 'hill' to 'valley ratio of the azimuthally varying field.

From Curl \(\mathrm{B}=0\) in the magnet gap, we find that the azimuthal variation of \(\mathrm{B}_{2}\) gives rise to a \(\mathrm{B}_{\theta}\) which results in a new axial force which is always restoring:
\[
F_{z}=q v_{r} B_{\theta}
\]

\section*{}

\section*{Pro:}
- CW beam (beam every RF cycle) - high average current
- Fixed RF frequency source
- Variable energy and ion species are possible
- small beam sizes and energy spread

Con:
- High field precision required! 1/10,000
- Complex magnetic field - requires substantial simulation
- More resonances

\section*{Interesting:}
- "other" non-central orbits

\section*{AN ISOCHRONOUS ATTEMPT}


Radial Profile of Average B-Fielc



\section*{AVF PROFILE WITH INCREASING RADII}

NOTE: very little flutter in central region.


\section*{AVF FIELD RADIAL STABILITY}
r-rprime Phase Space of M3D AKG Spiral AVF Simulation, 600 keV protons


\section*{WHAT IS THIS AT 250 KEV ?}
r-rprime Phase Space of M3D AKG Spiral AVF Simulation, 250 keV protons


\section*{AVF MAKES THE EO COMPLICATED}
- We know that the orbits are no longer circular
- As a result of AVF many more orbits are allowed
- Lets generalize the orbit properties
- Take \(\boldsymbol{v}=\boldsymbol{p} / \boldsymbol{m}\) to be the average velocity of an ion orbit having momentum \(\boldsymbol{p}\) and energy \(\boldsymbol{E}\)
- Take \(\tau\) to be the revolution period
- Then define the EO properties as
- EO circumference \(C=v t\) also \(C=\emptyset d s\)
- EO equivalent radius: \(R=C / 2 \pi\)
- Cyclotron frequency \(\omega=v / R\)
- Average \(B_{z}\) :
\[
\left\langle B_{Z}\right\rangle=\frac{1}{C} \oint B_{z} d s=\frac{m \omega}{C q}
\]


\section*{FIVE STABLE 250 KEV ORBITS!}

\section*{NWn field_array.iob - SIMION}

File Help


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Display: & XY & ZY & XZ & 3 D & PE & \(\underline{20}\) & -230 & +23D & Print & Qual: 3 & - \\
\hline
\end{tabular}


\section*{FOUND FIVE STABLE ORBITS}



\section*{SPIRAL AVF VS WF (RADIAL)}











\section*{SPIRAL AVF VS WF (AXIAL)}













\section*{PROTONS FLOWN IN SIMION}


The cyclotron as seen by the...

. . . the student```

