

PARTICLE COLLIDER INTERACTION REGIONS Backgrounds and Machine-Detector Interface Lecture 1: e⁺e⁻ Colliders

Nikolai Mokhov

Accelerator Physics Center

Fermilab

USPAS Hampton, VA January 17-21, 2011

BMDI Lectures

1. e^+e^- (ILC) 2. pp (LHC) **3**. μ⁺μ⁻ 4. Collimation 5. Computing

Acknowledgments

Many thanks to colleagues several slides from whom were used in these lectures: Ralf Assmann, Grahame Blair, Karsten Busser, Corrado Gatto, Norman Graf, Alick Macpherson, Greg McKinney, Noriaki Nakao, Lucio Rossi, Toshia Sanami and Andrei Seryi.

etet Collider Backgrounds and MDI

USPAS, Hampton, VA, January 17-21, 2011

1. e+e- Collider Backgrounds & MDI - N.V. Mokhov

OUTLINE

- 1. Beam-Beam and Machine-Related Backgrounds Detector and Radiation Tolerable Limits
- 2. Synchrotron Radiation
 - Electromagnetic Showers, Muon/Hadron Production in Beam Delivery System
- 3. Dealing with Muon Spray Particle Flux, Hit Rate and Occupancy in Detector
- 4. Radiation Loads in BDS, IR and Extraction Line Machine and Environment Protection

The high physics potential of the ILC is reached only if a high luminosity of e⁺e⁻ collisions in the TeV range is achieved (say, 2×10^{34} cm⁻² s⁻¹). The overall detector performance in this domain is strongly dependent on the background particle rates in various sub-detectors. The deleterious effects of the background and radiation environment produced by the accelerator and experiments have become one of the key issues in the Beam Delivery System (BDS), Interaction Region (IR) and detector design and development.

ILC MACHINE-DETECTOR INTERFACE

일이 그 아버지는 희망지 않는 것은 것이 아무지 않았다. 지난 것은 것이 그 아버지는 것이 같이 나라 했다.

$L^* \approx 3.5 \text{ m}$, compare to $L^* = 23 \text{ m}$ at LHC!

BACKGROUNDS AND DETECTOR PERFORMANCE

Two sources

- <u>IP backgrounds</u>: Particles originated from the interaction point (IP) - beam-beam interaction products and collision remnants.
- 2. <u>Machine backgrounds</u>: Unavoidable bilateral irradiation by particle fluxes from the beamline components and accelerator tunnel.

Backgrounds affect ILC detector performance in three major

ways:

- Detector component radiation aging and damage.
- Reconstruction of background objects (e.g., tracks) not related to products of e⁺e⁻ collisions !!!
- Deterioration of detector resolution (e.g., jets energy resolution due to extra energy from background hits).

IP BACKGROUNDS

Source:

Beam-beam interactions (disrupted primary beam, beamstrahlung photons, e^+e^- and $\mu^+\mu^-$ pairs and hadrons from beamstrahlung and $\gamma\gamma$ interactions, and extraction line losses) and <u>radiative Bhabhas</u> ($e^+e^- \rightarrow e^+e^-\gamma$).

From the standpoint of integrated background, e^+e^- linear colliders are relatively 'clean' machines. Average integrated hadronic fluxes produced at the IP are about six orders of magnitude lower compared to LHC.

However, the instantaneous rates are not so drastically different. Say, for the $\gamma\gamma$ option, a peak radiation field is about 10% of that at LHC. The e^+e^- option is 10 times better.

In general, this source is well understood and under control: it scales with luminosity, one should transport interaction products away from IP and shield/mask sensitive detectors, and exploit detector timing.

THREE DETECTOR CONCEPTS

20.22 17.01 (K-1990), 4520 (Children Children Children 17.00)	CREMENT ALL MEMORY AND A MARKED CONCREMENTS	A CONTRACTOR AND A CONCRETENSION OF A DESCRIPTION OF A DE	CONTRACTOR CALIBRATIC CONTRACTOR INTO A DAMAGE TO A
Subdetector	GLD	LDC	SiD
Vertex detector	Si pixel	Si pixel	Si pixel
	r1= 2.0 cm	r1= 1.5 cm	r1 = 1.4 cm
Tracker	TPC	TPC	Si strips
EM CAL	Scintillator-W	Si-W	Si-W
HAD CAL	Scintillator-Pb	Scintillator-Fe RPC/GEM-Fe	Si-W
Muon system	Scintillator	RPC (resistive plate counter)	RPC
Solenoid	3 Tesla	4 Tesla	5 Tesla
	R = 3.5 - 4.5 m	R = 3 - 4.45 m	R = 2.5 - 3.3 m
	L = 8.9 m	L = 9.2 m	L = 5.4 m

DEALING WITH SYNCHROTRON RADIATION AT IP

COLLIMATION SYSTEM AND MAGNETIC SPOILERS IN BDS

TEMPORAL ASPECTS

Temporal considerations in the IP and machine background analysis are of a primary importance. Integrated levels determine radiation damage, aging and radio-activation of detector components as well as the radiation environment in the experimental hall, accelerator tunnel and their surroundings. High instantaneous particle fluxes complicate track reconstruction, cause increased trigger rates and affect detector occupancy.

One can define the *instantaneous* or *effective* luminosity which determines the detector performance - for the amount of radiation in the detector active element over the drifting/integration time Δt_d ("sensitivity window") or the bunch train length, whichever is smaller. For detector elements most susceptible to occupancy problem Δt_d is 40 -300 ns.

BEAM PARAMETERS

- 250-GeV
- 5 trains per second
- 2820 bunches in each train
- 300 ns between bunches
- 199 ms between trains
- Train length 868 μs
- 2x10¹⁰ positrons/electrons per bunch
- Luminosity 2x10³⁴ cm⁻² s⁻¹

DETECTOR TOLERANCES

	Subdetector Vertex detector and/or Silicon Tracker		San and a	Tolerance criter	ion	
			Rad. damage (worst-case: CCD's) : ∫ < 3-10 × 10 ⁹ n cm ⁻² Occupancy (pattern recognition): < 1% (2-d hit density) Occupancy (pile-up): ≤ 1 hit / channel ("buffered")			
	Time Pro Cham	Time Projection Occu Chamber Expert		ccupancy (pattern recognition): < 1% (3-d density) ? Perts disagree on impact on reconstruction + space charge		
Subdetector Granula		nularity	Sensitivity window	Fract'l sensitivity		
'ertex detector (Layer 1) TPC		20 μ x 20 μ pixels = 2500 pixels/mm ²		50 uc	Chgd trks: ε = 1.0 (4 pixls) γ: ε = 0.02 (4 pixels)	
		1.5 1 × 10 ³ tir = 1.5 1	0 ⁶ pads ne buckets .0 ⁹ voxels	(~ 150 bunches)	Chgd trks: $\varepsilon = 1.0$ γ : $\varepsilon = 0.02$ n: $\varepsilon = 0.01$ μ : $\varepsilon = 1.0$	

1% generic occupancy limit (per train or per SW) implying x10 safety factor

(*) As per R. Settles et. al., TESLA St Malo workshop Detector-specific data from T. Maruyama + detector response to MDI questions, Aug 05.

Limits are expressed in # particles either per sensitivity window [SW] (typically 50 μ s \approx 150 bunches in VXD/TPC), or per bunch train [tr]

Subdetector	Charged hits	γ	n (~ 1 MeV)	Model
Vtx detector (L1)	6 mm ⁻² / SW 100 mm ⁻² tr ⁻¹	300 mm ⁻² /SW	3 x 10 ⁷ mm ⁻² 10 ⁸ mm ⁻²	1 % generic GLD
Si tracker	Pile-up: 0.2 / 1.0 mm ⁻² tr ⁻¹	Pile-up: 10/50 mm ⁻² tr ⁻¹		SiD: analog/digital
TPC (/SW)	1.5 x 10 ⁷ voxels ≈ 2.5 - 5 10 ³ tracks	1.25 × 10 ⁶ γ	2.5 x 10 ⁷ n	1 % generic

Notes

- 1. No generic answers depend strongly on subdetector technology
- 2. Need to clarify impact of TPC occupancy on track reco efficiency & space charge
- 3. Only rough estimates so far. Real answer needs detailed simulations, pattern recognition studies, space charge, understanding of background distribution....
- 4.1% may sound overconservative...but we need ~ x 10 safety factor!

BACKGROUND TOLERABLE LIMITS SUMMARY

<u>Calorimeter, tracker and vertex</u> detectors: in smallest element, *occupancy* < 1%.

To avoid *pattern recognition* problem in tracker, hit density from charged particles should be ≤ 0.2 hit/cm²/bunch.

To avoid *pile-up* problem (from previous BX !) in tracker, hit density from charged particles should be ≤ 0.2 hit/mm²/train.

<u>Muon system</u>: the RPCs (sensitive media) need 1 ms to recharge a 1 cm² area around the avalanche, therefore, the hit rate in excess of 100 Hz/cm² would result in an unmanageable dead time. With typical 80 sensitive layers in a Muon Endcap, it corresponds to a muon flux at its entrance of about 1

μ/cm²/S. USPAS, Hampton, VA, January 17-21, 2011 <u>Site/Lab/Country-specific. For Fermilab as an example:</u>

- Peak residual dose rate Py < 100 mrem/hr = 1 mSv/hr at 1-ft in tunnel (30 days / 1 day) hands-on maintenance (~1 W/m)
- Prompt dose equivalent in non-controlled areas is DE < 0.05 mrem/hr at normal operation and < 1 mrem/hr for the worst case due to accidents; it is DE < 5 mrem/hr = 0.05 mSv/hr for limited access areas
- Ground-water activation: do not exceed radionuclide concentration limits of 20 pCi/ml for ³H and 0.4 pCi/ml for ²²Na in any nearby drinking water supply
- Peak energy deposition and absorbed dose in beamline and detector components below temperature rise, material integrity and radiation damage limits
- Air activation: do not exceed radionuclide concentration limits

IP BACKGROUNDS: e^+e^- and $\mu^+\mu^-$ pairs and hadrons

b)

Production of system X: a) by two equivalent photons emitted by e⁺ and e⁻ b) in e⁺e⁻ annihilation

At 500 GeV, "backgrounds" x-section is orders of magnitude larger than the "physics" one

USPAS, Hampton, VA, January 17-21, 2011

1. e+e- Collider Backgrounds & MDI - N.V. Mokhov

BEAMSTRAHLUNG

Beams are extremely collimated with large bunch charge \rightarrow electrons of one bunch radiate against the coherent field of the other bunch

$$dE\sim rac{N^2}{\sigma_x^2\sigma_z}$$

 \rightarrow average energy loss 1.5% for electrons/positrons at 500 GeV

photons are very collimated around beampipe, but

- $pprox 0.6 imes 10^5 e^+ e^-$ -pairs per bunch crossing
- pprox 1 hadronic event ($\gamma\gamma
 ightarrow$ hadrons) per 10 bunches
- secondaries (neutrons, ...)

Consequences:

- 1. Shield Detector against low-angle e^+e^- -pairs and secondaries \Rightarrow Mask
- 2. Hadronic $\gamma\gamma$ -events might overlay real physics events: recognize them!

3. Beam particles lose energy before interaction (similar to ISR)

Figure 8 Physics backgrounds from gamma-gamma produced e⁺e⁻ pairs, muon pairs, and hadronic events integrated over 150 bunch crossings (left) and a single bunch crossing (right).

PAIR BACKGROUND STUDIES

GUINEA-PIG GEANT3 Simulations of Pair Backgrounds in the Large Detector with realistic Solenoid and DID Fields by Karsten Büßer.

A lot of different geometries have been studied, including different crossing angles, holes for incoming/outgoing beams and magnetic field configurations. Realistic magnetic fields for TESLA solenoid (by F. Kircher et al) and Detector Integrated Dipole (by B. Parker and A. Seryi) have been introduced.

DID field combined with FD offset to zero both angle and position at the IP

PAIRS AS A DOMINANT SOURCE

- Dominant background
- Very dependent on Beam parameters
- Solenoid field strength
 - Solenoid compensation for 20 mrad
- VXD layer radius
- Far forward geometry

	COVER DEPENDENT AND A CONTRACT OF A DESCRIPTION OF	2 2 2 2 2 1 1 1 1 1 2 2 2 1 2 1 2 2 2 1 3 2 2 1 3 2 1 3 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 2	CONTRACTOR CONTRACTOR AND A
500 GeV	Beam	# e+/e- /BX	Total energy
	Nominal (N)	98 K	197 TeV
	Low Q (Q)	38	86
	High Y (Y)	104	191
	Low P (P)	232	709
	High Lum (H)	268	944
	Nominal	174	1042
1 TeV	Low Q	73	486
	High Y	229	1356
	Low P	458	4596
10	High Lum	620	7367
The second se			

VXD HITS FROM BEAM-BEAM PAIRS

- Readout of pixel detector is slow.
- It would be simple if one readout of whole bunch-train is sufficient.
 - GLD considers 5 μm \times 5 μm fine pixel detector.
- Study VXD hits for different beam parameters.
- Use 1 hit/mm² as a tolerance level.
- Ask how many bunches to reach this level.

- Intra-train readout/buffering is necessary.
- # bunches to reach 1 hit/mm² is dependent on the beam parameters.
 - 500 GeV Low Q : 88 bunches
 - 1 TeV High Lum : 7 bunches
- One train readout using 5 μm \times 5 μm fine pixel detector may work only for 500 GeV Low Q.

GEANT3 modeling for SiD By Takashi Maruyama

e+/e- Flux in SiD Tracker

NEUTRONS IN DETECTOR

Neutron Production – Energies

USPAS, Hampton, VA, January 17-21, 2011

1. e+e- Collider Backgrounds & MDI - N.V. Mokhov

MeV

9

Beam Core and Halo Synch Photons at IP

SYNCH PHOTON ENERGY SPECTRA AT MASKS

From beam halo

From beam core

USPAS, Hampton, VA, January 17-21, 2011

Electromagnetic Shower Basics

Intense electromagnetic showers (EMS) are generated when electrons hit material of beam-line components. At high energies, the dominant processes are bremsstrahlung for electrons and e^+e^- pair product for γ .

At high energies, properties of EMS are conveniently described using

<u>Radiation length</u> X₀: electron loses all but 1/e of its energy by brems, and 7/9 of the mean free path for pair production by photons. <u>Critical energy</u> E_c = 800 MeV/(Z+1.2): $(dE/dx)_{ion} = (dE/dx)_{brems}$. <u>Scale energy</u> E_s = m_ec² $(4\pi/\alpha)^{1/2} = 21.2$ MeV. <u>Molier radius</u> R_M = X₀ × E_s/E_c.

Multiple Coulomb scattering: $\langle \theta \rangle = E_s/p (x/X_0)^{1/2} (1 + 0.038 \ln x/X_0)$ $<math>\langle \theta_{x,y} \rangle = \langle \theta \rangle / \sqrt{2}$ EMS length: 20-30 X₀. (X₀ = 0.35, 1.43, 1.77 and 35cm for W, Cu, Fe and Be, respectively).

EMS radius: 2-3 R_M

USPAS, Hampton, VA, January 17-21, 2011

Bethe-Heitler Muons, Hadrons etc.

About 10⁻⁴ muons are generated per 250-GeV electron hitting material (limiting apertures, residual gas) which – being accompanied by other particles – can reach the IP and create background levels well above the tolerable limits. These are mainly energetic muons from Bethe-Heitler process $\gamma Z \rightarrow \mu + \mu - Z$.

Also, muon pairs from e⁺e⁻ annihilation, hadrons from photoand electro-nuclear inelastic interactions, and decay products of all unstable particles.

Make these limiting apertures (collimators) as far from IP as possible. Suppress muon flux far from IP by thick magnetic walls or doughnuts.

Studied in very complex realistic BDS modeling.

BEAM HALO

From beam loss point of view, beam halo can be defined as a number of particles of any origin which lie in the low-density region of beam distribution far away from the dense core.

At ILC, as at any other accelerator, the creation of beam halo is unavoidable. This happens because of numerous reasons (next page). As a result of halo interactions with limiting apertures, electromagnetic showers are induced in accelerator and detector components causing numerous deleterious effects ranging from minor to severe.

An accidental loss of a small fraction of the beam can cause catastrophic damage to the collider and detector equipment.

BEAM HALO ORIGIN

Particle processes:

- Beam-gas scattering (elastic, inelastic, bremsstrahlung)
- Ion or electron cloud effects
- Intrabeam scattering (including large-angle Touschek)
- Synchrotron radiation
- Scattering off thermal photons

Optic related:

- Mismatch, coupling, dispersion
- Non-linearities

Collective & Equipment related:

- Noise and vibration
- Dark currents
- Space-charge effects close to source
- Wake-fields
- Beam loading

COLLIMATION DEPTH ($\theta_{halo}/\theta_{beam}$)

It is primarily determined by clearance of final doublet sync radiation through the IR. All collimation tracking simulations are done for beam halo falling off as $1/R^2$ in phase space.

Limiting aperture: r = 12 mm (20 mrad), 15 mm (2 mrad)Spoiler gaps $a_x = 1 \text{ mm}, a_y = 0.5 \text{ mm}$ Tighter collimation for 2 mrad
BEAM HALO AND SR DISTRIBUTIONS & ENVELOPE

BDIR MARS MODEL: 1700 m BDS, SiD (GEANT4) at IP, followed by 200-m extraction line

Model includes all magnets, tunnel, concrete walls, dirt, multi-stage collimation system (spoilers, absorbers, protection collimators, and photon masks), muon tunnel spoilers, SiD detector, and extraction line (for high-lum 250-GeV beams).

USPAS, Hampton, VA, January 17-21, 2011

MARS Magnet and PC Geometries

MUON SPOILER

Cross sectional view (looking toward downstream)

Thick steel 1.5-T magnetic wall sealing tunnel x-section, to spray the muons out of the tunnel

Five 4-m Thick Doughnut Scheme

Magnetic Doughnuts

USPAS, Hampton, VA, January 17-21, 2011

"Ultimate" Doughnut Scheme

USPAS, Hampton, VA, January 17-21, 2011

1. e+e- Collider Backgrounds & MDI - N.V. Mokhov

45

Muon Flux Isocontours

Muon Fluxes from Hottest PCs

USPAS, Hampton, VA, January 17-21, 2011

Radial Distributions of Backgrounds at Detector

Red lines – no spoilers, blue – 5 donuts Red lines - no spoilers, blue - 5m wall particles/cm²/s 10⁴ 10⁵ 10⁻² particles/cm²/s 10 positrons 10 positrons gammas gammas 10² 10² 10² 1 -2 10 10 10 10 10 200 200 400 600 200 400 600 400 600 600 200 400 Radius (cm) Radius (cm) Radius (cm) Radius (cm) particles/cm²/s 0 01 01 01 electrons electrons muons+ muons+ 1 oarticles. -1 10 10 -2 10 10 -3 10 10 10 10 600 200 400 600 200 400 600 200 400 200 400 600 0 Radius (cm) Radius (cm) Radius (cm) Radius (cm) -1 particles/cm²/s 10 particles/cm²/s 10 muonsmuonsneutrons neutrons -2 -2 1 10 10 -1 -3 10 10 10 10 -3 -3 -5 10 10 10 10 200 400 600 200 600 200 400 600 200 400 400 600 0 Radius (cm) Radius (cm) Radius (cm) Radius (cm) 1. e+e- Collider Backgrounds & Miler /5 donuts Km x 0.7m, LK USPAS, Hampton, VA, Bangailer/musp2011 49

SID SUB-DETECTORS (one quadrant)

USPAS, Hampton, VA, January 17-21, 2011

Hit Rates in Detector Subsystems

- Machine-related background with and without spoilers -STRUCT+MARS15 + SLIC. Here - only from e⁺ beam.
- 2. IP-related background radiative Bhabas from beambeam interaction and synchrotron radiation from beam. Guineapig + GEANT3
- 3. *e+e-* events at 500 GeV- PYTHIA + SLIC

USPAS, Hampton, VA, January 17-21, 2011

Per e⁺e⁻ event

Tracker

<u>Tolerable limits</u> pattern recognition: 0.2 hits/cm²/bunch pile-up problems: 0.2 hits/mm²/train

Machine bckgrs in Tracker Endcap: 7 10⁻⁴ hits/cm²/bunch 0.02 hits/mm²/train Machine bckgrs in Tracker Barrel 4 10⁻⁵ hits/cm²/bunch 0.001 hits/mm²/train

Tracker Endcap No spoilers

BDS Background Occupancy

 Table. 6 : Tunnel background occupancies in sub-detectors (no spoilers) taking into account both electron and positron beam losses.
 Assuming cell size of 1 cm²

	Sensitive area	Hit number	occupancy
	cm^2	per bunch	per bunch
Muon Endcap	$1.3 \cdot 10^{8}$	4711 •2	0.008 %
Muon Barrel	$8.2 \cdot 10^{7}$	49 ·2	0.0001%
Hcal Endcap	$3.9 \cdot 10^{6}$	584.2	0.03 %
Hcal Barrel	$2.2 \cdot 10^{7}$	314.2	0.003 %
Ecal Endcap	$2.9 \cdot 10^{6}$	435 ·2	0.03 %
Ecal Barrel	$9.0 \cdot 10^{6}$	100.2	0.002 %
FEcal Endcap	$1.0 \cdot 10^{5}$	12.2	0.02 %
Lum Monitor	$6.3 \cdot 10^4$	36.2	0.12 %

Should be < 1% / SW, a problem with 50 μ s (150 bunch) SW (VTX, TPC)

Hits in Muon Endcap

RPCs need 1ms to recharge 1 cm² area around the avalanche. Background rate should be < 100 Hz/cm²

Otherwise, an unmanageable dead time.

There are 14100 bunches per second

Tunnel background is about: 400 Hz/cm² without spoilers

Hit Time Distribution in Muon Endcap

Red: machine background (no spoilers) Green: machine background (with 9 & 18-m walls) Blue: e+e- events t=0 is bunch crossing.

BDS background from *e*⁺ tunnel only

USPAS, Hampton, VA, January 17-21, 2011

Hit Time Distribution in Tracker Endcap

Red: machine background (no spoilers) Green: machine background (with 9&18-m walls) Blue: e+e- events t=0 is bunch crossing

BDS background from e⁺ tunnel only

DYNAMIC HEAT AND RADIATION LOADS IN BDS

50 W/m on spoilers, 5-7 kW/m on protection collimators, up to 80 W/m on quads (<u>well above the limit of 1 W/m \rightarrow local shielding</u>). First quad downstream of PC1: peak absorbed dose in coils ~300 MGy/yr (a few days of lifetime for epoxy), residual dose on the upstream face is 7.7 mSv/hr (should be below 1 mSv/hr). Increasing PC1 length from 21 cm to 60 cm of copper, reduces peak absorbed dose in the hottest coil by a factor of ~300, providing at least a few years of lifetime.

Temperature rise and stress are not a problem except accidental conditions. Peak heating per train: 1.4 J/g and 2 K in SP2, and 4.7 J/g and 6.6 K in PC1.

USPAS, Hampton, VA, January 17-21, 2011

Energy Deposition and Radioactivation in BDS

Figure 7: Energy deposited in the spoiler Figure 8: Instantaneous temperature rise in SP2.

Figure 9: Energy deposited in the collimator Figure 10: Instantaneous temperature rise PC1 at a collimator depth where the energy in the collimator PC1 at a collimator depth deposition is maximal.

the spoiler SP2.

where the energy deposition is maximal.

Local shielding is needed to meet hands-on maintenance and ground-water activation limits

MDI: 2-mrad Extraction

MDI: SiD Configuration

2mrad Extraction Line: Losses in SC QD0 from Radiative Bhabhas

- Can cause damaging heat loads in the Superconducting QD0
- Magnet designers have stipulated that this quad can only take 0.5mW/g before quenching

Integrated Extraction Line Design

BEAMSSTRAHLUNG TO EXTRACTION LINE

4% of the beam energy gets radiated into photons due to beamsstrahlung

MDI: Instrumentation for Luminosity, Luminosity Spectra and Luminosity Tuning

Luminosity

Bhabha LumiCAL detector from 40-120 mrad

Luminosity Spectrum

Bhabha acolinearity measurements using forward tracking and calorimetry from 120-400 mrad + additional input from beam energy, energy spread and energy spectrum measurements

Luminosity Tuning

IP BPMs Pair BeamCAL detector from 5-40 mrad Beamsstrahlung detector? Radiative Bhabhas?

MDI: Functions of the Very Forward Detectors

Fast Beam Diagnostics

LumiCal:	26 < θ < 82 mrad
BeamCal:	4 < θ < 28 mrad
PhotoCal:	100 < θ < 400 μrad

From W. Lohmann, talk presented at Snowmass 2005

 Detection of electrons and photons at small polar anglesimportant for searches (see talk by Philip&Vladimir

•Shielding of the inner Detectors

USPAS, Hampton, VA, January 17-21, 2011

MDI: Extraction Line Diagnostics at 20 mrad

Energy Chicane

Polarimeter Chicane

USPAS, Hampton, VA, January 17-21, 2011

20-MRAD EXTRACTION LINE IN MARS15

Synchrotron photons generated by disrupted beams: elevation view (left) and plan view (right)

DYNAMIC HEAT LOADS IN EXTRACTION LINE

Up to 50 W/m without vertical displacement (left) and up to 500 W/m with 120-nm vertical displacement (right)

USPAS, Hampton, VA, January 17-21, 2011

RADIATION DOSES IN EXTRACTION LINES

Magnet at 60 m

20-mrad: dose at 60 m

2-mrad: dose in mask at 153 m

20-mrad x-ing:

Up to 40 MGy/yr with 120-nm vertical displacement: 1-month lifetime Up to 4 MGy/yr without VD (normal operation): 1-year lifetime → protection collimators (masks).

2-mrad x-ing:

0.76 MW synch radiation loss \rightarrow protection collimators with tens of kW on them and up to 1 TGy/yr peak dose

Residual dose on the magnets is about 10 times above the limits in the 25 to 70-m region from IP (for 120nm)

Beam Dump for 18MW Beam

1 1

Water vortex Window, 1mm thin, ~30cm diameter hemisphere Raster beam with dipole coils to avoid water boiling Deal with H, O, catalytic recombination etc.

20mr extraction optics

Undisrupted or disrupted beam size does not destroy beam dump window without rastering. Rastering to avoid boiling of water

Collider Hall Shielding

Shielding is designed to give adequate protection both in normal operation, when beam losses are low, and for "maximum credible beam accident" when full beam is lost in undesired location (but switched off quickly, so only one or several trains can be lost).

Limits are different for normal and accident cases, e.g. what is discussed as guidance for IR shielding design: Normal operation: dose less than 0.05 mrem/hr (integrated less than 0.1 rem in a year with 2000 hr/year) For radiation workers, typically ten times more is allowed Accidents: dose less than 25 Rem/hr (SLAC number here) and integrated less than 0.1 Rem for 36MW of maximum credible incident (MCI).

Self-Shielding Detector

Detector itself is well shielded except for incoming beamlines. A proper "pacman" can shield the incoming beamlines and remove the need for shielding wall.

