Coordinate System for Circular Accelerator

Curverlinear coordinate system

- Coordinate system to describe particle motion in an accelerator.
- Moves with the particle

Set of unit vectors:

$$
\begin{aligned}
& \hat{s}(s)=\frac{d \vec{r}_{0}(s)}{d s} \\
& \hat{x}(s)=-\rho \frac{d \hat{s}(s)}{d s} \\
& \hat{y}(s)=\hat{x}(s) \times \hat{s}(s)
\end{aligned}
$$

Equation of motion

- Equation of motion in transverse plane

$$
\vec{r}(s)=\vec{r}_{0}(s)+x \hat{x}(s)+y \hat{y}(s)
$$

Equation of motion

$$
\begin{aligned}
& \frac{d \vec{r}(s)}{d t}=\frac{d s}{d t}\left[\frac{d \vec{r}_{0}}{d s}+x^{\prime} \hat{x}+x \frac{d \hat{x}}{d s}+y^{\prime} \hat{y}\right]=\frac{d s}{d t}\left[\left(1+\frac{x}{\rho}\right) \hat{s}+x^{\prime} \hat{x}+y^{\prime} \hat{y}\right] \\
& \vec{v}=\frac{d s}{d t}\left[\left(1+\frac{x}{\rho}\right) \hat{s}+x^{\prime} \hat{x}+y^{\prime} \hat{y}\right]=v_{s} \hat{s}+v_{x} \hat{x}+v_{y} \hat{y} \\
& v^{2}=|\vec{v}|=\frac{d s}{d t}\left[\left(1+\frac{x}{\rho}\right)^{2}+x^{\prime 2}+y^{\prime 2}\right] \\
& \frac{d^{2} \vec{r}(s)}{d t^{2}}=\frac{d s}{d t} \frac{d \vec{v}}{d s} \approx \frac{v^{2}}{\left(1+\frac{x}{\rho}\right)^{2}}\left[\left(x^{\prime \prime}-\frac{\rho+x}{\rho^{2}}\right) \hat{x}+\frac{x^{\prime}}{\rho} \hat{s}+y^{\prime \prime} \hat{y}\right]
\end{aligned}
$$

Equation of motion

$$
\begin{aligned}
& \frac{d^{2} \vec{r}(s)}{d t^{2}} \approx \frac{v^{2}}{\left(1+\frac{x}{\rho}\right)^{2}}\left[\left(x^{\prime \prime}-\frac{\rho+x}{\rho^{2}}\right) \hat{x}+\frac{x^{\prime}}{\rho} \hat{s}+y^{\prime \prime} \hat{y}\right]=\frac{q \vec{v} \times \vec{B}}{\gamma m} \\
& x^{\prime \prime}-\frac{\rho+x}{\rho^{2}}=-\frac{q B_{y}}{\gamma m v}\left(1+\frac{x}{\rho}\right)^{2} \longrightarrow x^{\prime \prime}+\frac{q B^{\prime}}{\gamma m v} x=0 \\
& y^{\prime \prime}=\frac{q B_{x}}{\gamma m v}\left(1+\frac{x}{\rho}\right)^{2} \quad y^{\prime \prime}-\frac{q B^{\prime}}{\gamma m v} y=0
\end{aligned}
$$

Solution of equation of motion

- Comparison with harmonic oscillator:A system with a restoring force which is proportional to the distance from its equilibrium position, i.e. Hooker's Law:

$$
F=\frac{d^{2} x(t)}{d t^{2}}=-k x(t) \quad \text { Where } k \text { is the spring constant }
$$

- Equation of motion:

$$
\frac{d^{2} x(t)}{d t^{2}}+k x(t)=0 \quad x(t)=A \cos (\sqrt{k} t+\chi)
$$

Amplitude of the Frequency of sinusoidal oscillation the oscillation

transverse motion: betatron oscillation

- The general case of equation of motion in an accelerator

$$
x^{\prime \prime}+k x=0 \quad \text { Where } k \text { can also be negative }
$$

- For k > 0

$$
x(s)=A \cos (\sqrt{k} s+\chi) \quad x^{\prime}(s)=-A \sqrt{k} \sin (\sqrt{k} s+\chi)
$$

- For k < 0

$$
x(s)=A \cosh (\sqrt{k} s+\chi) \quad x^{\prime}(s)=-A \sqrt{k} \sinh (\sqrt{k} s+\chi)
$$

Transfer Matrix of a beam transport

- The transport matrix from point I to point 2 is

$$
\binom{x\left(s_{2}\right)}{x^{\prime}\left(s_{2}\right)}=\left(\begin{array}{cc}
\sqrt{\frac{\beta_{2}}{\beta_{1}}}\left(\cos \psi_{s_{2} s_{1}}+\alpha_{1} \sin \psi_{s_{s_{1}}}\right) & \sqrt{\beta_{1} \beta_{2}} \sin \psi_{s_{2} s_{1}} \\
-\frac{1+\alpha_{1} \alpha_{2}}{\sqrt{\beta_{1} \beta_{2}}} \sin \psi_{s_{2} s_{1}}+\frac{\alpha_{1}-\alpha_{2}}{\sqrt{\beta_{1} \beta_{2}}} \cos \psi_{s_{2} s_{1}} & \sqrt{\frac{\beta_{1}}{\beta_{2}}}\left(\cos \psi_{s_{2} s_{1}}-\alpha_{2} \sin \psi_{s_{2} s_{1}}\right)
\end{array}\right)\binom{x\left(s_{1}\right)}{x^{\prime}\left(s_{1}\right)}
$$

with:

$$
\begin{aligned}
& x(s)=A \sqrt{\beta_{x}(s)} \cos (\psi(s)+\chi) \\
& x^{\prime}(s)=-A \sqrt{1 / \beta_{x}(s)} \sin (\psi(s)+\chi)+\frac{\beta_{x}^{\prime}(s)}{2} A \sqrt{1 / \beta_{x}(s)} \cos (\psi(s)+\chi)
\end{aligned}
$$

One Turn Map

- Transfer matrix of one orbital turn
$\binom{x\left(s_{0}+C\right)}{x^{\prime}\left(s_{0}+C\right)}=\left(\begin{array}{cc}\left(\cos 2 \pi Q_{x}+\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right) & \beta_{x, s_{0}} \sin 2 \pi Q_{x} \\ -\frac{1+\alpha_{x, s_{0}}^{2}}{\beta_{x, s_{0}}} \sin 2 \pi Q_{x} & \left(\cos 2 \pi Q_{x}-\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right)\end{array}\right)\binom{x\left(s_{0}\right)}{x^{\prime}\left(s_{0}\right)}$
$\operatorname{Tr}\left(M_{s, s+C}\right)=2 \cos 2 \pi Q_{x} \quad$ Stable condition $\left|\frac{1}{2} \operatorname{Tr}\left(M_{s, s+C}\right)\right| \leq 1.0$
-Closed orbit: $\binom{x(s+C)}{x^{\prime}(s+C)}=\binom{x(s)}{x^{\prime}(s)}$

$$
\binom{x(s+C)}{x^{\prime}(s+C)}=M(s+C, s)\binom{x(s)}{x^{\prime}(s)}
$$

Stability of transverse motion

- Matrix from point I to point 2

$$
M_{s_{2} \mid s_{1}}=M_{n} \cdots M_{2} M_{1}
$$

- Stable motion requires each transfer matrix to be stable, i.e. its eigen values are in form of oscillation

$$
\begin{gathered}
|M-\lambda I|=0 \quad \text { With } I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { and } \operatorname{det}(M)=1 \\
\lambda^{2}-\operatorname{Tr}(M) \lambda+\operatorname{det}(M)=0 \\
\lambda=\frac{1}{2} \operatorname{Tr}(M) \pm \sqrt{\frac{1}{4}[\operatorname{Tr}(M)]^{2}-1} \quad\left|\frac{1}{2} \operatorname{Tr}(M)\right| \leq 1.0
\end{gathered}
$$

Focusing from quadrupole

- Equation of motion through a quadrupole

$$
x^{\prime \prime}+\frac{q B^{\prime}}{\gamma m} x=0
$$

- For a thin quadrupole, i.e. beam position doesn't change or $x=x$, but with a change in slope of the particle's trajectory, i.e.

$$
\Delta x^{\prime}=-\frac{q B^{\prime} l}{\gamma m v} x
$$

$$
B=B^{\prime} x
$$

Focusing from quadrupole

$$
\frac{x}{f}=-\Delta x^{\prime}=\frac{q B^{\prime} l}{\gamma m v} x \quad \Rightarrow \frac{1}{f}=\frac{q B^{\prime} l}{\gamma m v}
$$

- Required by Maxwell equation, a single quadrupole has to provide focusing in one plane and defocusing in the other plane

Transfer matrix of a qudruploe

- Thin lens: length of quadrupole is negligible to the displacement relative to the center of the magnet

$$
\begin{array}{r}
\Delta x^{\prime}=-\frac{l}{\rho}=-l \frac{q B_{y}}{\gamma m v}=-\frac{q B^{\prime} l}{\gamma m v} x=-k x \\
\binom{x}{x^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\binom{x}{x^{\prime}}
\end{array}
$$

Transfer matrix of a drift space

- Transfer matrix of a drift space

$$
\binom{x}{x^{\prime}}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\binom{x}{x^{\prime}}
$$

Lattice

- Arrangement of magnets: structure of beam line
- Bending dipoles, Quadrupoles, Steering dipoles, Drift space and Other insertion elements
- Example:
- FODO cell: alternating arrangement between focusing and defocusing quadrupoles

FODO lattice

$$
\begin{aligned}
\binom{x}{x^{\prime}} & =\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{2 f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{2 f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)\binom{x}{x^{\prime}} \\
& =\left(\begin{array}{cc}
1-2 \frac{L^{2}}{f^{2}} & 2 L\left(1+\frac{L}{f}\right) \\
-2\left(1-\frac{L}{f}\right) \frac{L}{f^{2}} & 1-2 \frac{L^{2}}{f^{2}}
\end{array}\right)\binom{x}{x^{\prime}}
\end{aligned}
$$

- Net effect is focusing
- Provide focusing in both planes!

Dispersion function

- Transverse trajectory is function of particle momentum.

$$
\Delta \theta=\theta \frac{\Delta p}{p}
$$

Momentum spread
Define $\quad x=D(s) \frac{\Delta p}{p}$
Dispersion function

Dispersion function

- Transverse trajectory is function of particle momentum.

$$
\begin{aligned}
& x^{\prime \prime}-\frac{\rho+x}{\rho^{2}}=-\frac{q B_{y}}{\gamma m}\left(1+\frac{x}{\rho}\right)^{2} \quad B_{y}=B_{0}+B^{\prime} x \\
& x^{\prime \prime}+\left[\frac{1}{\rho^{2}} \frac{2 p_{0}-p}{p}+\frac{B^{\prime}}{B \rho_{0}} \frac{p_{0}}{p}\right] x=\frac{1}{\rho} \frac{\Delta p}{p} \\
& x=D(s) \frac{\Delta p}{p} \quad D(s+C)=D(s) \\
& D^{\prime \prime}+\left[\frac{1}{\rho^{2}} \frac{2 p_{0}-p}{p}+\frac{B^{\prime}}{B \rho_{0}} \frac{p_{0}}{p}\right] D=\frac{1}{\rho}
\end{aligned}
$$

Dispersion function: cont'd

- In drift space

$$
\frac{1}{\rho}=0 \quad \text { and } \quad B^{\prime}=0 \Rightarrow \quad D^{\prime \prime}=0
$$

dispersion function has a constant slope

- In dipoles,

$$
\frac{1}{\rho} \neq 0 \quad \text { and } \quad B^{\prime}=0 \quad D^{\prime \prime}+\left[\frac{1}{\rho^{2}} \frac{2 p_{0}-p}{p}\right] D=\frac{1}{\rho}
$$

Dispersion function: cont'd

- For a focusing quad,

$$
\frac{1}{\rho}=0 \quad \text { and } \quad B^{\prime}>0 \quad \Rightarrow D^{\prime \prime}+B^{\prime} \frac{p_{0}}{p} D=0
$$

dispersion function oscillates sinusoidally

- For a defocusing quad,

$$
\frac{1}{\rho}=0 \quad \text { and } \quad B^{\prime}<0 \quad \Rightarrow D^{\prime \prime}-B^{\prime} \frac{p_{0}}{p} D=0
$$

dispersion function evolves exponentially

Path length and velocity

- For a particle with velocity v,

$$
\begin{aligned}
& L=v T \quad \frac{\Delta L}{L}=\frac{\Delta v}{v}+\frac{\Delta T}{T} \quad \frac{\Delta v}{v}=\frac{\Delta \beta}{\beta}=\frac{1}{\gamma^{2}} \frac{\Delta p}{p} \\
& \frac{\Delta T}{T}=\left(\alpha-\frac{1}{\gamma^{2}}\right) \frac{\Delta p}{p}=\left(\frac{1}{\gamma_{t}^{2}}-\frac{1}{\gamma^{2}}\right) \frac{\Delta p}{p}
\end{aligned}
$$

- Transition energy γ_{t} : when particles with different energies spend the same time for each orbital turn
- Below transition energy: higher energy particle travels faster
- Above transition energy: higher energy particle travels slower

Compaction factor

- The difference of the length of closed orbit between offmomentum particle and on momentum particle, i.e.

$$
\begin{gathered}
\frac{\Delta C}{C}=\alpha \frac{\Delta p}{p}=\frac{\oint\left(\rho+D \frac{\Delta p}{p}\right) d \theta-\oint \rho d \theta}{\oint \rho d \theta} \\
\alpha \frac{\Delta p}{p}=\left\langle\frac{D}{\rho}\right\rangle \frac{\Delta p}{p} \Rightarrow \alpha=\left\langle\frac{D}{\rho}\right\rangle
\end{gathered}
$$

Chromatic effect

- Comes from the fact the the focusing effect of an quadrupole is momentum dependent

$$
\frac{1}{f}=\frac{q}{p} k l
$$

Particles with different momentum have different betatron tune

- Higher energy particle has less focusing
- Chromaticity: tune spread due to momentum spread

$$
\xi_{x, y}=\frac{\Delta Q_{x, y}}{\Delta p / p} \Longrightarrow \text { Tune spread }
$$

Chromaticity

- Transfer matrix of a thin quadrupole

$$
M=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right) \approx\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f}\left(1-\frac{\Delta p}{p}\right) & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} \frac{\Delta p}{p} & 1
\end{array}\right)
$$

- Transfer matrix

$$
\begin{aligned}
& M(s+C, s)=M(B, A)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right) \\
& =M(B, A)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} \frac{\Delta p}{p} & 1
\end{array}\right)
\end{aligned}
$$

Chromaticity

$$
\begin{aligned}
& M(s+C, s)=\left(\begin{array}{cc}
\left(\cos 2 \pi Q_{x}+\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right) & \beta_{x, s_{0}} \sin 2 \pi Q_{x} \\
-\frac{1+\alpha_{x, s_{0}}^{2}}{\beta_{x, s_{0}}} \sin 2 \pi Q_{x} & \left(\cos 2 \pi Q_{x}-\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right)
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{f} \frac{\Delta p}{p} & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
\left(\cos 2 \pi Q_{x}+\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right)+\frac{1}{f} \frac{\Delta p}{p} \beta_{x, s_{0}} \sin 2 \pi Q_{x} & \beta_{x, s_{0}} \sin 2 \pi Q_{x} \\
-\frac{1+\alpha_{x, s_{0}}^{2}}{\beta_{x, s_{0}}} \sin 2 \pi Q_{x}+\left(\cos 2 \pi Q_{x}-\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right) \frac{1}{f} \frac{\Delta p}{p} & \left(\cos 2 \pi Q_{x}-\alpha_{x, s_{0}} \sin 2 \pi Q_{x}\right)
\end{array}\right) \\
& \cos \left[2 \pi\left(Q_{x}+\Delta Q_{x}\right)\right]=\frac{1}{2} \operatorname{Tr}(M(s+C, s) \\
& \cos \left[2 \pi\left(Q_{x}+\Delta Q_{x}\right)\right]=\cos 2 \pi Q_{x}+\frac{1}{2} \beta_{x, s_{0}} \sin 2 \pi Q_{x} \frac{1}{f} \frac{\Delta p}{p}
\end{aligned}
$$

Chromaticity

$$
\cos \left[2 \pi\left(Q_{x}+\Delta Q_{x}\right)\right]=\cos 2 \pi Q_{x}+\frac{1}{2} \beta_{x, 0} \sin 2 \pi Q_{x} \frac{1}{f} \frac{\Delta p}{p}
$$

Assuming the tune change due to momentum difference is small

$$
\begin{gathered}
\cos 2 \pi Q_{x}-2 \pi \Delta Q_{x} \sin 2 \pi Q_{x}=\cos 2 \pi Q_{x}+\frac{1}{2} \beta_{x, s_{0}} \sin 2 \pi Q_{x} \frac{1}{f} \frac{\Delta p}{p} \\
\Delta Q_{x}=-\frac{1}{4 \pi} \beta_{x, s_{0}} \frac{1}{f} \frac{\Delta p}{p} \quad \xi_{x}=\frac{\Delta Q_{x}}{\Delta p / p}=-\frac{1}{4 \pi} \frac{1}{f} \beta(s) \\
\xi_{x}=\frac{\Delta Q_{x}}{\Delta p / p}=-\frac{1}{4 \pi} \sum_{i} k_{i} \beta_{x, i}
\end{gathered}
$$

Chromaticity of a FODO cell

$$
\begin{aligned}
& \beta_{f, d}=\frac{2 L(1 \pm \sin [\Delta \psi / 2])}{\sin [\Delta \psi]} \\
& \sin [\Delta \psi / 2]=\frac{L}{f}
\end{aligned}
$$

$$
\xi_{x}=-\frac{1}{4 \pi}\left(\beta_{f} \frac{1}{f}-\beta_{d} \frac{1}{f}\right) \quad \xi_{x}=-\frac{1}{\pi} \frac{L / f}{\sin \Delta \psi}
$$

$$
\xi_{x}=-\frac{1}{\pi} \tan \frac{\Delta \psi}{2}
$$

Chromaticity correction

- Nature chromaticity can be large and can result to large tune spread and get close to resonance condition
- Solution:
- A special magnet which provides stronger focusing for particles with higher energy: sextupole

Closed orbit distortion

- Dipole kicks can cause particle's trajectory deviate away from the designed orbit
- Dipole error
- Quadrupole misalignment
- Assuming a circular ring with a single dipole error, closed orbit then becomes:

$$
\binom{x(s)}{x^{\prime}(s)}=M\left(s, s_{0}\right)\left[M\left(s_{0}, s\right)\binom{x(s)}{x^{\prime}(s)}+\binom{0}{\theta}\right]
$$

Closed orbit: single dipole error

- Let's first solve the closed orbit at the location where the dipole error is

$$
\begin{aligned}
\binom{x\left(s_{0}\right)}{x^{\prime}\left(s_{0}\right)} & =M\left(s_{0}+C, s_{0}\right)\binom{x\left(s_{0}\right)}{x^{\prime}\left(s_{0}\right)}+\binom{0}{\theta} \\
x\left(s_{0}\right) & =\beta_{x}\left(s_{0}\right) \frac{\theta}{2 \sin \pi Q_{x}} \cos \pi Q_{x}
\end{aligned}
$$

$$
x(s)=\sqrt{\beta_{x}\left(s_{0}\right) \beta_{x}(s)} \frac{\theta}{2 \sin \pi Q_{x}} \cos \left[\psi\left(s, s_{0}\right)-\pi Q_{x}\right]
$$

- The closed orbit distortion reaches its maximum at the opposite side of the dipole error location

Closed orbit distortion

- In the case of multiple dipole errors distributed around the ring. The closed orbit is

$$
x(s)=\sqrt{\beta_{x}(s)} \sum_{i} \sqrt{\beta_{x}\left(s_{i}\right)} \frac{\theta_{i}}{2 \sin \pi Q_{x}} \cos \left[\psi\left(s_{i}, s_{0}\right)-\pi Q_{x}\right]
$$

- Amplitude of the closed orbit distortion is inversely proportion to $\sin \pi Q_{x, y}$
- No stable orbit if tune is integer!

Measure closed orbit

- Distribute beam position monitors around ring.

Control closed orbit

- minimized the closed orbit distortion.
- Large closed orbit distortions cause limitation on the physical aperture
- Need dipole correctors and beam position monitors distributed around the ring
- Assuming we have m beam position monitors and n dipole correctors, the response at each beam position monitor from the n correctors is:

$$
x_{k}=\sqrt{\beta_{x, k}} \sum_{k=1}^{n} \sqrt{\beta_{x, i}} \frac{\theta_{i}}{2 \sin \pi Q_{x}} \cos \left[\psi\left(s_{i}, s_{0}\right)-\pi Q_{x}\right]
$$

Control closed orbit

- Or,

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)=(M)\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{n}
\end{array}\right)
$$

- To cancel the closed orbit measured at all the bpms, the correctors are then

$$
\left(\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\vdots \\
\theta_{n}
\end{array}\right)=\left(M^{-1}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right)
$$

