

The US Particle Accelerator School January, 2011 in Norfolk, Virginia

STABILITY Lecture

How to get Luminosity

- To increase probability of direct $\mathrm{e}^{+} e^{-}$collisions (luminosity) and birth of new particles, beam sizes at IP must be very small
- E.g., ILC beam sizes just before collision (500GeV CM): 500 * 5 * 300000 nanometers

| $\left(\begin{array}{lll}x & y & z\end{array}\right)$ |
| :--- | :--- | :--- |
| Vertical size |
| is smallest |

if
 Stability - tolerance to FD motion

- Displacement of FD by dY cause displacement of the beam at IP by the same amount
- Therefore, stability of FD need to be maintained with a fraction of nanometer accuracy
- How would we detect such small offsets of FD or beams?
- Using Beam- beam deflection!
- How misalignments and ground motion influence beam offset?

ir

Beam-beam deflection

Sub nm offsets at IP cause large well detectable offsets (micron scale) of the beam a few meters downstream

What can cause misalignments of FD and other quads?

- Initial installation errors
- But if static, can eventually correct them out
- Non-static effects, such as ground motion (natural or human produced)
- In this lecture, we will try to learn how to evaluate effect of ground motion and misalignment on linear collider

:Ir IIL

 not so much about earthquakes...World Seismicity: 1975-1995

Random signal \& Power spectra

- Periodic signals can be characterized by amplitude (e.g. $\mu \mathrm{m}$) and frequency
- Random signals described by PSD (Power Spectral Density) which usually have units like ($\mathrm{m}^{2} / \mathrm{Hz}$)
- The way to make sense of PSD amplitude is to *by frequency range and take

ilr IIL

Ever-present ground motion and

vibration and its effect on LC

- Fundamental - decrease as $1 / \omega^{4}$
- Quiet \& noisy sites/conditions
- Cultural noise \& geology very important
- Motion is small at high frequencies...
- How small?

Power spectral density of absolute position data from different labs 1989-2001

if
 Natural ground motion is small IIL at high frequencies.

At $\mathrm{F}>1 \mathrm{~Hz}$ the motion can be < 1nm

1 micron
(I.e. much less than beam size in LC)

Is it OK?
What about low frequency motion?

It is much larger...

Rms displacement in different frequency bands. Hiidenvesy cave, Finland

ir
 IHGround motion in time and space

- To find out whether large slow ground motion relevant or not...
- One need to compare
- Frequency of motion with repetition rate of collider
- Spatial wavelength of motion with focusing wavelength of collider

iln IIL

Two effects of ground motion

in Linear Colliders

frequency

'slow motion'

'fast motion'

$$
F_{c} \sim F_{\text {rep }} / 20
$$

Beam offset due to slow motion can be compensated by feedback

May result only in beam emittance growth

Beam offset cannot be corrected by a pulse-topulse feedback operating at the $F_{\text {rep }}$

Causes beam offsets at the IP

if IIL

Focusing wavelength of a FODO linac.

FODO linac with beam entering with an offset

Betatron
wavelength is to be compared with wavelength of misalignment

ilt Movie of a Misaligned FODO linac next page

Note the following:
Beam follows the linac if misalignment is more smooth than betatron wavelength

Resonance if wavelength of misalignment ~ focusing wavelength

Spectral response function - how much beam motion due to misalignment with certain wavelength

Below, we will try to understand this behavior step by step...

FODO linac

It
 How to predict orbit motion or chromatic dilution

Let's consider a beamline consisting of misaligned quadrupoles with position $\mathbf{x}_{\mathbf{i}}(\mathbf{t})=\mathbf{x}\left(\mathbf{t}, \mathbf{s}_{\mathbf{i}}\right)$ of the \mathbf{i}-th element measured with respect to a reference line. Here s_{i} is longitudinal position of the quads. If $\mathbf{x}_{\text {abs }}(\mathbf{t}, \mathbf{s})$ is a coordinate measured in an inertial frame and the reference line passes through the entrance, than $\mathbf{x}(\mathbf{t}, \mathbf{s})=\mathbf{x}_{\text {abs }}(\mathbf{t}, \mathbf{s})-\mathbf{x}_{\text {abs }}(\mathbf{t}, \mathbf{0})$. We also

Misaligned quads. Here $\mathbf{x}_{\mathbf{i}}$ is quad displacement relative to reference line, and $\mathbf{a}_{\mathbf{i}}$ is BPM readings. assume that at $\mathbf{t}=\mathbf{0}$ the quads were aligned $\mathbf{x}(\mathbf{0}, \mathbf{s})=\mathbf{0}$.

We are interested to find the beam offset at the exit \mathbf{x}_{*} or the dispersion $\eta_{\mathbf{x}}$, produced by misaligned quadrupoles. Let's assume that $\mathbf{b}_{\mathbf{i}}$ and $\mathbf{d}_{\mathbf{i}}$ are the first derivatives of the beam offset and beam dispersion at the exit versus displacement of the element \mathbf{i}. Then the final offset, measured with respect to the reference line, and dispersion are given by summation over all elements:

$$
\begin{aligned}
& x_{*}(t)=R_{11} x_{i n j}(t)+R_{12} x_{i n j}^{\prime}(t)+\sum_{i=1}^{N} b_{i} x_{i}(t) \\
& \eta_{x}(t)=T_{116} x_{i n j}(t)+T_{126} x_{i n j}^{\prime}(t)+\sum_{i=1}^{N} d_{i} x_{i}(t)
\end{aligned}
$$

Is it clear why there is no a_{i} in this formula?

Where \mathbf{N} is the total number of quads, \mathbf{R} and \mathbf{T} are $1^{\text {st }}$ and $2^{\text {nd }}$ order matrices of the total beamline, and we also took into account nonzero position and angle of the injected beam at the entrance.

Predicting orbit motion and chromatic dilution ... random case

Let's assume now that the beam is injected along the reference line, then:

$$
\mathrm{x}_{*}(\mathrm{t})=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~b}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}(\mathrm{t}) \quad \eta_{\mathrm{x}}(\mathrm{t})=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{~d}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}(\mathrm{t})
$$

Assume that quads misalignments, averaged over many cases, is zero. Let's find the nonzero variance

$$
\left\langle\mathrm{x}_{*}^{2}(\mathrm{t})\right\rangle=\sum_{\mathrm{i}=1}^{\mathrm{N}} \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{~b}_{\mathrm{i}} \mathrm{~b}_{\mathrm{j}}\left\langle\mathrm{x}_{\mathrm{i}}(\mathrm{t}) \cdot \mathrm{x}_{\mathrm{j}}(\mathrm{t})\right\rangle \quad\left\langle\eta_{\mathrm{x}}^{2}(\mathrm{t})\right\rangle=\sum_{\mathrm{i}=1}^{\mathrm{N}} \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{~d}_{\mathrm{i}} \mathrm{~d}_{\mathrm{j}}\left\langle\mathrm{x}_{\mathrm{i}}(\mathrm{t}) \cdot \mathrm{x}_{\mathrm{j}}(\mathrm{t})\right\rangle
$$

Let's first consider a very simple case.
In case of random uncorrelated misalignment we have $\left\langle\mathrm{x}_{\mathrm{j}}(\mathrm{t}) \cdot \mathrm{x}_{\mathrm{j}}(\mathrm{t})\right\rangle=\sigma_{\mathrm{x}}^{2} \delta_{\mathrm{ij}} \quad\left(\sigma_{\mathrm{x}}\right.$ is rms misalignment, not the beam size)
So that, for example $\left\langle\mathrm{x}_{*}^{2}(\mathrm{t})\right\rangle=\sigma_{\mathrm{x}}^{2} \sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{b}_{\mathrm{i}}^{2} \quad$ And similar for dispersion

Now we would like to know what are these \mathbf{b} and \mathbf{d} coefficients.

Predicting x_{*} and η... what are these b_{i} and d_{i} coefficients

Let's consider a thin lens approximation. In this case, transfer matrix of \mathbf{i}-th quadrupole is (K>0 for focusing and $\mathbf{K}<0$ for defocusing)

$$
\left(\begin{array}{cc}
1 & 0 \\
-\mathrm{K}_{\mathrm{i}} & 1
\end{array}\right)
$$

A quad displaced by $\mathbf{x}_{\mathbf{i}}$ produces an angular kick $\theta=\mathbf{K}_{\mathbf{i}} \mathbf{x}_{\mathrm{i}}$ and the resulting offset at the exit will be $\mathrm{X}_{*}=\mathrm{r}_{12}^{\mathrm{i}} \mathrm{K}_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}$

Where r_{12}^{i} is the element of transfer matrix from i-th element to the exit

The coefficient $\mathbf{b}_{\mathbf{i}}$ is therefore

$$
\mathrm{b}_{\mathrm{i}}=\mathrm{r}_{12}^{\mathrm{i}} \mathrm{~K}_{\mathrm{i}}
$$

The coefficient $\mathbf{d}_{\mathbf{i}}$ is the derivative of $\mathbf{d}_{\mathbf{i}}$ with respect to energy deviation $\boldsymbol{\delta}$:

$$
\mathrm{d}_{\mathrm{i}}=\frac{\mathrm{d}}{\mathrm{~d} \delta}\left(\mathrm{r}_{12}^{\mathrm{i}} \mathrm{~K}_{\mathrm{i}}\right)=\frac{\mathrm{d}}{\mathrm{~d} \delta}\left(\mathrm{r}_{12}^{\mathrm{i}} \frac{\mathrm{~K}_{\mathrm{i}}(0)}{1+\delta}\right)
$$

Which is equal to $d_{i}=-K_{i}\left(r_{12}^{i}-t_{126}^{i}\right) \quad$ Where t_{126}^{i} is the $2^{\text {nd }}$ order transfer matrix from i-th element to the exit

i/f Transfer matrices for
 IIL FODO linac

Let's consider a FODO linac... No, let's consider, for better symmetry, a ($\mathrm{F} / 2 \mathrm{O}$ D O F/2) linac.
Example is shown in the figure on the right side.
The quadrupole strength is $\mathbf{K}_{\mathbf{i}}=\mathbf{K}(\mathbf{- 1})^{\mathbf{i}+1}$ (ignoring that first quad is half the length). The position of the quadrupoles is $\mathbf{S}_{\mathbf{i}}=(\mathbf{i}-\mathbf{1}) \mathbf{L}$ where L is quad spacing.
The betatron phase advance μ per FODO cell is given by $2 \sin \left(\frac{\mu}{2}\right)=|K| L$

The matrix element r_{12}^{i} from the i -th quad to the exit (N-th quad) is $\quad \mathrm{r}_{12}^{\mathrm{i}}=\sqrt{\beta_{\mathrm{i}} \beta_{\mathrm{N}}} \sin \left(\Psi_{\mathrm{i}}\right)$ Where Ψ_{i} is the phase advance from i-th quad and exit. Obviously, $\quad \Psi_{i}=\frac{\mu}{2}(\mathrm{~N}-\mathrm{i})$

And here β_{i} and β_{N} are beta-functions in the quads. For such regular FODO, the min and max values of beta-functions (achieved in quads) are

$$
\beta_{\text {max, min }}=\frac{L}{\tan \left(\frac{\mu}{2}\right)\left[1 \mp \sin \left(\frac{\mu}{2}\right)\right]}
$$

Since the energy dependence comes mostly from the phase advance (it has large factor of N) and the betafunction variation can be neglected, the second order

$$
\mathrm{t}_{126}^{\mathrm{i}} \approx-\mathrm{r}_{12}^{\mathrm{i}}(\mathrm{~N}-\mathrm{i}) \quad \tan \left(\frac{\mu}{2}\right) \frac{1}{\tan \left(\Psi_{\mathrm{i}}\right)}
$$ coefficients are given by

ir IIL

Example of random misalignments of FODO linac

[^0]
Random... is it possible?

- Now you have everything to calculate \mathbf{b} and \mathbf{d} coefficients and find, for example, the rms of the orbit motion at the exit for the simplest case - completely random uncorrelated misalignments.
- Completely random and uncorrelated means that misalignments of two neighboring points, even infinitesimally close to each other, would be completely independent.
- If we would assume that such random and uncorrelated behavior occur in time also, l.e. for any infinitesimally small Dt the misalignments will be random (no "memory" in the system) then it would be obvious that such situation is physically impossible. Simply because its spectrum correspond to white noise, l.e. goes to infinite frequencies, thus having infinite energy.
- We have to assume that things do not get changed infinitely fast, nor in space, neither in time. l.e., there is some correlation with previous moments of time, or with neighboring points in space.
- Let's consider the random walk (drunk sailor). In this case, together with randomness, there is certain memory in this process: the sailor makes the next step relative to the position he is at the present point.
- Extension of random walk model to multiple points in space and time is described by the "ATL law" [B.Baklakov, V.Parkhomchuk, A.Seryi, U.Shiltsev, et al, 1991].

The ATL motion

According to "ATL law" (rule, model, etc.), misalignment of two points separated by a distance L after time T is given by $\Delta X^{2} \sim A T L$ where A is a coefficient which may depend on many parameters, such as site geology, etc., if we are talking about ground motion. (The ATL-kind of motion can occur in other areas of physics as well.)

Such ATL motion would occur, for example, if step-like misalignments occur between points 1 and 2 and the number of such misalignments is proportional to elapsed time and separation between point. You then see that the average misalignment is zero, but the rms is given by the ATL rule.

Can you show this?

ATL ground measurements will be discussed later. Let's now discuss orbit motion in the linac for ATL ground motion.

Predicting orbit motion and chromatic dilution ... ATL case

So, we would like to calculate $\left\langle\mathrm{x}_{*}^{2}(\mathrm{t})\right\rangle=\sum_{\mathrm{i}=1}^{\mathrm{N}} \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{b}_{\mathrm{i}} \mathrm{b}_{\mathrm{j}}\left\langle\mathrm{x}_{\mathrm{i}}(\mathrm{t}) \cdot \mathrm{x}_{\mathrm{j}}(\mathrm{t})\right\rangle \quad$ for ATL case.
Let's rewrite ATL motion definition. Assume that there is an inertial reference frame, where coordinates of our linac are $\mathbf{x}_{\mathrm{abs}}(\mathbf{t}, \mathbf{s})$. Let's assume that at $\mathrm{t}=0$ the linac was perfectly aligned, and let's define misalignment with respect to this original positions as $\mathrm{x}(\mathrm{t}, \mathrm{s})=\mathrm{x}_{\text {abs }}(\mathrm{t}, \mathrm{s})-\mathrm{x}_{\text {abs }}(\mathrm{t}=0, \mathrm{~s})$
The ATL rule can then be written as: $\left\langle(\mathrm{x}(\mathrm{t}, \mathrm{s}+\mathrm{L})-\mathrm{x}(\mathrm{t}, \mathrm{s}))^{2}\right\rangle=\mathrm{A} \cdot \mathrm{t} \cdot \mathrm{L}$

Take into account that beam goes through the entrance (where $\mathrm{s}=0$) without offset and write:

$$
\mathrm{x}_{\mathrm{i}}=\mathrm{x}\left(\mathrm{t}, \mathrm{~s}_{\mathrm{i}}\right)-\mathrm{x}(\mathrm{t}, 0) \quad \mathrm{x}_{\mathrm{j}}=\mathrm{x}\left(\mathrm{t}, \mathrm{~s}_{\mathrm{j}}\right)-\mathrm{x}(\mathrm{t}, 0)
$$

Then rewrite $\mathbf{x}_{\mathbf{i}} \mathbf{x}_{\mathbf{j}}$ term as

$$
\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}=\frac{1}{2}\left[\left(\mathrm{x}\left(\mathrm{t}, \mathrm{~s}_{\mathrm{i}}\right)-\mathrm{x}(\mathrm{t}, 0)\right)^{2}+\left(\mathrm{x}\left(\mathrm{t}, \mathrm{~s}_{\mathrm{j}}\right)-\mathrm{x}(\mathrm{t}, 0)\right)^{2}-\left(\mathrm{x}\left(\mathrm{t}, \mathrm{~s}_{\mathrm{i}}\right)-\mathrm{x}\left(\mathrm{t}, \mathrm{~s}_{\mathrm{j}}\right)\right)^{2}\right]
$$

Now use ATL rule and get

$$
\left\langle\mathrm{x}_{\mathrm{i}} \mathrm{x}_{\mathrm{j}}\right\rangle=\frac{1}{2} \cdot A \cdot t \cdot\left(\left|\mathrm{~s}_{\mathrm{i}}\right|+\left|\mathrm{s}_{\mathrm{i}}\right|-\left|\mathrm{s}_{\mathrm{i}}-\mathrm{s}_{\mathrm{j}}\right|\right)
$$

Taking into account $\mathbf{S}_{\mathbf{i}}=(\mathbf{i}-\mathbf{1}) \mathbf{L}$ we have the final result for the rms exit

$$
\left\langle x_{*}^{2}(t)\right\rangle=\frac{A \cdot t \cdot L}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} b_{i} b_{j}((i-1)+(j-1)-|i-j|)
$$ orbit motion in ATL case:

ir IIL

Example of ATL misalignments of FODO linac

ilr

Slow and fast motion, again

- We know how to evaluate effect of ATL motion
- This motion is slow
- What about fast motion?
- Its correlation?
- Measured data?

I/ Correlation: relative motion of two elements IIL with respect to their absolute motion

- Beneficial to have good correlation (longer wavelength)
- Relative motion can be much smaller than absolute

Integrated (for F>Fo) spectra. SLC tunnel @ SLAC

Correlation of ground motion depends on velocity of waves (and distribution of sources in space)

P-wave, (primary wave, dilatational wave, compression wave) Longitudinal wave. Can travel trough liquid part of earth.

Velocity of propagation $\quad \mathrm{v}_{\mathrm{P}}=\sqrt{\frac{\lambda+2 G}{\rho}}$

S-wave, (secondary wave, distortional wave, shear wave) Transverse wave. Can not travel trough liquid part of earth

Velocity of propagation $\quad \mathrm{v}_{\mathrm{S}}=\sqrt{\frac{G}{\rho}} \quad$ typically $\quad \mathrm{v}_{\mathrm{S}} \approx \frac{\mathrm{v}_{\mathrm{P}}}{2}$
Here ρ - density, G and λ - Lame constants:

$$
G=\frac{E}{2(1+v)} \quad \lambda=\frac{v E}{(1+v)(1-2 v)}
$$

E-Young's modulus, v - Poisson ratio

Correlation measurements and interpretation

In a model of pane wave propagating on surface correlation = $\langle\cos (\omega \Delta L / v \cos (\theta))\rangle_{\theta}=$ $=J_{0}(\omega \Delta L / v)$ where U= phase velocity

Theoretical curves

ilr HL

Fermilab site

- Tunnel can be placed $\sim 100 \mathrm{~m}$ deep in geologically (almost) perfect Galena Platteville dolomite platform
- Top ground layer is soft - this increase isolation from external noises

Predicting orbit motion for arbitrary misalignments

So, we would like to calculate, for example, $\left\langle\mathrm{x}_{*}^{2}(\mathrm{t})\right\rangle=\sum_{\mathrm{i}=1}^{\mathrm{N}} \sum_{\mathrm{j}=1}^{\mathrm{N}} \mathrm{d}_{\mathrm{i}} \mathrm{d}_{\mathrm{j}}\left\langle\mathrm{x}_{\mathrm{i}}(\mathrm{t}) \cdot \mathrm{x}_{\mathrm{j}}(\mathrm{t})\right\rangle \quad$ in case of
arbitrary properties of misalignments
One can introduce the spatial harmonics $\mathbf{x}(\mathbf{t}, \mathbf{k})$ of wave number $\mathbf{k}=2 \pi / \lambda$, with λ being he spatial period of displacements:

$$
x(t, k)=\int_{-\mathcal{L} / 2}^{\mathcal{L} / 2} x(t, s) e^{-i k s} d s
$$

The displacement $\mathrm{x}(\mathrm{t}, \mathrm{s})$ can be written using the back transformation:

$$
x(t, s)=\int_{-\infty}^{\infty} x(t, k)\left(e^{i k s}-1\right) \frac{d k}{2 \pi} \quad \begin{aligned}
& \text { which ensures that at the } \\
& \text { entrance } \mathbf{x}(\mathbf{t}, \mathbf{s}=\mathbf{0})=\mathbf{0} .
\end{aligned}
$$

Then the variance of dispersion is

$$
\left\langle\eta_{x}^{2}(t)\right\rangle=\sum_{i} \sum_{j} d_{i} d_{j} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\langle x\left(t, k_{1}\right) x^{*}\left(t, k_{2}\right)\right\rangle\left(e^{i k_{1} s_{i}}-1\right)\left(e^{-i k_{2} s_{j}}-1\right) \frac{d k_{1}}{2 \pi} \frac{d k_{2}}{2 \pi}
$$

We can rewrite it as

$$
\left\langle\eta_{x}^{2}(t)\right\rangle=\sum_{i} \sum_{j} d_{i} d_{j} \int_{-\infty}^{\infty} P(t, k)\left(e^{i k s_{i}}-1\right)\left(e^{-i k s_{j}}-1\right) \frac{d k}{2 \pi}
$$

Where we defined the spatial power spectrum of displacements $\mathbf{x}(\mathbf{t}, \mathbf{s})$ as

$$
P(t, k)=\lim _{\mathcal{L} \rightarrow \infty} \frac{1}{\mathcal{L}} x(t, k) x^{*}(t, k)=\lim _{\mathcal{L} \rightarrow \infty} \frac{1}{\mathcal{L}}\left|\int_{-\mathcal{L} / 2}^{\mathcal{L} / 2} x(t, s) e^{-i k s} d s\right|^{2}
$$

Predicting orbit motion for arbitrary misalignments

So, we see that we can write the variance of dispersion (and very similar for the offset) in such a way, that the lattice properties and displacement properties are separated:

$$
\left\langle\eta_{x}^{2}(t)\right\rangle=\int_{-\infty}^{\infty} P(t, k) G(k) \frac{d k}{2 \pi}
$$

Here $G(k)$ is the so-called spectral response function of the considered transport line (in terms of dispersion):

$$
G(k)=g_{c}^{2}(k)+g_{s}^{2}(k)
$$

where

$$
g_{c}(k)=\sum_{i=1}^{N} d_{i}\left[\cos \left(k s_{i}\right)-1\right] \quad \text { and } \quad g_{s}(k)=\sum_{i=1}^{N} d_{i} \sin \left(k s_{i}\right)
$$

The spectral function for the offset will be the same, but $\mathbf{d}_{\mathbf{i}}$ substituted by $\mathbf{b}_{\mathbf{i}}$

2-D spectra of ground motion

Arbitrary ground motion can be fully described, for a linear collider, by a 2-D power spectrum $\mathbf{P}(\omega, \mathbf{k})$
If a 2-D spectrum of ground motion is given, the spatial power spectrum $\mathbf{P}(\mathbf{t}, \mathbf{k})$ can be found as

$$
P(t, k)=\int_{-\infty}^{\infty} P(\omega, k) 2[1-\cos (\omega t)] \frac{d \omega}{2 \pi}
$$

Example of 2-D spectrum for ATL motion:

$$
P(\omega, k)=\frac{A}{\omega^{2} k^{2}} \quad \text { And for } \mathbf{P}(\mathbf{t}, \mathbf{k}): \quad \mathrm{P}(\mathrm{t}, \mathrm{k})=\frac{\mathrm{A} \cdot \mathrm{t}}{\mathrm{k}^{2}}
$$

The 2-D spectrum can be used to find variance of misalignment. Again, assume that there is an inertial reference frame, where coordinates of our linac are $\mathbf{x}_{\text {abs }}(\mathbf{t}, \mathbf{s})$. And assume that at $\mathrm{t}=0$ the linac was perfectly aligned, and that misalignment with respect to this original positions is $x(t, s)=x_{\text {abs }}(t, s)-x_{\text {abs }}(t=0, s)$, its variance is given by

$$
\left\langle(\mathrm{x}(\mathrm{t}, \mathrm{~s}+\mathrm{L})-\mathrm{x}(\mathrm{t}, \mathrm{~s}))^{2}\right\rangle=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{P}(\omega, \mathrm{k}) 2 \cdot[1-\cos (\omega \mathrm{t})] 2 \cdot[1-\cos (\mathrm{kL})] \frac{\mathrm{d} \omega}{2 \pi} \frac{\mathrm{dk}}{2 \pi}
$$

You can easily verify, for example, that for ATL spectrum it gives the ATL formula
The (directly measurable !) spectrum of relative motion is given by

$$
\rho(\omega, L)=\int_{-\infty}^{\infty} P(\omega, k) 2[1-\cos (k L)] d k / 2 \pi
$$

Example of $\mathrm{P}(\omega, \mathrm{L})$ spectrum (model)

ils IIL

Behavior of spectral functions

Remember that before assuming that beams injected without offset we wrote that
$x_{*}(t)=R_{11} x_{i n j}(t)+R_{12} x_{i n j}^{\prime}(t)+\sum_{i=1}^{N} b_{i} x_{i}(t) \quad \eta_{x}(t)=T_{116} x_{i n j}(t)+T_{126} x_{i n j}^{\prime}(t)+\sum_{i=1}^{N} d_{i} x_{i}(t)$
It is easy to show that the coefficients b (and d) follow certain rules, which can be found in the next way. By considering a rigid displacement of the whole beam line, it is easy to find the identity

$$
\sum_{i=1}^{N} b_{i}=1-R_{11} \quad \text { and } \quad \sum_{i=1}^{N} d_{i}=-T_{116}
$$

On the other hand, one can show by tilting the whole beamıne by a constant angle that the coefficients satisfy for thin lenses the following identity:

$$
\sum_{i=1}^{N} b_{i} s_{i}+R_{12}=s_{\text {exit }} \quad \text { and } \quad \sum_{i=1}^{N} d_{i} s_{i}+T_{126}=0
$$

These rules allow to find behavior of the spectral functions at small k :

$$
\mathrm{g}_{\mathrm{c}}(\mathrm{k} \rightarrow 0) \approx \mathrm{O}\left(\mathrm{k}^{2}\right) \quad \mathrm{g}_{\mathrm{s}}(\mathrm{k} \rightarrow 0) \approx-\mathrm{k} \cdot \mathrm{R}_{12}+\mathrm{O}\left(\mathrm{k}^{3}\right)
$$

$$
\begin{array}{r}
g_{c}(k)=\sum_{i=1}^{N} d_{i}\left[\cos \left(k s_{i}\right)-1\right] \\
g_{s}(k)=\sum_{i=1}^{N} d_{i} \sin \left(k s_{i}\right)
\end{array}
$$

You see that if R_{12} is zero, effect of long wavelength is suppressed as k^{2}
ift
Example of spectral response function

Slow motion (minutes - years)

- Diffusive or ATL motion: $\Delta \mathbf{X}^{2} \sim A T L$
(T - elapsed time, L - separation between two points)
(minutes-month)
- Observed ' A ' varies by ~ 5 orders: 10^{-9} to $10^{-4} \mu \mathrm{~m}^{2} /(\mathrm{m} \cdot \mathrm{s})$
- parameter ' A ' should strongly depend on geology $=$ reason for the large range
- Range comfortable for NLC \mathbf{z} : $<10^{-6} \mu \mathrm{~m}^{2} /(\mathrm{m} \cdot \mathrm{s})$ Very soft boundary! Observed A at sites similar to NLC deep tunnel sites is several times or much smaller.
- Systematic motion: ~linear in time (month-years), similar spatial characteristics
- In some cases can be described as ATTL law :
- SLAC 17 years motion suggests $\Delta X^{2}=\boldsymbol{A}_{s} \mathbf{T}^{\mathbf{2}} \mathbf{L}$ with $A_{s} \approx 4 \cdot 10^{-12} \mu \mathrm{~m}^{2} /\left(\mathrm{m}^{\circ} \cdot \mathrm{s}^{2}\right)$ for early SLAC

;/r IIL

Slow but short λ ground motion

- Diffusive or ATL motions $\Delta \mathbf{X}^{2} \propto \boldsymbol{A}_{\mathbf{D}} \mathbf{T L}$ (minutes-month)
(T - elapsed time, L - separation between two points)

Place	$A \mu \mathrm{~m}^{2} /(\mathrm{m} \cdot \mathrm{s})$
HERA	$\sim 10^{-5}$
FNAL surface	$\sim 1-\mathrm{few}^{\star 1} 10^{-6}$
SLAC *	$\sim 5^{\star 1} 10^{-7}$
Aurora mine ${ }^{\star}$	$\sim 2^{\star 1} 10^{-7}$
Sazare mine	$\sim 10^{-8}$

if IIL

How diffusive ATL motion looks like?

- Movie of simulated ATL motion
- Note that it starts rather fast
- X2~L
- and it can change direction...

ilr IIL

How systematic motion looks like?

- Movie of simulated systematic motion
- Note that final shape may be the same as from ATL
- And it may resemble...

Systematic ground motion

ir IIL
 And in billion years...

Systematic motion

SLAC /linac tunnel in 1966-1983

- Year-to-year motion is dominated by systematic component
- Settlement...

Figure \bar{i} : Displacement of the SLAAC: Linar fimmet - Vertical.
Vertical displacement of SLAC linac for 17 years

Slow motion example: Aurora mine

- Slow motion in Aurora mine exhibit ATL behavior
- Here A~ 5*10-7 $\mu \mathrm{m}^{2} / \mathrm{m} / \mathrm{s}$
(similar value was observed at SLAC tunnel)

Slow motion in Aurora mine. Measured by hydrostatic level system.

Slow motion study (BINP-FNAL-SLAC)

NLC
Diffusion coefficients A [$10^{-7} \mu^{2} /(\mathrm{m} \cdot \mathrm{s})$]:
(10-100) for MI8 shallow tunnel in glacial till (in absence of dominating cultural motion);
~3 or below in deep Aurora mine in dolomite and in SLAC shallow tunnel in sandstone

Shallow tunnel in sedimentary/glacial geology - is a risk factor, both because of higher diffusive motion, and because of possibility of cultural slow motion.

Cultural effects on slow motion:
"2hour puzzle" - $10 \mu \mathrm{~m}$ motion occurring near one of the ends of the system

Reason: domestic water well which slowly and periodically change ground water pressure and cause ground to move

Large amplitude, rather short period, bad correlation - nasty for a collider

ilf IIL

Beam offset at the IP of NLC FF for different GM models

rms beam offset at IP: $\quad \propto \iint P(\omega, k) \cdot G(k) \cdot F(\omega) \cdot d k \cdot d \omega$

i/f Simulations of feedbacks and Final IIL
 Focus knobs

IP feedback, orbit feedback and dithering knobs suppress luminosity loss caused by ground motion

- Ground motion with

$$
A=5^{*} 10^{-7} \mu \mathrm{~m}^{2} / \mathrm{m} / \mathrm{s}
$$

${ }^{4}$ Simulated with MONCHOU

if IL

Detector complicates reaching FD stability

Cartoon from Ralph Assmann (CERN)

ilt

Detector is a noisy ground !

Measured ~30nm relative motion between South and North final triplets of SLC final focus. The NLC detector will be designed to be more quiet. But in modeling we pessimistically assume the amplitude as observed at SLD

if IIL

CLIC stability study

Quadrupole vibration:

On magnet top:
$X: \quad(0.4 \pm 0.1) n m$
$Y: \quad(0.9 \pm 0.1) n m$
(0.3 nm on table top)
Z: $\quad(3.2 \pm 0.4) \mathrm{nm}$
without cooling water.

With nominal flow of cooling water:
Y: $\quad(1.3 \pm 0.2) \mathrm{nm}$
Tight vertical linac tolerance demonstrated!

ift
 Beam-Beam orbit feedback

use strong beam-beam kick to keep beams colliding

if IIL

ILC intratrain simulation

ILC intratrain feedback (IP position and angle optimization), simulated with realistic errors in the linac and "banana" bunches, show Lumi ~2e34 (2/3 of design). Studies continue.

Luminosity through bunch train showing effects of position/angle scans (small). Noisy for first ~ 100 bunches (HOM's).

Luminosity for ~ 100 seeds / run

Injection Error $\left(\mathrm{RMS} / \sigma_{\mathrm{y}}\right): ~ 0.2,0.5,1.0$
[Glen White]

f/r Vibrations at detector
 Scheme of measurements:

- Floor noise in SLD pit and FF tunnel mostly affected by building ventilation and water compressor station
- Vibration on detector mostly driven by on-SLD door mounted racks, pumps, etc.
- This shows that it may be needed to place noisy detector equipment on separate platform nearby

i/f Model K IIL

lel C in $1-10 \mathrm{~Hz}$, above 20 Hz

- FFTB quad
- Small ($\sim 2 n m$ at 5 Hz) difference to ground
 (on movers, with water flow, etc.)
- Lower frequency is relevant for 5 Hz machine $(0.2-0.5 \mathrm{~Hz}$) but was not studied accurately
- The 10 nm goal may be achievable (for BDS area in gm B to B*3)

ift
 ILC linac quad stability

TTF cryomodules, since ~ 1995, were equipped with vibration sensors.

Studies at TTF were ongoing in September 2002 [1]. At that time there was still big uncertainty in the measured data, due to not well determined calibration at cold temperature, issues with sensor grounding, measured spectrum being limited to $<100 \mathrm{~Hz}$, etc.
[1] Private communication with DESY engineers Heiner Brueck and Erwin Gadwinkel.

TRC R2 :
"A sufficiently detailed prototype of the main linac module (girder or cryomodule with quadrupole) must be developed to provide information about on-girder sources of vibration."

- Recent progress in studies of quad stability in cryomodules
- use of piezo sensors

Most Recent results on cryo-module stability were presented at E-ILC meeting, January 2007, by R. Amirikas, A. Bertolini, W. Bialowons

in

Vibration study at TTF in cold

- Heiner Brueck et al., TESLA Meeting, Hamburg

03/31/2005

- Piezo sensors (cold) at the quad, in X and Y directions
- Sensors on top of the module, on ground, support, +geophone

Quadrupole at the End of the Cavity String in a Module

Heiner Brueck, et al.
//L
TTF vibration study - pump modification

- Decouple pump from cryomodule, use flexible pipe and foam under the pump

Heiner Brueck, et al.

Overview of Our Research Program \& Vibration Studies of a XFEL/ILC

 Cryomodule at Room Temperature R. Amirikas, A. Bertolini, W. Bialowons

if Site stability IIL studies

- Mine near FNAL

\% Stabilization studies IIL

- Experience inúalúable
- Components of developed hardware may be applicable

Development of sensors for IR

- Nonmagnetic inertial seismometers
- SLAC home built - low noise, as good as Mark4 geophone or better
- Molecular Electronic Transfer sensor - low noise, tested in 1.2T field, but cannot be cooled
- Interferometer methods
- Will need to use these or more advanced sensors to monitor FD motion

1 - Electrolyte channel 2 - Platinum mesh anodes 3 - Platinum mesh cathodes 4 - Microporous spacers 5 -Housing

- LA twin túninel: between tunnels and from surface (figs shown)
- Results are valuable for ILC

Mobility (response / driving force) measured in LA metro twin tunnel test and modeled with 3D code SASSI.

ilf
 IIL

Vibration isolation of vibration sources

- Should be a standard practice for ILC

Vibration on the floor us distance. For chiller on springs, its vibration effects are indistinguishable on the floor.

in
 IIL

FD magnet stability

- Stability of FD magnets need to be studied
- BNL preparing to measure stability of compact SC quads
- First results with CQS quad will be presented encouraging results
- Annecy group is aimed to study FD stability
(simulation \& experiments) with BNL FD design
- Studies at ATF2?

if IR stability IIL

- Vibration is not the only concern
- Temperature stability?
- Wakes heating the IR chamber and deforming it? During 1ms?
- SR should be well masked in IR, but may it cause deformations in other parts of BDS?
- Example of PEP-II: IR heated by SR from LER and is moving by 0.1 mm as e+ current vary

Current of Low Energy Ring, slope of the girder measured by HLS and wire, and reconstructed position of FD magnets for min and max LER current

[^0]: Example of misalignments and orbits

