
Coordinate System for 
Circular Accelerator 



Curverlinear coordinate system 

  Coordinate system to describe particle motion in an 
accelerator.  

  Moves with the particle 

Set of unit vectors: 

  

€ 

ˆ s (s) =
d r 0(s)

ds

€ 

ˆ s 

€ 

ˆ x 
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ˆ y 
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 r 0(s)  
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 r (s)

€ 

ˆ x (s) = −ρ
dˆ s (s)

ds

€ 

ˆ y (s) = ˆ x (s) × ˆ s (s)



Equation of motion 

  Equation of motion in transverse plane 
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 r (s) =
 r 0(s) + xˆ x (s) + yˆ y (s)
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dˆ s (s)
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1
ρ

ˆ x (s)
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Equation of motion 

  

€ 

d r (s)
dt

=
ds
dt

[ d r 0
ds

+ x' ˆ x + x dˆ x 
ds

+ y ' ˆ y ] =
ds
dt

[(1+
x
ρ

)ˆ s + x ' ˆ x + y' ˆ y ]

  

€ 

d2 r (s)
dt 2 =

ds
dt

d v 
ds
≈

v 2

(1+
x
ρ

)2
[(x ' '− ρ + x

ρ2 ) ˆ x + x'
ρ

ˆ s + y ' ' ˆ y ]

  

€ 

 v = ds
dt

[(1+
x
ρ

)ˆ s + x' ˆ x + y ' ˆ y ] = vsˆ s + vx ˆ x + vy ˆ y 

  

€ 

v 2 =
 v =

ds
dt
[(1+

x
ρ
)2 + x '2 +y '2 ]



Equation of motion 

  

€ 

d2 r (s)
dt 2 ≈

v 2

(1+
x
ρ

)2
[(x ' '− ρ + x

ρ2 ) ˆ x + x'
ρ

ˆ s + y ' ' ˆ y ] =
q v ×

 
B 

γm

€ 

x' '− ρ + x
ρ2

= −
qBy

γmv
(1+

x
ρ
)2

€ 

y' '= qBx

γmv
(1+

x
ρ
)2

€ 

x' '+ qB'
γmv

x = 0

€ 

y' '− qB'
γmv

y = 0



Solution of equation of motion  

  Comparison with harmonic oscillator: A system with a 
restoring force which is proportional to the distance from 
its equilibrium position, i.e. Hooker’s Law: 

€ 

d2x(t)
dt 2

+ kx(t) = 0

€ 

x(t) = Acos( kt + χ)

Where k is the spring constant 

€ 

F =
d2x(t)
dt 2

= −kx(t)

  Equation of motion: 

Amplitude of the  
sinusoidal oscillation 

Frequency of  
the oscillation 



transverse motion: betatron oscillation 

  The general case of equation of motion in an accelerator  

€ 

x' '+kx = 0

€ 

x(s) = Acos( ks+ χ)

€ 

x'(s) = −A k sin( ks+ χ)

€ 

x(s) = Acosh( ks+ χ)

€ 

x'(s) = −A k sinh( ks+ χ)

  For k > 0 

Where k can also be negative 

  For k < 0 



Transfer Matrix of a beam transport 

  The transport matrix from point 1 to point 2 is 

€ 

x(s2)
x '(s2)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

β2
β1
(cosψs2s1

+α1 sinψs2s1
) β1β2 sinψs2s1

−
1+α1α2

β1β2
sinψs2s1

+
α1 −α2

β1β2
cosψs2s1

β1
β2
(cosψs2s1

−α2 sinψs2s1
)

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

x(s1)
x '(s1)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

x(s) = A βx s( ) cos(ψ(s) + χ)

€ 

x'(s) = −A 1/βx s( ) sin(ψ(s) + χ) +
β 'x s( )
2

A 1/βx s( ) cos(ψ(s) + χ)

with: 



One Turn Map 

  Transfer matrix of one orbital turn 

€ 

x(s0 + C)
x '(s0 + C)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

(cos2πQx +αx,s0
sin2πQx ) βx,s0 sin2πQx

−
1+αx,s0

2

βx,s0

sin2πQx (cos2πQx −αx,s0
sin2πQx )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

x(s0)
x '(s0)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

Tr(Ms,s+C ) = 2cos2πQx

€ 

1
2
Tr(Ms,s+C ) ≤1.0

  Closed orbit: 

€ 

x(s+ C)
x '(s+ C)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

x(s)
x'(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

x(s+ C)
x '(s+ C)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = M(s+ C,s)

x(s)
x '(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Stable condition 



Stability of transverse motion 

  Matrix from point 1 to point 2 

  

€ 

Ms2 |s1
= MnM2M1

  Stable motion requires each transfer matrix to be stable, i.e. its 
eigen values are in form of oscillation 

€ 

|M − λI | = 0

€ 

I =
1 0
0 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

λ2 −Tr M( )λ + det M( ) = 0

€ 

det M( ) =1

€ 

λ =
1
2
Tr M( ) ±

1
4
[Tr M( )]2 −1

€ 

1
2
Tr(M) ≤1.0

With  and  



Focusing from quadrupole 

€ 

x' '+ qB'
γm

x = 0

  Equation of motion through a 
quadrupole 

  For a thin quadrupole, i.e. beam position 
doesn’t change or x = x, but with a 
change in slope of the particle’s 
trajectory, i.e. 

€ 

Δx '= − qB' l
γmv

x

€ 

B = B' x

€ 

l

€ 

θ

€ 

θ

€ 

ρ =
γmv
qB



Focusing from quadrupole 

  Required by Maxwell equation, a single quadrupole has 
to provide focusing in one plane and defocusing in the 
other plane  € 

x
f

= −Δx'= qB' l
γmv

x

€ 

1
f

=
qB' l
γmv

x 
Δx’ 

f 
s 



Transfer matrix of a qudruploe 

  Thin lens: length of quadrupole is negligible to the 
displacement relative to the center of the magnet  

€ 

x
x '
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ =

1 0
−
1
f

1
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
x
x '
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

€ 

Δx '= − l
ρ

= −l
qBy

γmv
= −

qB' l
γmv

x = −kx



Transfer matrix of a drift space 

  Transfer matrix of a drift space 

€ 

x
x '
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ =

1 L
0 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
x
x '
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

x 
Δx’ 

L 
s 



Lattice 

  Arrangement of magnets: structure of beam line 

  Bending dipoles, Quadrupoles, Steering dipoles, Drift space and 
Other insertion elements 

  Example: 
  FODO cell: alternating arrangement between focusing and 

defocusing quadrupoles 

L 

One FODO cell 

f -f 

L 



FODO lattice 

€ 

x
x '
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ =

1 0
−
1
2 f

1
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
1 L
0 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1 0
1
f

1
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

1 0
−
1
2 f

1
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
1 L
0 1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
x
x '
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

=
1− 2 L

2

f 2
2L(1+

L
f
)

−2(1− L
f
) L
f 2

1− 2 L
2

f 2

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

x
x'
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

  Net effect is focusing  
  Provide focusing in both planes! 



Dispersion function 

  Transverse trajectory is function of particle momentum.   

ρ 

€ 

Δθ = θ
Δp
p

ρ+Δρ 

€ 

x = D(s)Δp
pDefine 

Dispersion function 

Momentum spread 



Dispersion function 

  Transverse trajectory is function of particle momentum.   

€ 

x' '− ρ + x
ρ2

= −
qBy

γm
(1+

x
ρ
)2

€ 

By = B0 + B' x

€ 

x' '+ 1
ρ2
2p0 − p

p
+

B'
Bρ0

p0
p

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ x =

1
ρ
Δp
p

€ 

x = D(s)Δp
p

€ 

D(s+ C) = D(s)

€ 

D' '+ 1
ρ2
2p0 − p

p
+

B'
Bρ0

p0
p

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ D =

1
ρ



Dispersion function: cont’d 

  In drift space 

   dispersion function has a constant slope   

€ 

1
ρ

= 0

€ 

B'= 0and  

€ 

⇒ D' '= 0

  In dipoles,  

€ 

1
ρ
≠ 0

€ 

B'= 0and  

€ 

D' '+[ 1
ρ2
2p0 − p

p
]D =

1
ρ



Dispersion function: cont’d 

  For a focusing quad,  

   dispersion function oscillates sinusoidally   
€ 

1
ρ

= 0

€ 

B'> 0and  

€ 

⇒ D' '+B' p0
p
D = 0

  For a defocusing quad,  

   dispersion function evolves exponentially    
€ 

1
ρ

= 0

€ 

B'< 0and  

€ 

⇒ D' '−B' p0
p
D = 0



Path length and velocity 

  For a particle with velocity v,   

  Transition energy    :  when particles with different energies 
spend the same time for each orbital turn 
-  Below transition energy:  higher energy particle travels faster 
- Above transition energy: higher energy particle travels slower  € 

γ t

€ 

L = vT

€ 

ΔL
L

=
Δv
v

+
ΔT
T

€ 

Δv
v

=
Δβ
β

=
1
γ 2
Δp
p

€ 

ΔT
T

= (α − 1
γ 2
)Δp
p

= ( 1
γ t
2 −

1
γ 2
)Δp
p



Compaction factor 

  The difference of the length of closed orbit between off-
momentum particle and on momentum particle, i.e.  

€ 

ΔC
C

=α
Δp
p

=

ρ + DΔp
p

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dθ −∫ ρ∫ dθ

ρ∫ dθ

€ 

α
Δp
p

= 〈
D
ρ
〉
Δp
p
⇒α = 〈

D
ρ
〉



Chromatic effect 

  Comes from the fact the the focusing effect of an 
quadrupole is momentum dependent 

- Higher energy particle has less focusing 

€ 

1
f

=
q
p
kl

  Chromaticity: tune spread due to momentum spread 

€ 

ξx,y =
ΔQx,y

Δp / p momentum spread 

Particles with different momentum have 
different betatron tune 

Tune spread 



Chromaticity 

  Transfer matrix 

€ 

M =
1 0
−
1
f

1
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
≈

1 0
−
1
f
(1− Δp

p
) 1

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

=
1 0
−
1
f

1
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

1 0
1
f
Δp
p

1
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

€ 

M(s+ C,s) = M(B,A)
1 0
−
1
f

1
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

= M(B,A)
1 0
−
1
f

1
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

1 0
1
f
Δp
p

1
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

A B 

  Transfer matrix of a thin quadrupole 



Chromaticity 

€ 

M(s+ C,s) =

(cos2πQx +αx,s0
sin2πQx ) βx,s0

sin2πQx

−
1+αx,s0

2

βx,s0

sin2πQx (cos2πQx −αx,s0
sin2πQx )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

1 0
1
f
Δp
p

1
⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

=

(cos2πQx +αx,s0
sin2πQx ) +

1
f
Δp
p
βx,s0 sin2πQx βx,s0

sin2πQx

−
1+αx,s0

2

βx,s0

sin2πQx + (cos2πQx −αx,s0
sin2πQx )

1
f
Δp
p

(cos2πQx −αx,s0
sin2πQx )

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

€ 

cos[2π (Qx + ΔQx )] =
1
2
Tr(M(s+ C,s)

€ 

cos[2π (Qx + ΔQx )] = cos2πQx +
1
2
βx,s0 sin2πQx

1
f
Δp
p



Chromaticity 

€ 

ξx =
ΔQx

Δp / p
= −

1
4π

1
f
β(s)

€ 

cos[2π (Qx + ΔQx )] = cos2πQx +
1
2
βx,s0 sin2πQx

1
f
Δp
p

Assuming the tune change due to momentum difference is small 

€ 

cos2πQx − 2πΔQx sin2πQx = cos2πQx +
1
2
βx,s0

sin2πQx
1
f
Δp
p

€ 

ΔQx = −
1
4π

βx,s0
1
f
Δp
p

€ 

ξx =
ΔQx

Δp / p
= −

1
4π

ki
i
∑ βx,i



Chromaticity of a FODO cell 

€ 

ξx = −
1
4π

β f
1
f
−βd

1
f

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

L 

One FODO cell 

L 

β 

βf βd 

€ 

β f ,d =
2L(1± sin[Δψ /2])

sin[Δψ]

€ 

ξx = −
1
π
tanΔψ

2

€ 

sin[Δψ /2] =
L
f

€ 

ξx = −
1
π

L / f
sinΔψ



Chromaticity correction 

  Nature chromaticity can be large and can result to large 
tune spread and get close to resonance condition 

  Solution: 
-  A special magnet which provides stronger focusing for particles 

with higher energy: sextupole   

€ 

Δp
p

> 0

€ 

Δp
p

< 0
€ 

Δp
p

= 0



Closed orbit distortion 

  Dipole kicks can cause particle’s trajectory deviate away from 
the designed orbit 
-  Dipole error 
-  Quadrupole misalignment 

€ 

x(s)
x '(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = M(s,s0)[M(s0,s)

x(s)
x '(s)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

0
θ

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ ]

  Assuming a circular ring with a single 
dipole error,  closed orbit then becomes: 

s0 

BPM 

s 



Closed orbit: single dipole error 

€ 

x(s0)
x '(s0)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = M(s0 + C,s0)

x(s0)
x '(s0)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

0
θ

⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟ 

  Let’s first solve the closed orbit at the location where the 
dipole error is 

€ 

x(s) = βx (s0)βx (s)
θ

2sinπQx

cos ψ(s,s0) −πQx[ ]
€ 

x(s0) = βx (s0)
θ

2sinπQx

cosπQx

  The closed orbit distortion reaches its maximum at the 
opposite side of the dipole error location  



Closed orbit distortion 

  In the case of multiple dipole errors distributed around the 
ring. The closed orbit is 

€ 

x(s) = βx (s) βx (si)
i
∑ θi

2sinπQx

cos ψ(si,s0) −πQx[ ]

  Amplitude of the closed orbit distortion is inversely 
proportion to sinπQx,y 
- No stable orbit if tune is integer! 



Measure closed orbit 

  Distribute beam position monitors around ring. 



Control closed orbit 

  minimized the closed orbit distortion. 
  Large closed orbit distortions cause limitation on the 

physical aperture  
  Need dipole correctors and beam position monitors 

distributed around the ring 
  Assuming we have m beam position monitors and n 

dipole correctors, the response at each beam 
position monitor from the n correctors is:  

€ 

xk = βx,k βx,i
θi

2sinπQx

cos ψ(si,s0) −πQx[ ]
k=1

n

∑



Control closed orbit 

  Or, 

  To cancel the closed orbit measured at all the bpms, the 
correctors are then 

  

€ 

θ1
θ2

θn

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= M−1( )

x1
x2

xm

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

  

€ 

x1
x2

xm

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

= M( )

θ1
θ2

θn

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 


