Lecture 4

RF Acceleration in Linacs

Part 2

Outline

- Traveling-wave linear accelerators
- Longitudinal beam dynamics
- Material from Wangler, Chapters 3, 6

Guided Electromagnetic Waves in a Cylindrical Wavequide

- Can we accelerate particles by transporting EM waves in a waveguide?
- Consider a cylindrical geometry. The wave equation in cylindrical coordinates for the z field component is

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial E_{z}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} E_{z}}{\partial \phi^{2}}+\frac{\partial^{2} E_{z}}{\partial z^{2}}-\frac{1}{c^{2}} \frac{\partial^{2} E_{z}}{\partial t^{2}}=0
$$

- Assume the EM wave propagates in the Z direction. Let's look for a solution that has a finite electric field in that same direction:

$$
E_{z}=E_{z}(r, \phi, z, t)=E_{0}(r, \phi) \cos \left(k_{z} z-\omega t\right)
$$

- The azimuthal dependence must be repetitive in ϕ :

$$
E_{z}=R(r) \cos (n \phi) \cos \left(k_{z} z-\omega t\right)
$$

- The wave equation yields:

$$
\frac{\partial^{2} R(r)}{\partial r^{2}}+\frac{1}{r} \frac{\partial R(r)}{\partial r}+(\left.\underbrace{\frac{\omega^{2}}{c^{2}}-k_{z}^{2}}_{k_{c}^{2}}-\frac{n^{2}}{r^{2}} \right\rvert\, R(r)=0
$$

Cylindrical Waveguides

- Which results in the following differential equation for $R(r)$ (with $x=k_{c} r$)

$$
\frac{d^{2} R}{d x^{2}}+\frac{1}{x} \frac{d R}{d x}+\left(1-n^{2} / x^{2}\right) R=0
$$

- The solutions to this equation are Bessel functions of order $n, J_{n}\left(k_{c} r\right)$, which look like this:

Cylindrical Waveguides

- The solution is:

$$
E_{z}=J_{n}\left(k_{c} r\right) \cos (n \phi) \cos \left(k_{z} z-\omega t\right)
$$

- The boundary conditions require that

$$
E_{z}(r=a)=0
$$

- Which requires that

$$
J_{n}\left(k_{c} a\right)=0 \text { for all } \mathrm{n}
$$

- Label the n-th zero of J_{m} : $\quad J_{m}\left(x_{m n}\right)=0$
- For $m=0, x_{01}=2.405$

$$
\frac{\omega^{2}}{c^{2}}=k_{c}^{2}+k_{z}^{2}=\left(\frac{2.405}{a}\right)^{2}+k_{z}^{2}
$$

Cutoff Frequency and Dispersion Curve

- The cylindrically symmetric waveguide has

$$
k_{0}^{2}=k_{c}^{2}+k_{z}^{2} \quad \omega^{2}=\omega_{c}^{2}+\left(k_{z} c\right)^{2}
$$

- A plot of ω vs. k is a hyperbola, called the Dispersion Curve.
Two cases:
- $\omega>\omega_{c}: k_{z}$ is a real number and the wave propagates.
- $\omega<\omega_{c}$: k_{z} is an imaginary number and the wave decays exponentially with distance.
- Only EM waves with frequency
 above cutoff are transported!

Phase Velocity and Group Velocity

- The propagating wave solution has

$$
E_{z}=E_{0}(r, z) \cos (\phi) \quad \phi=k_{z} z-\omega t
$$

- A point of constant ϕ propagates with a velocity, called the phase velocity,

$$
v_{p}=\frac{\omega}{k_{z}}
$$

- The electromagnetic wave in cylindrical waveguide has phase velocity that is faster than the speed of light:

$$
v_{p}=\frac{c}{\sqrt{1-\omega_{c}^{2} / \omega^{2}}}>c
$$

- This won't work to accelerate particles. We need to modify the phase velocity to something smaller than the speed of light to accelerate particles.
- The group velocity is the velocity of energy flow:

$$
P_{R F}=v_{g} U
$$

- And is given by:

$$
v_{g}=\frac{d \omega}{d k}
$$

Traveling Wave Structures

- Recall that in the cylindrical waveguide, the electromagnetic wave has phase velocity that is faster than the speed of light:

$$
v_{p}=\frac{c}{\sqrt{1-\omega_{c}^{2} / \omega^{2}}}>c
$$

- This won't work to accelerate particles. We need to modify the phase velocity to the speed of light (or slower) to accelerate particles in a traveling wave.
- Imagine a situation where the EM wave phase velocity equals the particle velocity.
- Then the particle "rides the wave".

- A "disk-loaded waveguide" can be made to have a phase velocity equal to the speed of light. These structures are often used to accelerate electrons.
- The best and largest example of such an accelerator is the SLAC two-mile long linac.

Disk-loaded waveguide structure

Energy Gain in a Disk-Loaded Waveguide

Define

- E_{a} : Iongitudinal accelerating field amplitude
- U: stored energy per unit length
- P_{w} : traveling wave power
- $\mathrm{dP}_{\mathrm{w}} / \mathrm{dz}$: power dissipation per unit length
- Shunt impedance per unit length $r_{L}=E_{a}^{2} /\left(-d P_{w} / d z\right)$
- We have

$$
\begin{aligned}
Q & =\omega U /\left(-d P_{w} / d z\right) \\
P_{w} & =v_{g} U \\
E_{a}^{2} & =\omega r_{L} P_{w} / Q v_{g} \\
\frac{d P_{w}}{d z} & =-\frac{\omega}{Q v_{g}} P_{w}=-2 \alpha_{0} P_{w}
\end{aligned}
$$

We have two choices for the accelerating structure, considered now in turn:

Constant Impedance Traveling Wave Structure

- Consider a disk-loaded waveguide with uniform cell geometry along the length, then $Q, v_{g}, r_{L}, \alpha_{0}$ are independent of z :

$$
P_{w}(z)=e^{-2 \alpha_{0} z}
$$

- Power decays exponentially along the length of the structure.
- The Electric field amplitude is

$$
\begin{aligned}
& d E_{a} / d z=-\alpha_{0} E_{a} \\
& E_{a}(z)=E_{0} e^{-\alpha_{0} z}
\end{aligned}
$$

- At the end of a waveguide of length L

$$
\begin{gathered}
P_{w}(L)=P_{0} e^{-2 \tau_{0}} \quad E_{a}(L)=E_{0} e^{-\tau_{0}} \\
\tau_{0}=\alpha_{0} L=\frac{\omega L}{2 Q v_{g}}
\end{gathered}
$$

- The energy gain is

$$
\begin{aligned}
& \Delta W=q \cos \phi \int_{0}^{L} E_{a}(z) d z=q E_{0} L \frac{1-e^{-\tau_{0}}}{\tau_{0}} \cos \phi \\
& \Delta W=q \sqrt{2 r_{L} P_{0} L} \frac{1-e^{-\tau_{0}}}{\sqrt{\tau_{0}}} \cos \phi
\end{aligned}
$$

Constant Impedance Structure Parameters

\rightarrow Power
- Group Velocity (10x/speed of light)
--Alpha-0
* Power Dissipation
* Accelerating Gradient

Constant Gradient Traveling Wave Structure

- A more common design keeps the gradient constant over the length, which requires that the attenuation α_{0} depend on z

$$
\frac{d P_{w}}{d z}=-2 \alpha_{0}(z) P_{w}
$$

- Which can be integrated to yield

$$
P_{w}(z)=P_{0}\left[1-\frac{z}{L}\left(1-e^{-2 \tau_{0}}\right)\right]
$$

- The attenuation factor is

$$
\alpha_{0}(z)=\frac{1}{2 L} \frac{1-e^{-2 \tau_{0}}}{1-(z / L)\left(1-e^{-2 \tau_{0}}\right)}
$$

- The energy gain is

$$
\begin{aligned}
& \Delta W=q \cos \phi \int_{0}^{L} E_{a}(z) d z=q E_{0} L \cos \phi \\
& \left.\Delta W=q \sqrt{r_{L} P_{0} L\left(1-e^{-2 \tau_{0}}\right.}\right) \cos \phi \\
& \text { tant gradient, the } \\
& \text { re tapers from a } \\
& 1 \mathrm{~cm} \text {, and the iris radii } \\
& .0 \mathrm{~cm} \text { over } 3 \text { meters. }
\end{aligned}
$$

- To achieve a constant gradient, the SLAC linac structure tapers from a radius of 4.2 to 4.1 cm , and the iris radii taper from 1.3 to 1.0 cm over 3 meters.

Constant Gradient Traveling Wave Structure

- The group velocity is

$$
v_{g}(z)=\frac{\omega}{2 Q \alpha_{0}(z)}=\frac{\omega L}{Q} \frac{1-(z / L)\left(1-e^{-2 \tau_{0}}\right)}{1-e^{-2 \tau_{0}}}
$$

- The filling time is

$$
t_{F}=\int_{0}^{L} \frac{d z}{v_{g}(z)}=\frac{Q}{\omega L}\left(1-e^{-2 \tau_{0}}\right) \int_{0}^{L} \frac{d z}{1-(z / L)\left(1-e^{-2 \tau_{0}}\right)}=\tau_{0} \frac{2 Q}{\omega}
$$

- For typical parameters, the filling time is $\sim 1 \mu \mathrm{sec}$, and the beam pulse is $1-2 \mu \mathrm{sec}$.

Constant Gradient Structure Parameters

$$
\begin{aligned}
& \approx \text { Traveling Wave Power } \quad \rightarrow \text { Alpha-0 } \\
& \approx \text { Group Velocity } \times 10 \text { speed of light }) \approx \text { Power Dissipation } \\
& * \text { Accelerating Field }
\end{aligned}
$$

SLAC Linac

- Largest in the world. Reached energies of 50 GeV .

Synchronicity condition in multicell RF structures

TM010 Cavities

- Suppose we want a particle to arrive at the center of each gap at $\phi=0$. Then we would have to space the cavities so that the RF phase advanced by
- 2π if the coupled cavity array was driven in zero-mode,
- Or by π if the coupled cavity array was driven in pi-mode.

Synchronicity Condition

Zero-mode:

$$
\begin{aligned}
& \phi=\omega t=\frac{2 \pi c}{\lambda} t=\frac{2 \pi c}{\lambda} \frac{l_{n}}{c \beta_{n}}=2 \pi \\
& l_{n}=\beta_{n} \lambda
\end{aligned}
$$

- RF gaps (cells) are spaced by $\beta \lambda$, which increases as the particle velocity increases.

Pi-mode:

$$
\begin{aligned}
& \phi=\omega t=\frac{2 \pi c}{\lambda} t=\frac{2 \pi c}{\lambda} \frac{l_{n}}{c \beta_{n}}=\pi \\
& l_{n}=\beta_{n} \lambda / 2
\end{aligned}
$$

- RF gaps (cells) are spaced by $\beta \lambda / 2$, which increases as the particle velocity increases.

Longitudinal Dynamics

- The drift space length between gaps is calculated for a particular particle with a very specific energy. This is the reference particle, or the synchronous particle.
- What happens to particles slightly faster or slower than the synchronous particle that the linac was designed to accelerate?
- Linacs are operated to provide longitudinal focusing to properly accelerate particles over a range in energies or arrival time.
- Slower particles arrive at the next gap later than the synchronous particle.
- They experience a larger accelerating field.
- Faster particles arrive at the next gap earlier than the synchronous particle.
- They experience a smaller accelerating field.

Figure 6.1. Stable phase.

Equations of Motion I

Figure 6.2. Accelerating cells for describing the longitudinal motion.

- Consider an array of accelerating cells with drift tubes and accelerating gaps.
- The array is designed at the n-th cell for a particle with synchronous phase, kinetic energy, and velocity $\phi_{s n}, W_{s n}, \beta_{s n}$. Note that the synchronous phase is not zero!
- We express the phase, energy and velocity for an arbitrary particle in the n-th cell as $\phi_{n}, W_{n}, \beta_{n}$.
- Assume that the particles receive a longitudinal kick at the geometric center of the cell, and drift freely to the center of the next cell.
- The half-cell length is

$$
l_{n-1}=\frac{N \beta_{s, n-1} \lambda}{2}
$$

where $\mathrm{N}=1 / 2$ for Pi -mode and 1 for zero-mode.

- The cell length (center of one drift tube to center of next) is therefore

$$
L_{n}=N\left(\beta_{s, n-1}+\beta_{s, n}\right) \lambda / 2
$$

Equations of Motion II

- The RF phase changes as the particle advances from one gap to the next according to

$$
\phi_{n}=\phi_{n-1}+\omega \frac{2 l_{n-1}}{\beta_{n-1} c}+ \begin{cases}\pi & \pi \text { mode } \\ 0 & 0 \text { mode }\end{cases}
$$

- The phase change during the time an arbitrary particle travels from gap $\mathrm{n}-1$ to gap n , relative to the synchronous particle is

$$
\Delta\left(\phi-\phi_{s}\right)_{n}=\Delta \phi_{n}-\Delta \phi_{s, n}=2 \pi N \beta_{s, n-1}\left[\frac{1}{\beta_{n-1}}-\frac{1}{\beta_{s, n-1}}\right] \cong-2 \pi N \beta_{s, n-1} \frac{\delta \beta_{n-1}}{\beta_{s, n-1}{ }^{2}}
$$

where we have used

$$
\frac{1}{\beta}-\frac{1}{\beta_{s}}=\frac{1}{\beta_{s}+\delta \beta}-\frac{1}{\beta_{s}} \cong-\frac{\delta \beta}{\beta_{s}{ }^{2}}, \text { for } \delta \beta \ll 1
$$

- Using

$$
\delta \beta=\frac{\delta W}{m c^{2} \gamma_{s}^{3} \beta_{s}}
$$

- We get

$$
\Delta\left(\phi-\phi_{s}\right)_{n}=-2 \pi N \frac{\left(W_{n-1}-W_{s, n-1}\right)}{m c^{2} \gamma^{3}{ }_{s, n-1} \beta_{s, n-1}^{2}}
$$

Equations of Motion III

- Next, derive the difference in kinetic energies of the arbitrary particle and the synchronous particle:

$$
\Delta\left(W-W_{s}\right)_{n}=q E_{0} T L_{n}\left(\cos \phi_{n}-\cos \phi_{s, n}\right)
$$

- To figure out the dynamics, we could track particles through gaps on a computer using these difference equations.
- To get a feeling for the dynamics "on paper", we can convert these difference equations to differential equations by replacing the discrete action of the fields with a continuous field.
- So we replace

$$
\Delta\left(\phi-\phi_{s}\right) \rightarrow \frac{d\left(\phi-\phi_{s}\right)}{d n} \quad \Delta\left(W-W_{s}\right) \rightarrow \frac{d\left(W-W_{s}\right)}{d n} \quad n=\frac{s}{N \beta_{s} \lambda}
$$

- giving

$$
\gamma_{s}^{3} \beta_{s}^{3} \frac{d\left(\phi-\phi_{s}\right)}{d s}=-2 \pi \frac{W-W_{s}}{m c^{2} \lambda} \quad \frac{d\left(W-W_{s}\right)}{d s}=q E_{0} T\left(\cos \phi-\cos \phi_{s}\right)
$$

Equations of Motion IV

- Assume acceleration rate is small, and that $E_{0} T, \phi_{s}$ and β_{s} are constant.
- We arrive at the equations of motion:

$$
\begin{gathered}
w^{\prime}=\frac{d w}{d s}=B\left(\cos \phi-\cos \phi_{s}\right) \quad \text { and } \quad \phi^{\prime}=\frac{d \phi}{d s}=-A w \\
\text { with } \quad w=\frac{W-W_{s}}{m c^{2}} \quad \text { and } \quad \mathrm{A}=\frac{2 \pi}{\beta_{s}^{3} \gamma_{s}^{3} \lambda} \quad \mathrm{~B}=\frac{\mathrm{qE}_{0} T}{m c^{2}} \\
\frac{d^{2} \phi}{d s^{2}}=-A B\left(\cos \phi-\cos \phi_{s}\right)
\end{gathered}
$$

- Finally

$$
\begin{gathered}
\frac{A w^{2}}{2}+B\left(\sin \phi-\phi \cos \phi_{s}\right)=H_{\phi} \\
\frac{1}{2} A w^{2}+V_{\phi}=H_{\phi}
\end{gathered}
$$

- Where V is the potential energy term, and H (the Hamiltonian) is total energy. Technically, $-\phi$ is the canonical conjugate of w.

Stable RF Bucket

- There is a potential well when $-\pi<\phi_{s}<0$.
- There is acceleration for $-\pi / 2<\phi_{\mathrm{s}}<\pi / 2$.
- The stable region for phase motion is $\phi_{2}<\phi<-\phi_{s}$.
- The "separatrix" defines the area within which the trajectories are stable.
- The stable area is called the "bucket".
- Stable motion means that particles follow a trajectory about the stable phase, with constant amplitude given by H_{ϕ}.

Figure 6.3. At the top, the accelerating field is shown as a cosine function of the phase; the synchronous phase ϕ, is shown as a negative number, which lies earlier than the crest where the field is rising in time. The middle plot shows some longitudinal phase-space trajectories, including the separatrix, the limiting stable trajectory, which passes through the unstable fixed point at $\Delta W=0$, and $\phi=-\phi_{5}$. The stable fixed point lies at $\Delta W=0$ and $\phi=\phi_{3}$, where the longitudinal potential well has its minimum, as shown in the bottom plot.

Hamiltonian and Separatrix Parameters

- We can calculate the Hamiltonian to complete the discussion.
- At the potential maximum where, $\phi=-\phi_{\mathrm{s}}, \phi^{\prime}=0$ and $w=0$

$$
H_{\phi}=B\left(\sin \left(-\phi_{s}\right)-\left(-\phi_{s} \cos \phi_{s}\right)\right)
$$

- The points on the separatrix must therefore satisfy

$$
\frac{A w^{2}}{2}+B\left(\sin \phi-\phi \cos \phi_{s}\right)=-B\left(\sin \phi_{s}-\phi_{s} \cos \phi_{s}\right)
$$

- We can calculate the "size" of the separatrix. We will do the energy width.

The maximum energy width corresponds to $\phi=\phi_{\mathrm{s}}$

$$
\frac{A w_{\mathrm{max}}^{2}}{2}+B\left(\sin \phi_{s}-\phi_{s} \cos \phi_{s}\right)=-B\left(\sin \phi_{s}-\phi_{s} \cos \phi_{s}\right)
$$

- Giving for the energy half-width of the separatrix. The energy acceptance is twice this value:

$$
w_{\max }=\frac{\Delta W_{\max }}{m c^{2}}=\sqrt{\frac{2 q E_{0} T \beta_{s}^{3} \gamma_{s}^{3} \lambda}{\pi m c^{2}}\left(\phi_{s} \cos \phi_{s}-\sin \phi_{s}\right)}
$$

Phase Width

- The maximum phase width is determined from the two solutions for $w=0$. One solution is $\phi_{1}=-\phi_{\mathrm{s}}$. The other solution ϕ_{2} is given by

$$
\sin \phi_{2}-\phi_{2} \cos \phi_{s}=\phi_{s} \cos \phi_{s}-\sin \phi_{s}
$$

- The total phase width is $\Psi=-\phi_{s}-\phi_{2}$
- The phase width is zero at $\phi_{\mathrm{s}}=0$ and maximum at $\phi_{s}=-\pi / 2$, giving $\psi=2 \pi$ (see Wangler figure 6.4).

Small Amplitude Oscillations

- Look at small amplitude oscillations. Letting $\phi-\phi_{\mathrm{s}}$ be small,

$$
\left(\phi-\phi_{s}\right)^{\prime \prime}+A B \sin \left(-\phi_{s}\right)\left(\phi-\phi_{s}\right)=0
$$

- This is an equation for simple harmonic motion with an angular frequency given by

$$
\omega_{l}^{2}=\frac{\omega^{2} q E_{0} T \lambda \sin \left(-\phi_{s}\right)}{2 \pi m c^{2} \gamma_{s}^{3} \beta_{s}}
$$

- Note that as the beam becomes relativistic, the frequency goes to zero.
- From the equation of motion we can calculate the trajectory of a particle:

$$
\frac{w^{2}}{w_{0}^{2}}+\frac{\left(\phi-\phi_{s}\right)^{2}}{\left(\Delta \phi_{0}\right)^{2}}=1 \quad w_{0}=\frac{\Delta W}{m c^{2}}=\sqrt{q E_{0} T \beta_{s}^{3} \gamma_{s}^{3} \lambda \sin \left(-\phi_{s}\right) \Delta \phi_{0}^{2} / 2 \pi m c^{2}}
$$

- This is the equation of an ellipse in $\mathrm{w}, \phi-\phi_{\mathrm{s}}$ phase space.
- Particles on a particular ellipse circulate indefinitely on that trajectory.

Longitudinal Phase Space Motion

- We studied the approximation of small acceleration rate, and constant velocity, synchronous phase, etc.
- In a real linac, the velocity increases, and the phase space motion and separatrix becomes more complicated.
- The "acceptance" takes a shape called the "golf-club".

$$
\beta \gamma=\mathrm{const}
$$

$\beta \gamma \neq$ const

Longitudinal Dynamics: Real data from SNS Drift Tube Linac

Simulated DTL1
Acceptance

- Longitudinal "Acceptance Scan"

Measurement of SNS SC Linac Acceptance (Y. Zhang)

Measurement

Simulation

Adiabatic Phase Damping

- Louiville's theorem:

The density in phase space of non-interacting particles in a conservative or Hamiltonian system measured along the trajectory of a particle is invariant.

- Or, if you prefer: phase space area is conserved.
- Area of ellipse:

$$
\text { Area }=\pi \Delta \phi_{0} \Delta W_{0}
$$

- Which gives

$$
\Delta \phi_{0}=\frac{\text { const }}{\left(\beta_{s} \gamma_{s}\right)^{3 / 4}} \quad \Delta W_{0}=\text { const } \times\left(\beta_{s} \gamma_{s}\right)^{3 / 4}
$$

- Since area is conserved an initial distribution with phase width $(\Delta \phi)_{\mathrm{i}}$ acquired a smaller phase width after acceleration:

$$
\frac{\left(\Delta \phi_{0}\right)_{f}}{\left(\Delta \phi_{0}\right)_{i}}=\frac{(\beta \gamma)_{i}^{3 / 4}}{(\beta \gamma)_{f}^{3 / 4}}
$$

The End

- That concludes our whirlwind tour of Linear Accelerators
- Now, on to Rings....

