Coordinate System for Circular Accelerator

Curverlinear coordinate system

- Coordinate system to describe particle motion in an accelerator.
- Moves with the particle

Equation of motion

Equation of motion in transverse plane

 $\vec{r}(s) = \vec{r}_0(s) + x\hat{x}(s) + y\hat{y}(s)$

Equation of motion

$$\frac{d\vec{r}(s)}{dt} = \frac{ds}{dt} \left[\frac{d\vec{r}_0}{ds} + x'\hat{x} + x\frac{d\hat{x}}{ds} + y'\hat{y} \right] = \frac{ds}{dt} \left[(1 + \frac{x}{\rho})\hat{s} + x'\hat{x} + y'\hat{y} \right]$$
$$\vec{v} = \frac{ds}{dt} \left[(1 + \frac{x}{\rho})\hat{s} + x'\hat{x} + y'\hat{y} \right] = v_s\hat{s} + v_x\hat{x} + v_y\hat{y}$$
$$v^2 = \left| \vec{v} \right| = \frac{ds}{dt} \left[(1 + \frac{x}{\rho})^2 + x'^2 + y'^2 \right]$$

$$\frac{d^{2}\vec{r}(s)}{dt^{2}} = \frac{ds}{dt}\frac{d\vec{v}}{ds} \approx \frac{v^{2}}{(1+\frac{x}{\rho})^{2}} [(x'' - \frac{\rho + x}{\rho^{2}})\hat{x} + \frac{x'}{\rho}\hat{s} + y''\hat{y}]$$

Equation of motion

Solution of equation of motion

Comparison with harmonic oscillator: A system with a restoring force which is proportional to the distance from its equilibrium position, i.e. Hooker's Law:

$$F = \frac{d^2 x(t)}{dt^2} = -kx(t)$$

Where *k* is the spring constant

• Equation of motion:

$$\frac{d^2 x(t)}{dt^2} + kx(t) = 0 \qquad x(t) = A\cos(\sqrt{kt} + \chi)$$

Amplitude of theFrequency ofsinusoidal oscillationthe oscillation

transverse motion: betatron oscillation

> The general case of equation of motion in an accelerator

x''+kx=0 Where k can also be negative

For k > 0

 $x(s) = A\cos(\sqrt{k}s + \chi) \quad x'(s) = -A\sqrt{k}\sin(\sqrt{k}s + \chi)$ For k < 0

 $x(s) = A\cosh(\sqrt{k}s + \chi)$ $x'(s) = -A\sqrt{k}\sinh(\sqrt{k}s + \chi)$

Transfer Matrix of a beam transport

The transport matrix from point I to point 2 is

$$\begin{pmatrix} x(s_2) \\ x'(s_2) \end{pmatrix} = \begin{pmatrix} \sqrt{\frac{\beta_2}{\beta_1}} (\cos\psi_{s_2s_1} + \alpha_1 \sin\psi_{s_2s_1}) & \sqrt{\beta_1\beta_2} \sin\psi_{s_2s_1} \\ -\frac{1 + \alpha_1\alpha_2}{\sqrt{\beta_1\beta_2}} \sin\psi_{s_2s_1} + \frac{\alpha_1 - \alpha_2}{\sqrt{\beta_1\beta_2}} \cos\psi_{s_2s_1} & \sqrt{\frac{\beta_1}{\beta_2}} (\cos\psi_{s_2s_1} - \alpha_2 \sin\psi_{s_2s_1}) \end{pmatrix} \begin{pmatrix} x(s_1) \\ x'(s_1) \end{pmatrix}$$

with:

$$x(s) = A\sqrt{\beta_x(s)}\cos(\psi(s) + \chi)$$
$$x'(s) = -A\sqrt{1/\beta_x(s)}\sin(\psi(s) + \chi) + \frac{\beta'_x(s)}{2}A\sqrt{1/\beta_x(s)}\cos(\psi(s) + \chi)$$

One Turn Map

Transfer matrix of one orbital turn

Stability of transverse motion

Matrix from point I to point 2

$$M_{s_2|s_1} = M_n \cdots M_2 M_1$$

Stable motion requires each transfer matrix to be stable, i.e. its eigen values are in form of oscillation

$$|M - \lambda I| = 0$$
 With $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $det(M) = 1$

$$\lambda^2 - Tr(M)\lambda + \det(M) = 0$$

$$\lambda = \frac{1}{2} Tr(M) \pm \sqrt{\frac{1}{4} [Tr(M)]^2 - 1} \qquad \qquad \left| \frac{1}{2} Tr(M) \right| \le 1.0$$

Focusing from quadrupole

 Equation of motion through a quadrupole

$$x'' + \frac{qB'}{\gamma m}x = 0$$

For a thin quadrupole, i.e. beam position doesn't change or x = x, but with a change in slope of the particle's trajectory, i.e.

$$\Delta x' = -\frac{qB'l}{\gamma mv}x$$

Focusing from quadrupole

 Required by Maxwell equation, a single quadrupole has to provide focusing in one plane and defocusing in the other plane

Transfer matrix of a qudruploe

Thin lens: length of quadrupole is negligible to the displacement relative to the center of the magnet

Transfer matrix of a drift space

$$\begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}$$

Lattice

Arrangement of magnets: structure of beam line

- Bending dipoles, Quadrupoles, Steering dipoles, Drift space and Other insertion elements
- Example:
 - FODO cell: alternating arrangement between focusing and defocusing quadrupoles

FODO lattice

$$\begin{pmatrix} x \\ x' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ -\frac{1}{2f} & 1 \end{pmatrix} \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}$$
$$= \begin{pmatrix} 1 - 2\frac{L^2}{f^2} & 2L(1 + \frac{L}{f}) \\ -2(1 - \frac{L}{f})\frac{L}{f^2} & 1 - 2\frac{L^2}{f^2} \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}$$

Net effect is focusing

Provide focusing in both planes!

Dispersion function

Transverse trajectory is function of particle momentum.

Dispersion function

Transverse trajectory is function of particle momentum.

$$x'' - \frac{\rho + x}{\rho^2} = -\frac{qB_y}{\gamma m} (1 + \frac{x}{\rho})^2 \qquad B_y = B_0 + B'x$$
$$x'' + \left[\frac{1}{\rho^2} \frac{2p_0 - p}{p} + \frac{B'}{B\rho_0} \frac{p_0}{p}\right] x = \frac{1}{\rho} \frac{\Delta p}{p}$$
$$x = D(s) \frac{\Delta p}{p} \qquad D(s + C) = D(s)$$
$$D'' + \left[\frac{1}{\rho^2} \frac{2p_0 - p}{p} + \frac{B'}{B\rho_0} \frac{p_0}{p}\right] D = \frac{1}{\rho}$$

Dispersion function: cont'd

In drift space

$$\frac{1}{\rho} = 0$$
 and $B' = 0 \implies D'' = 0$

dispersion function has a constant slope

In dipoles,

$$\frac{1}{\rho} \neq 0 \quad \text{and} \quad B' = 0 \qquad D'' + \left[\frac{1}{\rho^2} \frac{2p_0 - p}{p}\right] D = \frac{1}{\rho}$$

Dispersion function: cont'd

For a focusing quad,

$$\frac{1}{\rho} = 0 \quad \text{and} \quad B' > 0 \qquad \Longrightarrow D'' + B' \frac{p_0}{p} D = 0$$

dispersion function oscillates sinusoidally

For a defocusing quad,

$$\frac{1}{\rho} = 0$$
 and $B' < 0$ $\Rightarrow D'' - B' \frac{p_0}{p} D = 0$

dispersion function evolves exponentially

Path length and velocity

▶ For a particle with velocity *v*,

$$L = vT \qquad \frac{\Delta L}{L} = \frac{\Delta v}{v} + \frac{\Delta T}{T} \qquad \frac{\Delta v}{v} = \frac{\Delta \beta}{\beta} = \frac{1}{\gamma^2} \frac{\Delta p}{p}$$

$$\frac{\Delta T}{T} = (\alpha - \frac{1}{\gamma^2})\frac{\Delta p}{p} = (\frac{1}{\gamma_t^2} - \frac{1}{\gamma^2})\frac{\Delta p}{p}$$

- Transition energy γ_t: when particles with different energies spend the same time for each orbital turn
 - Below transition energy: higher energy particle travels faster
 - Above transition energy: higher energy particle travels slower

Compaction factor

The difference of the length of closed orbit between offmomentum particle and on momentum particle, i.e.

$$\frac{\Delta C}{C} = \alpha \frac{\Delta p}{p} = \frac{\oint \left(\rho + D \frac{\Delta p}{p}\right) d\theta - \oint \rho d\theta}{\oint \rho d\theta}$$

$$\alpha \frac{\Delta p}{p} = \left\langle \frac{D}{\rho} \right\rangle \frac{\Delta p}{p} \Longrightarrow \alpha = \left\langle \frac{D}{\rho} \right\rangle$$

Chromatic effect

 Comes from the fact the the focusing effect of an quadrupole is momentum dependent

$$\frac{1}{f} = \frac{q}{p} kl \longrightarrow \frac{\text{Particles with different momentum have}}{\text{different betatron tune}}$$

- Higher energy particle has less focusing

Chromaticity: tune spread due to momentum spread

$$\xi_{x,y} = \frac{\Delta Q_{x,y}}{\Delta p / p} \longrightarrow \text{ momentum spread}$$

Chromaticity

Transfer matrix of a thin quadrupole

$$M = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \approx \begin{pmatrix} 1 & 0 \\ -\frac{1}{f}(1 - \frac{\Delta p}{p}) & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{f} \frac{\Delta p}{p} & 1 \end{pmatrix}$$

Transfer matrix
$$M(s + C, s) = M(B, A) \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$$
$$= M(B, A) \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{f} \frac{\Delta p}{p} & 1 \end{pmatrix}$$

Chromaticity

$$M(s+C,s) = \begin{pmatrix} (\cos 2\pi Q_x + \alpha_{x,s_0} \sin 2\pi Q_x) & \beta_{x,s_0} \sin 2\pi Q_x \\ -\frac{1 + \alpha_{x,s_0}^2}{\beta_{x,s_0}} \sin 2\pi Q_x & (\cos 2\pi Q_x - \alpha_{x,s_0} \sin 2\pi Q_x) \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \frac{1}{f} \frac{\Delta p}{p} & 1 \end{pmatrix}$$
$$= \begin{pmatrix} (\cos 2\pi Q_x + \alpha_{x,s_0} \sin 2\pi Q_x) + \frac{1}{f} \frac{\Delta p}{p} \beta_{x,s_0} \sin 2\pi Q_x & \beta_{x,s_0} \sin 2\pi Q_x \\ -\frac{1 + \alpha_{x,s_0}^2}{\beta_{x,s_0}} \sin 2\pi Q_x + (\cos 2\pi Q_x - \alpha_{x,s_0} \sin 2\pi Q_x) \frac{1}{f} \frac{\Delta p}{p} & (\cos 2\pi Q_x - \alpha_{x,s_0} \sin 2\pi Q_x) \end{pmatrix}$$
$$\cos[2\pi (Q_x + \Delta Q_x)] = \frac{1}{2} Tr(M(s+C,s))$$
$$\cos[2\pi (Q_x + \Delta Q_x)] = \cos 2\pi Q_x + \frac{1}{2} \beta_{x,s_0} \sin 2\pi Q_x \frac{1}{f} \frac{\Delta p}{p}$$

Chromaticity

$$\cos[2\pi(Q_x + \Delta Q_x)] = \cos 2\pi Q_x + \frac{1}{2}\beta_{x,s_0}\sin 2\pi Q_x \frac{1}{f}\frac{\Delta p}{p}$$

Assuming the tune change due to momentum difference is small

$$\cos 2\pi Q_x - 2\pi \Delta Q_x \sin 2\pi Q_x = \cos 2\pi Q_x + \frac{1}{2}\beta_{x,s_0} \sin 2\pi Q_x \frac{1}{f}\frac{\Delta p}{p}$$
$$\Delta Q_x = -\frac{1}{4\pi}\beta_{x,s_0}\frac{1}{f}\frac{\Delta p}{p} \qquad \xi_x = \frac{\Delta Q_x}{\Delta p/p} = -\frac{1}{4\pi}\frac{1}{f}\beta(s)$$
$$\xi_x = \frac{\Delta Q_x}{\Delta p/p} = -\frac{1}{4\pi}\sum_i k_i\beta_{x,i}$$

Chromaticity of a FODO cell

Chromaticity correction

- Nature chromaticity can be large and can result to large tune spread and get close to resonance condition
- Solution:
 - A special magnet which provides stronger focusing for particles with higher energy: sextupole

Closed orbit distortion

- Dipole kicks can cause particle's trajectory deviate away from the designed orbit
 - Dipole error
 - Quadrupole misalignment
- Assuming a circular ring with a single dipole error, closed orbit then becomes:

$$\binom{x(s)}{x'(s)} = M(s,s_0)[M(s_0,s)\binom{x(s)}{x'(s)} + \binom{0}{\theta}]$$

RDN/

Closed orbit: single dipole error

 Let's first solve the closed orbit at the location where the dipole error is

$$\begin{pmatrix} x(s_0) \\ x'(s_0) \end{pmatrix} = M(s_0 + C, s_0) \begin{pmatrix} x(s_0) \\ x'(s_0) \end{pmatrix} + \begin{pmatrix} 0 \\ \theta \end{pmatrix}$$

$$x(s_0) = \beta_x(s_0) \frac{\theta}{2\sin \pi Q_x} \cos \pi Q_x$$

$$x(s) = \sqrt{\beta_x(s_0)\beta_x(s)} \frac{\theta}{2\sin\pi Q_x} \cos[\psi(s,s_0) - \pi Q_x]$$

The closed orbit distortion reaches its maximum at the opposite side of the dipole error location

Closed orbit distortion

In the case of multiple dipole errors distributed around the ring. The closed orbit is

$$x(s) = \sqrt{\beta_x(s)} \sum_i \sqrt{\beta_x(s_i)} \frac{\theta_i}{2\sin \pi Q_x} \cos[\psi(s_i, s_0) - \pi Q_x]$$

- Amplitude of the closed orbit distortion is inversely proportion to $sin \pi Q_{x,y}$
 - No stable orbit if tune is integer!

Measure closed orbit

Distribute beam position monitors around ring.

Control closed orbit

minimized the closed orbit distortion.

- Large closed orbit distortions cause limitation on the physical aperture
- Need dipole correctors and beam position monitors distributed around the ring
 - Assuming we have m beam position monitors and n dipole correctors, the response at each beam position monitor from the n correctors is:

$$x_k = \sqrt{\beta_{x,k}} \sum_{k=1}^n \sqrt{\beta_{x,i}} \frac{\theta_i}{2\sin \pi Q_x} \cos[\psi(s_i, s_0) - \pi Q_x]$$

Control closed orbit

• Or, $\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} = (M) \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{pmatrix}$

• To cancel the closed orbit measured at all the bpms, the correctors are then

$$\begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{pmatrix} = \left(M^{-1} \right) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$