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Etc…

Just bend the 
trajectory

Focus in one plane,
defocus in another:

x’ = x’ + G x
y’ = y’– G y

Second order
effect:

x’ = x’ + S (x2-y2)
y’ = y’ – S 2xy

Here x is transverse coordinate, x’ is angle

What we use to handle the beam

A. Seryi (SLAC) 19-27 May 2006, Sokendai, Hayama, Japan
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Introduction

At the risk of oversimplification the basic of the multipole elements can 

be identified as:

• The purpose of the dipole is to bend the central trajectory of the 

system (deh..!) and to generate the first-order momentum dispersion

• Quadrupole elements provide the first-order imaging

• Dipole and quadrupoles will also introduce higher-order

aberrations. If these aberrations are second order, they may be  

eliminated or at least modified by the introduction of sextupole 

elements at appropriate locations.
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Introduction

In general, 

• Dipoles introduce both second-order geometric and chromatic 

aberrations

• Quadrupoles do not generate second-order geometric   

aberrations but they have strong chromatic (energy dependent)

aberrations.

• In regions of zero momentum dispersion, a sextupole will couple

with and modify only geometric aberrations. However, in a region

where dispersion is present, sextupoles will also couple with and

modify chromatic aberrations. 
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higher-order optics notation

All terms for which no subsctript is equal to 6 are refered to as 

geometric terms or geometric aberrations, since they depend only 

on the central momentum p0.

Any term Rij, Tijk or Uijkl where one subscript is equal to 6 will be 

referred to as chromatic term or chromatic aberration, since the 

effect depends on the momentum deviation dp/p of the particle

6 6 6
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...
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matrix elements
x

x

y
x

y

l



 

 


 

 
  


 

 

 
 



6

Telescopic system

The transfer matrix of the optical 

telescopic system shown for one plane is given by

Where M is the optical magnification defined M=F2/F1, with F1 and F2

focusing lengths

2 1

1 2

/ 0 0

0 / 0 1 /

F F M
R

F F M

   
    

   

Check point

F2F1
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Telescopic system

Recalling the optics function transformation between two location of 

the lattice
2 2
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Then the magnification                                                      

in terms of optical                                                      

functions is
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
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  const  and

From telescopic system matrix
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Telescopic system
In practice, to achieve a telescopic system in both planes we need at 

least two quadrupoles to simulate each lens of the telescope, and the 

magnification may be different in each plane.
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Final Focusing

 

f1 f2 f2 

IP  

final  

doublet 

(FD ) 

Use telescope optics to demagnify beam by factor M = f1/f2 

typically f2= L*

f1 f2 (=L*)

The final doublet FD requires magnets with very high quadrupole 

gradient in the range of ~250 Tesla/m  superconducting or 

permanent magnet technology.
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Final focus chromaticity

Strong FD lens has high degree of chromatic aberrations
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If uncorrected chromatic aberration of FD would completely 

dominate the IP spot size! Need compensation scheme.

using

FD
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Chromaticity correction
Minimization of chromatic distortions: factors that influence the 

solutions to this problem:

1. a reduction in the momentum spread (not always feasible) would 

reduce the magnitude of the problem

2. The chromatic distortion of a FFS lattice is a function of the distance  

L*. The closer and stronger the lens the smaller is the distortion.

3. Sextupoles in combination with dipoles (provide dispersion) can be 

used to cancel chromaticity. Sextupoles introduced as pairs, 

separated by a –I transform do not generate second order geometric 

aberrations. However the dipoles introduce emittance growth and 

energy spread due to synchrotron radiation. Serious constraint.

FF design  Balance between these competing effects
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Chromatic corrections

• The magnetic induction of a quadrupole is a linear function of the 

variable x, y. A particle with momentum p will be affected 

differently than a particle with momentum p0. The corresponding 

strenghts of the quadrupole

the focal strenght of the quadrupole decreases as the momentum 

increases.

Chromatic properties of a sextupole may be interpreted similarly.

Chromatic effects occur because particles with different momenta 

respond differently to a given magnetic field.

01

1 0

( )

( )

pK p

K p p

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Chromatic corrections concepts

particle with the same input coordinate but a different momentum 

p1 see the quadrupoles with strenghts than p0.

• to compensate for this chromatic difference a lattice can be 

designed where particles of greater momentum encounter an extra 

quadrupolar field to compensate for the increased momentum. 

This is achieved by the introduction sextupoles and dipoles into 

the lattice structures.
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Chromatic corrections concepts

This lattice has the potential of chromatic corrections. While a 

particle p0 follows the central trajectory, the particle p1 with 0 will 

follow the trajectory defined by the function  dx(s). The function is 

nonzero after the first dipole. At position 1, p1 encountered slightly 

different quadrupolar strengths than p0. Let’s arrange a sextupole at 

position 1, which is not affecting p0. Particle p1 will experience a 

gradient proportional to its displacement, therefore proportional to . 

B1QF QF B2
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If proper sextupole strength is chosen, the extra gradient exactly 

compensates the difference in gradient experienced by particles with 

different momenta in the preceding quadrupole. 

• However, in this process the sextupoles will in general introduce

geometric distortions. 

A procedure to eliminate chromatic aberrations without introducing 

second-order geometric aberrations is the following.

Chromatic corrections concepts
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Module for Sextupolar Chromatic corrections 

general concepts

Consider two FODO cells tuned with a phase advance mx,y= 90 deg for 

each cell. Such beam line may be referred to as a –I telescopic 

transformer, since the transfer matrix in both x and y planes is

A particle at entrance position 1 will emerge at exit position 2 with 

coordinates

If we place at position 1 a thin magnetic element that produces an 

angle kick K, the particle will exit at position 2 with

,

1 0

0 1
x y
R I

 
    

 

' '

2 1 2 1
    and    x x x x   

' '

2 1 2 1
    and    x x x x K     

Check point
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Module for Sextupolar Chromatic corrections

If we arrange a second magnetic element at position 2 producing 

another equal angle kick K, the exit coordinates are the same as 

they were without kick ..

Thus, when for mono-energetic particles with momentum p0 are 

submitted with equal angle kicks at entrance of a –I  transformer, 

there is no visible effect outside the –I transformer.

Let us arrange two identical elements at entrance and exit of –I 

transformer:

1) Dipoles: are even-order elements, angle kick is an even function of 

lateral displacement (assume constant function). Two identical dipole 

magnet will give no net angular deflection to a particle p0 outside the  

–I transformer.
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Module for Sextupolar Chromatic corrections

2) Quadrupoles: odd-order elements. The angular kick is an odd 

function of the lateral position x (angle kick proportional to x). Thus, 

two identical quadrupoles of opposite polarity will have no net effect 

for a particle p0 outside the –I transformer. [try it]

3) Sextupoles: sextupoles are even-order elements, the angular kick is 

proportional to x2. Thus, pairs of equal strength sextupoles will have 

no effect outside the –I transformer.

Thus, for the cancellation to be effective, pairs of elements at entrance 

and exit of –I transformer will have:

odd-order elements    opposite polarity

even-order elements  same polarity

Why do we need such a system?

Check point
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Sextupolar Chromatic corrections        

classical scheme

Principle of chromatic corrections: 

1. Sextupoles used to correct FD chromaticity, but introduce 

geometric aberrations

2. Place then two sextupoles of equal strength at entrance/exit of –I

transformer, and dipoles inserted in each cell of the transformer. 

From previous considerations, sextupoles do not introduce geometric 

aberrations. Dipoles generate dispersion and ensure coupling 

between sextupoles strength and chromatic behavior of particles. 

At least one chromatic correction per plane, sometimes two or more.. 

Nevertheless, M-I for off energy particles.

to FD
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Novel local chromaticity correction scheme

 IP  

FD  

D x 

sex tupoles 

dipole 
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P.Raimondi, A.Seryi, originally NLC FF and now adopted by all LC designs. 
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Chromaticity correction

Solution to compensate FD chromaticity is to use strong sextupole 

magnets in a dispersive region of lattice. Horizontal dispersion is 

generated at the FD location by weak dipoles judiciously placed to 

cause dispersion to be zero at the IP. A sextupole is placed near the 

FD. The non-linear kicks from the thin lens sextupole of integrated 

strength Ks/2:

For a thin lens FD:

2 2 2 21
( 2 )
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x K x x y

y K xy K y

  
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  
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  

  

Choosing                             the first order chromaticity kick vanish
*

1
0

S
K

L
 

Terms in  are the first order 

chromatic kicks and 2 is the 

second order dispersion term
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Chromaticity correction

*

1
    

S
K

L
 

Important: to compensate chromaticity, one can choose to run with 

higher dispersion (higher dipole strength) or higher sextupole strength. 

Compromise between synchrotron radiation generated in bends and 

geometric aberrations generated by sextupoles.

Unfortunately, still residual non-linear terms are left which cause 

aberrations if uncorrected

2 2 2

* *

*
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x x y
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y xy
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






    

 

Pure geometric terms 

( independent)

second order 

dispersion term

Note
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Chromaticity correction

Thus, the residual non-linear second order dispersion term can be 

cancelled either by producing X chromaticity in the upstream 
matching section, so the sextupoles run stronger and cancel the 

second order dispersion as well (see A. Seryi lecture), or allowing a 

small dispersion at a sextupole or both.



24

Chromaticity correction

The pure geometric ( independent) term is cancelled by placing 

sextupole/s upstream –I transformer at the same phase as the FD.

Improvement: MF and MD transformer shown between sextupoles 

allows better correction of higher order aberrations (with respect to a -I

transformer). Also typically a –I transformer suffers of the fact that M-I 
for off energy particles.

21
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with, for example:
Novel FFS
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Elements of LC Final Focus System 

Summary
In Linear Colliders, nanometer size beams are obtained by:

• Final Quadrupole Doublet telescopic system 

– FD Collateral effects: generate strong chromatic aberrations

• Sextupoles to correct FD chromatic aberrations 

– SEXT collateral effects: generate geometric aberrations

• Sextupoles located at beginning of -I transformer (or equivalent 

transform) then correct geometric aberrations

• Dipoles to supply dispersion for Sextupoles correction 

– BEND collateral effects: generate synchrotron radiation
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Interlaced pairs
Ideally, from second-order geometric aberrations point of view, is to 

assemble –I transformers that do not interfere between x, y planes 

(separated in space). This often requires prohibitively long and 

expensive sections. 

Consider interlaced sextupole pairs. A particle arrive at first sextupole 

S1 with displacement x1. As it gets to the first sextupole of pair S2, its 

motion is perturbed and particle reaches second sextupole S1 with a 

displacement not equal to –x1. Not exact cancellation from the second 

sextupole S1. However, since the disturbance by sextupole S2 is of 

order two, the uncorrected geometric aberrations of the pair S1 are 

then of order three and four  fine.


