

PARTICLE COLLIDER INTERACTION REGIONS Backgrounds and Machine-Detector Interface 5. Simulation Tools and Computing Aspects

Nikolai Mokhov

Accelerator Physics Center

Fermilab

USPAS Hampton, VA January 17-21, 2011

OUTLINE

- Background and MDI Modeling Tools
 - > e⁺e⁻
 - > pp
 - > μ⁺μ⁻
- Details of SLIC/LCSIM, BDSIM,
- ILCroot and MARS
- Overview of General Purpose Particle
 Transport and Interaction Codes

e⁺e⁻ Colliders

• IP Generator

- > e⁺e⁻ events: PYTHIA
- Radiative Bhabas from beam-beam interactions and synchrotron radiation: GuineaPig, CAIN
- Beam Loss, Collimation and Source at MDI

> TURTLE+MUCARLO, STRUCT, MARS, BDSIM

- Radiation and Background Loads
 - > MARS, FLUKA, GEANT
- Detector Physics

> SLIC/LCSIM, MOKKA, JUPITER, ILCroot

BDSIM

- Geant4 toolikit for beamline simulations
- Geometry construction framework
- Additional transportation processes
- Physics lists for various accelerator applications
- Extensive development/benchmarking underway and planned
- ttp://flc.pp.rhul.ac.uk/bdsim.html docs, cvs, etc

USPAS, Hampton, VA, January 17-21, 2011

BDSIM geometry

- Accelerator description is in the GMAD language (EUROTeV-Memo-2006-003)
- parameters and commands relevant for Monte-Carlo
- Mokka (EUROTeV-Report-2006-XXX) and GDML support
- ILC decks are under cvs on http://cvs.pp.rhul.ac.uk/ILCdecks
- Integration into LCIO may be desirable in the future
- CAD tool will soon be ready (GDML)

GMAD -- accelerator description

- Extension of a MAD subset to support geometry features
- . Commands for run control, process cuts etc.
- Provides "drivers" to other geometry formats, so arbitrarily complicated geometries are possible
- . Can be used as a standalone parser library

Mokka

- Several detector groups utilise the Mokka framework to interface Geometry into Geant4
 - Built around a MySQL database containing the geometry descriptions
- BDSIM loads complex geometry from MySQL dump files
 - . Follows the same principle as the Mokka database
 - Standardises the structure of the MySQL tables
 - . Allows for the detector regions to be included in the optics decks

2mrad Intertaction Region in BDSIM

Mokka Geometry Description

- Constantly improving and adding functionality currently allows for:
 - Field Maps e.g. Solenoid Field (all fields use Runga-Kutta tracking methods)
 - Basic solids (Box, Tube, Cone, etc)
 - Complex Solids (Torus, Polycone, Trapezoid, Elliptical Cone, Boolean Solids, etc)
 - Dipole, Quad, Sext, and Oct magnets
 - Allows for one-off magnets to be modelled where realistic descriptions may be important
 - Sensitive volumes

Complex geometry being used to build up cryomodules in the linac for laserwire signal/background studies (L. Deacon - PhD Student @ RHUL)

MARS15 GUI Examples for ILC BDS

🗙 Materials

22(on) BITR

							X			M	aterials	
Poi	int Info								IM	Name	Modify	Reset
B(T)	НВК	Y(cn	ı)	X(cm)		Angle			1(00)	DUOLE		
1.2411		-141.3	283	38.3905				2	-1(on)	BHULE		
<u>(</u>	Qlose				-				1(on)	STST		
					21		10		2(0n)	BITR		
			BH_max(T)	1.7410	BV_max(T	1.7580	B_max	x(T) 1.7580	-(01)			
			NBx 20		NBy 20		NBz	20	3(on)	YOKE		
			Xmin/cm - 7	78.5947	Ymin/cm	244.4082	Zmin/c	-142048	4(on)	AIR		
			Anida/cini /	-Z		-07.2103	ZINAX	• X-Y				
			X= 0.		Y= 0.	1	Z= -1	41488	5(on)	CONC		
			3D plane x	-section	3D-Visua	dization		F Fill	6(on)	CU		
			-	1:1 sca Magnetic (le		0	DN	7(on)	CU		
			Load Tra	ick 1		1		OFF	8(on)	BE		
	3133			Material	s	Ĺ	Part	licles	0(00)			
			Ru	n	1			Add	a(ou)	AIR		
	1.11.11.11		H: 0 =	v: 0	ShiftH	0.0	Shift	t V 0.0	10(on)	SOIL		
	5557		Load His	it - 99		- 99		OFF	11(on)	ТІ		
	111		Hist Non	m -99 nat	Reset		.		12(on)	VAC		
			<u>D</u> raw		Print	Gra	b	Quit	13(on)	w		
									14(on)	FE		
									15(on)			
-150	-100	Cm							13(01)	FE		
									16(on)	FE	i	
									17(on)	VAC		
Call \$ 4.00	TRUE MERAL DATAS	N.C. (23/663				0.00000000		an coord	18(on)	VAC		
				234				1335	19(on)	VAC		
1972		1357				and			20(on)	VAC		
1.24		1.04	2.2.2						21(on)	STST		

X Point info

NREG 1207

> cm 70

> > 35

0

-35

-70

Aspect Ratio: X:Y = 1:1.0

× t y Ш

14(FE)

Density(gcc)

7.87000e+00

0

USPAS, Hampton, VA, January 17-21, 2011

-200

5. Computing - N.V. Mokhov

								A Partice	:5					
∑Tracks ⊚ point			Tupok lufo				E					Par	ticles	
NI	JJ	Name	E(GeV)	W	Z(cn	m)	Y(cn	1) P	200		ID	Name	Modify	Reset
76	7	mu+	1.23053	2319900000.0	-14135	54.734	-171.4	450			1(on)	n	. <u> </u>	
			<u>C</u> lose								2(on)	- I		
	GUI Window Size Ch	oice									2(01)			
						BH_max	x(T) 0.	BV_max	(T) 0.	B_max(T)	J(01)	-		
						NBx 20)	NBy 20		NBz 20	4(0n)	- iq		
cm						Xmin/cr	n -2200.0	Ymin/cm	-240.2793	Zmin/cm - 1	5(on)	K+		
-105	111					Xmax/c	m 2200.0	Ymax/cn	n -91.7570	Zmax/cm -	6(on)	к-		
	H_{III}		Λ			X= [0	• 9-2	∨ y = ∩	×-2	7= 0	7(on)	mu+		
	111/	1891/1/ /	V/A			3D pla	ane x-sectior	3D-Vi:	sualization		8(on)	mu-		
			\mathcal{X} W				1:1 scal	 le	1	OFF	9(on)	gamma		
-140							Magnetic f	ield		OFF	10(on)	e-		
						Loa	d Track	1	300	ON(TRACK	11(on)	e+		
	- MA	WPX					Material	S		Particles	12(on)	pbar		
-							Run	1		Add	13(on)	piO		
-175		Martin				H: 0	V:	0 🛁 Shif	"tH 0.0	ShiftV 0.0	14(on)	d		
_	7 1					Loa	d Hist 🔤 –	99	-99		15(on)	+		
						Hist	Norm	99	6	6	16(on)	Ho3		
	11/14	A MM				View	Format	Reset		·	17(01)	1165		
-210		MMM /		N.		<u>D</u>	raw	Print	<u><u> </u></u>	ab <u>(</u>		He4		
											18(on)	num		
	1111										19(on)	nuam		
		MAR M			Cm						20(on)	nue		
	-142000.	000 -14175	0.000 -141	.500.000							21(on)	nuae		
											22(on)	ко [
→ ^Z											23(on)	nbar		
Aspect Ratio: Y:Z	= 1:5,95611										24(on)	neu-hyp		
acts (a)		2038(4号)		語語なる言語	8.5		130433		D. P.	5.5 8.3	25(on)	ch-hyp		
	Mar Star							Salat 2		Caller .	26(on)	HI		
		100000					ALC: N			NAR S		<u>R</u> e	set	
USPAS	, Hampton, VA,	, January 17-21	, 2011			5.	Computi	ng - N.V	. Mokho\			g	ose	

X Tracks

^Yt,z

🗙 Tracks @ point Track Info NI JJ Name E(GeV) W Z(cm) Y(cm) 58 7 mu+ 0.0551373 1979900.0 -141793.846 -144.0851 <u>C</u>lose

JI Window Size Choice

Pr	141			
BH_max(T) 0.	BV_max(T) 0.	B_max(T) 0.	
NBx 20	NBy 20		NBz 20	
Xmin/cm -2200.0	Ymin/cm	-191.8113	Zmin/cm -141986	
Xmax/cm 2200.0	Ymax/cm	-140.8511	Zmax/cm -141686	
🔶 Y-Z	Ŷ	X-Z	🔷 X-Y	
X= 0.	Y= 0.		Z= 0.	
3D plane x-sectio	n 3D-Vis	ualization	Fill	
1:1 sca	de		OFF	
Magnetic 1	field	ON		
Load Track	1	300	ON(TRACK.PLOT)	
Materia	ls		Particles	
Run	1		Add	
H: 0 = V:	0 = Shift	t H 0.0	ShiftV 0.0	
Load Hist	- 99	- 99	OFF	
Hist Norm	-99			
View Format	Reset	(<<)>		
Draw	Print	Gra	b Quit	

Aspect Ratio: Y:Z = 1:5.88694

LCIO

ALCPG	ECFA-LC	
SiD 3		ACFA-LC
The	R. L. C.	GLD
A day	RAJ AS	
slic	MOKKA	JUPITER
org.lcsim	MarlinReco	Satellites
Java	LCIO	root
	Common Data Model	
	Common IO Format	
	Common 10 1 ormat	

LCIO Overview

- Object model and persistency format for HEP events
 - MC simulation
 - Test Beam data
 - Reconstructed Objects

Multiple bindings (C++, Java, Fortran, python, root)

USPAS, Hampton, VA, January 17-21, 2011

5. Computing - N.V. Mokhov

LCIO Overview

LC Detector Full Simulation

Example Geometries

USPAS, Hampton, VA, January 17-21, 2011

ILC Full Detector Concepts

GLD LDC

USPAS, Hampton, VA, January 17-21, 2011

5. Computing - N.V. Mokhov

Additional Information

• Wiki -

http://confluence.slac.stanford.edu/display/ilc/Home

- lcsim.org <u>http://www.lcsim.org</u>
- ILC Forum <u>http://forum.linearcollider.org</u>
- LCIO <u>http://lcio.desy.de</u>
- SLIC <u>http://www.lcsim.org/software/slic</u>
- LCDD <u>http://www.lcsim.org/software/lcdd</u>
- JAS3 <u>http://jas.freehep.org/jas3</u>
- AIDA <u>http://aida.freehep.org</u>
- WIRED <u>http://wired.freehep.org</u>

Primary contact: Norman Graf

Hadron Colliders

- IP Generator
 - > pp events: DPMJET, PYTHIA
- Beam Loss, Collimation and Source at MDI
 - SixTrack, STRUCT, MARS
- Radiation and Background Loads
 - > MARS, FLUKA, GEANT
- Detector Physics
 - > GEANT4 Family, ILCroot

Main Codes for B&MDI at Hadron Colliders

MARS15

The MARS code system is a set of Monte Carlo programs for detailed simulation of hadronic and electromagnetic cascades in an arbitrary 3-D geometry of shielding, accelerator, detector and spacecraft components with energy ranging from a fraction of an electronvolt up to 100 TeV. It has been developed since 1974 at IHEP, SSCL and Fermilab.

The current MARS15 version combines the well established theoretical models for strong, weak and electromagnetic interactions of hadrons, heavy ions and leptons with a system which can contain up to 10^5 objects, ranging in dimensions from microns to hundreds kilometers (in the same setup!).

MARS15 (cont'd)

A setup can be made of up to 100 composite materials, with arbitrary 3-D magnetic and electric fields. Powerful userfriendly GUI is used for visualization of geometry, materials, fields, particle trajectories and results of calculations.

MARS15 has 5 geometry options and flexible histograming options, can use as an input MAD optics files through a powerful MAD-MARS Beam Line Builder, and provides an MPI-based multiprocessing option, with various tagging, biasing and other variance reduction techniques.

It can be interfaced to MCNP, ANSYS (thermal and stress), MESA/SPHINX (hydrodynamics), FRONTIER (magnetohydrodynamics), DPMJET, GuineaPig, STRUCT and other codes.

MARS15 Applications at Hadron Colliders

- Tevatron complex (over 31 years): beam abort and beam collimation systems; backgrounds & MDI for the CDF and DO collider detectors; Linac/Booster/Main_Injector chain; beam instrumentation; numerous radiation problems; fixed target experiments: neutrino (NuMI/MINOS, NoVA, MiniBoone, DONUT, LBNE), mu2e, g-2, SeaQuest etc.
- LHC (since 1993): beam abort and beam collimation systems; studies and full responsibility for machine-induced backgrounds in CMS (and partially in ATLAS); forwardphysics experiments, fusion with hydrodynamics etc.
- VLHC (around year 2000): collimation, machine protection, MDI, catastrophic events etc.

Muon Colliders

- IP Generator
 - $\rightarrow \mu^+\mu^-$ events: PYTHIA
- Beam Loss, Collimation and Source at MDI
 - > STRUCT, MARS, G4beamline (in early stage)
- Radiation and Background Loads
 - > MARS, GEANT3, G4beamline (in early stage)
- Detector Physics
 - > ILCroot, SLIC/LCSIM (in early stage)

G4beamline

- This program provides an interface to the *GEANT4* toolkit that allows the user to perform particle tracking simulations without having to code in C++ or to compile the program himself.
- The input to *G4beamline* is a script of line commands that describe the geometry, fields and other parameters to setup the simulation.
 - The input format is particularly well suited for beam line descriptions with dipole, quadrupole, etc. beam elements.
- *G4beamline* makes effective use of graphics for verifying geometry setup and visualization of particle tracking.
- G4beamline is freely available to the community (the price is right) at <u>http://G4beamline.muonsinc.com</u>

ILCroot: root Infrastructure for Large Colliders

- Software architecture based on root, VMC & Aliroot
 - All ROOT tools are available (I/O, graphics, PROOF, data structure, etc)
 - Extremely large community of users/developers
- Re-allignement with latest Aliroot version every 1-2 years (v4.17 release)
- It is a simulation framework and an Offline Systems:
 - Single framework, from generation to reconstruction through simulation. Don't forget analysis!!!
 - It naturally evolves into the offline systems of your experiment
 - It is immediatly usable for test beams (read stream and static data formats)
 - Six MDC have proven robustness, reliability and portability
- It is Publicly available at FNAL on ILCSIM since 2006

ILCroot: main add-ons to Aliroot

- Interface to external files from Event Generators in various format (STDHEP, text, <u>MARS</u>, etc.)
- 2. Standalone VTX track fitter
- Pattern recognition from VTX (for Si central trackers)
- Track fitters for different trackers technologies (Si Pixels, Si Strips, Drift Chambers, Straw Tubes, TPC's) and a ombination of them
- 5. Full simulation of *Dual Readout calorimeters*
- 6. Parametric beam background (# integrated bunch crossing chosen at run time)

Very important for detector and Physics studies of New Projects

Growing number of experiments have adopted it: Alice (LHC), Opera (LNGS), (Meg), CMB (GSI), Panda(GSI), 4th Concept, (SiLC ?) and LHeC

USPAS, Hampton, VA, January 17-21, 2011

The Virtual Montecarlo Concept

- Virtual MC provides a virtual interface to Monte Carlo
- It allows to run the same user application with all supported Monte Carlo programs
- The concrete Monte Carlo (Geant3, Geant4, Fluka) is selected and loaded at run time

Generator Interface

- TGenerator is an abstract base class, that defines the interface of ROOT and the various event generators (thanks to inheritance)
- Provide user with
 - Easy and coherent way to study variety of physics signals
 - Testing tools
 - Background studies
- Possibility to study
 - Full events (event by event)
 - Single processes
 - Mixture of both ("Cocktail events") with weigh
 - Mixture of signal and background

• TGenerator interface to MARS added for MC studies

Fast Simulation: no digitization + reconstruction

 Hits: produced by MC (G3,G4,Fluka)

Signal Background MC Generation \Rightarrow MC Generation \Rightarrow Energy Deposits in Detector Energy Deposits in Detector Gaussian smearing \Rightarrow Recpoints Track Finding \Rightarrow Tracks Track Fitting \Rightarrow Track Parameters

- FastRecpoints: gaussian smearing of hits
- Pattern recognition + track fit through full Parallel Kalman Filter

Full Simulation: digitization + reconstruction

Signal Background Hits: produced by MC MC Generation \Rightarrow MC Generation \Rightarrow (G3,G4,Fluka) Energy Deposits in Detector Energy Deposits in Detector SDigits: simulate detector $SDigitization \Rightarrow$ SDigitization \Rightarrow etector response from single particle Detector response from single particl response for each hit $Digitization \Rightarrow$ Digits: merge digit from several Detector response combined files of SDigits (example Signal + Beam Bkgnd) Pattern Recognition ⇒ Recpoints Recpoints: Clusterize nearby Digits Track Finding \Rightarrow Tracks Pattern recognition + track fit through full Parallel Kalman Track Fitting ⇒ Track Parameters Filter

USPAS, Hampton, VA, January 17-21, 2011

5. Computing - N.V. Mokhov

How long it takes to learn ILCroot? Physics Analysis Study Specify the detector configuration in config.c Specify the digitization/clusterization type (full or gaussian smearing) Specify the Event Generator (and the channel) in config.c Few weeks are Run the job sufficient Get several .root files for doing your analysis (kinematics, reconstructed particles, trkref, etc.) **Detector Simulation/Reconstruction** Expect 1-3 months lead time Learn how the framework is structured Learn how to read/write your data into persistent objects Eventually, need to learn how to modify the geometry

Detectors in ILCroot

DCH

TPC

USPAS, Hampton, VA, January 17-21, 2011

5. Computing - N.V. Mokhov

MC/CLIC

ECAL+ HCAL

MARS + ILCroot (Oct. 2009)

The ingredients:

- Final Focus descripted in MARS & ILCroot
- Detector description in ILCroot
- MARS-to-ILCroot interface (Vito Di Benedetto)

How it works

- The interface (ILCGenReaderMARS) is a TGenerator in ILCroot
- MARS output is used as a config file
- ILCGenReaderMARS create a STDHEP file with a list of particles entering the detector area at z = 7.5m
- MARS weights are used to generate the particle multiplicity for G4
- Threshold cuts are specified in Config.C to limit the particle list fed to G4
- Geant4 takes over at 7.5m
- Events are finally passed through the usual simulation (G4)-> digitization->reconstruction machinery

Simulation + full digitization + reconstruction

- Merge background with physics events or with jets
- Reconstruct tracks with proper pattern recognition + Kalman Filter
- Reconstruct Calorimetric
 Clusters
- 4) Study the effect on detector performance and measuremnts of Physics quantity

General Purpose Particle Transport & Interaction Codes

- FLUKA <u>http://www.fluka.org/fluka.php</u>
- GEANT4 <u>http://www.geant4.org/geant4/</u>
- MARS15 <u>http://www-ap.fnal.gov/MARS/</u>
- •MCNPX <u>https://mcnpx.lanl.gov/</u>
- PHITS <u>http://phits.jaea.go.jp/</u>

APPLICATION-DRIVEN CODE DEVELOPMENTS

Requirements to particle transport simulation tools and needs for physics model and calculation code developments are <u>all driven by application</u>. The most demanding among them are high-power accelerators (Spallation Neutron Source, J-PARC, neutrino factories), heavy-ion and ADS facilities (RIB, AEBL, FAIR, EURISOL), high-energy colliders (LHC, ILC), and space exploration programs.

Feasibility, design and specific radiation issues are addressed in detailed Monte-Carlo simulations, therefore, <u>predictive power and reliability</u> of <u>corresponding codes are absolutely crucial</u>.

MARS15: Biasing

Many processes in MARS15, such as electromagnetic showers, most of hadron-nucleus interactions, decays of unstable particles, emission of synchrotron photons, photohadron production and muon pair production, can be treated either analogously or inclusively with corresponding statistical weights. The choice of method is left for the user to decide, via the input settings.

Other variance reduction techniques used in MARS: weightwindow, splitting and Russian roulette, exponential transformation, probability scoring, step/energy cutoffs.

<u>Goal</u>: Maximize computing efficiency $\varepsilon = t_0/t$, where t is CPU time needed to get a RMS error σ equal to the one in the reference method with CPU time t_0 provided $\sigma < 20\%$.

MARS15: Tagging

• Enhanced tagging module in MARS15 allows one to tag the origin of a given signal/tally: geometry, process and phase-space. Invaluable in studying a source term and for sensitivity analysis.

• User-friendly access to process ID at scoring (histograming) stage: flags to 50 process types.

GEOMETRY DESCRIPTIONS IN MARS15

Five geometry description options

- 1.**Standard:** heterogeneous $R-Z-\Phi$ cylinder (in most cases this is just a mother volume).
- 2.Non-standard: arbitrary user-defined in Fortran or C.
- 3.Extended: a set of contiguous or overlapping geometrical shapes, currently, boxes, spheres, cylinders, truncated cones, tetrahedra, elliptical tubes, elliptical cone and conical sector. Can be subdivided into many sub-regions in each direction; arbitrary transformation matrices can be applied to any object.
- 4.**MCNP:** read in an input geometry description in the MCNP format.

5.FLUKA: read in an input geometry description in the FLUKA format (requires pre-processing).

Computing - N.V. Mokhov

CDF detector, experimental hall, Tevatron beamline elements and neutron fluence isocontours as seen in MARS15 GUI

USPAS, Hampton, VA, January 17-21, 2011

5. Computing - N.V. Mokhov

AUTOMATIC GEOMETRY GENERATION

It is a modern approach for accelerator complexes like Tevatron, LHC and J-PARC to build a <u>realistic model of the whole machine</u> for multiturn beam loss, energy deposition, activation and radiation shielding studies: read in <u>MAD lattice</u> and create a complete geometry and magnetic field model in the framework of such codes as FLUKA, MARS and GEANT.

The experience says that such realistic modeling takes time and substantial efforts but always pays off.

MAD-MARS BEAM LINE BUILDER

The interface system to build beam line and accelerator models in the MARS format. MMBLB reads in a MAD lattice file and puts the elements in the same order into MARS. Each element is assigned six functions: element type/name, geometry, materials, field, volume and initialization. MMBLB has been substantially extended for MARS15:

- The set of supported element types includes now almost all the elements supported by MAD.
- An arbitrary number of beam lines arbitrary positioned and oriented can be put in a MARS15 model.
- More sophisticated algorithms and new data structures enable more efficient searches through the beam line geometry.
- Tunnel geometry can now follow the beam line or be described independently of it.

MMBLB (1)

Local coordinate (Definition of each component)

- 1.Tunnel
- 2.Beamline component

beam pipe, dipole, quadrupole, collimator etc.

Global coordinate (Put components on tunnel)

Location, number, length, bending, magnetic field intensity of components are defined and changed by MAD "OPTICS" file

Compiled by N. Nakao

MMBLB (2)

3 GeV proton synchrotron of J-PARC (JAEA & KEK Japan)

Parti	cle Tran	sport & I	nteractio	on Codes	(1)
General	MCNPX	GEANT4	FLUKA	MARS	PHITS
Version	2.5.0	8.0 p1	2005	15	2.09
Lab. Affiliation	LANL	CERN IN2P3 INFN KEK SLAC TRIUMF ESA	CERN INFN	FNAL	JAEA RIST GSI Chalmers Univ.
Language	Fortran 90/C	C++	Fortran 77	Fortran 95/C	Fortran 77
Cost	Free	Free	Free	Free	Free
Release Format	Source & binary	Source & binary	Source & binary	Binary	Source & binary
User Manual	470 pages	280 pages	387 pages	150 pages	176 pages
Users	2500	~2000	~1000	220	220
Web Site	mcnpx.lanl.gov	cern.ch/geant4	www.fluka.org	www-ap.fnal. gov/MARS	Under const.
Workshops	~7/year	~4/year	~1/year	~2/year	~1/year
Input Format	Free	C++ main Fixed geometry	Fixed or free	Free	Free
Input Cards	~120	N/A	~85	~100	~100
Parallel Execution	Yes	Yes	Yes	Yes	Yes

Particle Transport & Interaction Codes (2)

Geometry	MCNPX	GEANT4	FLUKA	MARS	PHITS
Description	MCNP-based	STEP Solids (Boolean CSG)	MORSE-based	Solids MCNP-based User defined	MCNP-based MORSE-based
Extensions Twisted Nested Repeated Voxel	No Yes (universes) Yes Lattice (rec, hex)	Yes Yes (logical vol.) Yes Yes (rec, cyl)	No No Yes Yes	No Yes Yes Yes	No Yes (universes) Yes Lattice (rec, hex)
Viewer Debugger	Built-in: 2-D Interactive X-Windows External: Vised Moritz	Built-in: 3-D Interactive OpenGL OpenInventor RayTracer External: WIRED VRML DAWN	Built-in: None External: Custom (X11) Others?	Built-in: 2-D Interactive Tcl/Tl 3-D Interactive OpenGL External: Custom	Built-in: 2,3-D Command PS via Angel External: Angel PS
Setup GUI	Vised Moritz	GGE	No	Tcl/Tk	No
CAD	STEP via GUI	STEP	No	No	No
Fields (E/B)	2.6.0	Yes	Yes	Yes	Yes
Moving	2.6.0	Yes	Yes	No	Yes

Particle Transport & Interaction Codes (3)

Source	MCNPX	GEANT4	FLUKA	MARS	PHITS
Fixed					
General					
Explicit	Yes	Yes	Yes	Yes	Yes
Distribution	Yes	Yes	No	Yes	Yes
Dep. Dist.	Yes	GPS	No	Yes	Yes
External	SSW/SSR	Yes	No	Yes	Yes
User Sub.	Yes	Yes	Yes	Yes	Yes
Eigenvalue	Yes	No	No	No	No
Burnup	Yes (2.6.A)	No	No	No	No

Particle Transport & Interaction Codes (4)

Physics	MCNPX	GEANT4	FLUKA	MARS	PHITS
Particles	34	68	68	41	38
Charged particles Energy loss Scatter Straggling XTR/Cherenkov	CSDA Bethe-Bloch Rossi Vavilov No	CSDA Bethe-Bloch Lewis Urban Yes	CSDA Bethe-Bloch Moliere Custom No/yes	CSDA Bethe-Bloch Moliere* Custom No	CSDA Bethe-Bloch Moliere Vavilov No
Baryons Neutron Low High Proton Low High Other	Cont. (ENDF) Models Cont. (ENDF) Models Model List: Bertini ISABEL CEM INCL FLUKA89>3 GeV LAQGSM (2.6.D)	Cont. (ENDF) Models Models Model list: Hadron-nucleous GHEISHA* INUCL(Bertini) BIC CHIPS QGS/FTF>8 GeV	Multigroup(72) Models Models Model list: PEANUT(GINC) DPM+Glauber > 5 GeV	Cont. (ENDF) Models Models Model list: Custom CEM LAQGSM DPMJET	Cont. (ENDF) Models Models Model list: Bertini JAM>3 GeV
Leptons Electrons Muon Neutrino Other	ITS 3.0 CSDA/decay Production Decay	EEDL, EADL Models Production Decay	Custom Models Models Decay	Custom Models Models Models	ITS 3.0 CSDA/decay Models Models

Particle Transport & Interaction Codes (5)

Physics	MCNPX	GEANT4	FLUKA	MARS	PHITS
Mesons	Models	Models	Models	Models	Models
Photons Optical x-ray/γ Photonuclear	No ITS 3.0 Libraries (IAEA) CEM	Yes EPDL97, EADL CHIPS	Yes Custom+EPDL97 PEANUT VMDM	No Custom Custom CEM	No ITS 3.0 No
Ions	ISABEL LAQGSM (2.6.D)	AAM EDM BLIC	RQMD-2.4 DPMJET-3	LAQGSM	JQMD JAMQMD > 3 GeV/u
Delayed	n,γ (2.6.C)	α,β,γ	β,γ	γ	n

Particle Transport & Interaction Codes (6)

Tallies	MCNPX	GEANT4	FLUKA	MARS	PHITS
Standard					
Flux					
Volume	Yes	Yes	Yes	Yes	Yes
Surface	Yes	Limited	Yes	Yes	Yes
Point/ring	Yes	No	No	Yes (neutrons)	No
Current	Yes	Limited	Yes	Yes	Yes
Charge	Yes	Yes	Yes	Yes	Yes
Kinetic energy	Yes	Yes	Yes	Yes	Yes
Particle density	Yes	Yes	No	No	No
Reaction rates	Yes	No	Star (inelastic)	Yes	Yes
Energy deposition	Yes	Yes	Yes	Yes	Yes
Rapidity	No	Yes	Yes	Yes.	No
DPA	HTAPE3X	??	Some	Yes	Yes
Momentum	No	Yes	Yes	Yes	No
Pulse-height	Yes	User input	Yes	No	Yes
Termination	Partial	??	Yes	Partial	Yes
Modifiers	9	2	2	2	2
Special					
Mesh	rec, cyl, sph	rec, cyl	rec, cyl	rec, cyl, sph	rec,cyl
Coincidence	Yes	No	Yes	Yes	Yes
Residuals	Yes	No	Yes	Yes	Yes
Activation	2.5.D	??	Yes	Yes	No
Event logs	Yes	Yes	Yes	Yes	Yes
Convergence Tests	10	Error	Error	Error	Error

Particle Transport & Interaction Codes (7)

Tallies	MCNPX	GEANT4	FLUKA	MARS	PHITS
Viewer	Built-in: 1-D 2-D Custom	Built-in:	Built-in: None	Built-in: Custom	Built-in: Angel
	X-Windows	External:	External.	External.	External.
	External:	JAS	Custom (X11)	PAW	Angel
	IDL	PI	GNUplot		8
	Tecplot	Open Scientist	PAW		
	GNUplot	-	ROOT		
	PAW				
Variance Reduction					
Population control					
Region biasing	Yes	Yes	Yes	Yes	Yes
Weight cutoff	Yes	Yes	Yes	Yes	Yes
Weight window mesh	Yes	Yes	Yes	Yes	Yes
Energy biasing	Yes	No	Yes	Yes	Yes
Modified sampling					
Source biasing	Yes	RDM	Yes	Yes	Yes
Implicit capture	Yes	Yes	Yes	Yes	Yes
Exp. transform	Yes	No	Yes	Yes	No
Production biasing	Yes	Yes	Yes	Yes	Yes
Angular bias	Via DXTRAN	??	Yes	Yes	Yes
DXTRAN	Yes	No	No	No	No
Viewer	2-D contour	No	No	No	No

USPAS, Hampton, VA, January 17-21, 2011

5. Computing - N.V. Mokhov