

The Fringe Pattern of a Synchrotron-Light Interferometer

Alan Fisher SLAC National Accelerator Laboratory

Beam Diagnostics Using Synchrotron Radiation:
Theory and Practice
US Particle Accelerator School
University of California, Santa Cruz
San Francisco — 2010 January 18 to 22

Derivation of the Interference Pattern

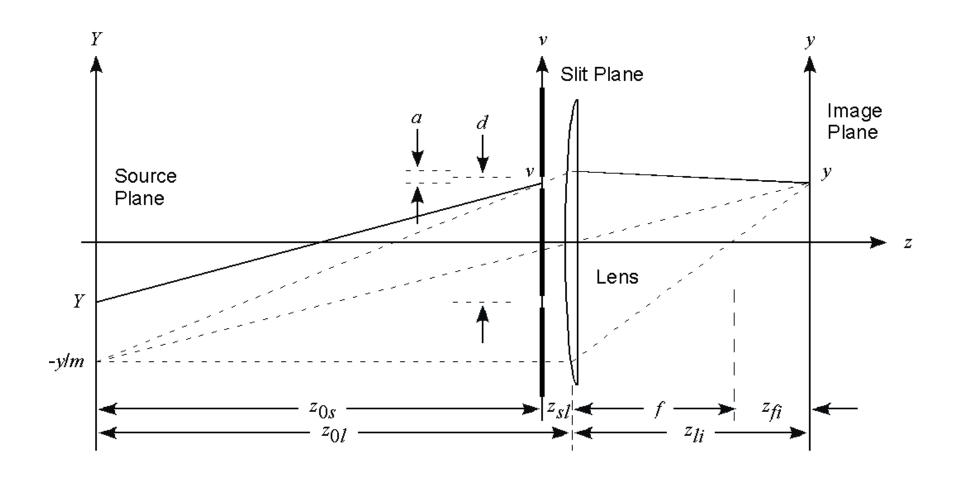
Assumptions:

- One dimensional (y)
- Two narrow, parallel slits of width a
- Small slit separation (center to center) d > a
- Slits are far from the source: $z_{0s} >> d$
- Small source size σ_0 , but comparable to slit width
- Nearly monochromatic light, due to a bandpass filter

Monochromatic Point Source

- Consider a point source at Y on the (X,Y) plane.
- The light is monochromatic at wavelength $\lambda = 2\pi/k$
- We calculate the intensity at a point y on the image plane (x,y).
- The two slits are on the (u,v) plane.
- The electric field at y is found using a Fraunhofer diffraction integral over the slit plane.
 - We will need the difference in the length of the optical path for all the rays leaving *Y* and arriving at *y*.

Layout of the Two-Slit Interferometer



Reference Path

- Compare all paths to a reference path that:
 - Leaves the source plane at -y/m
 - Here *m* is the magnification of the lens: $m = z_{li}/z_{0l}$
 - Is imaged geometrically to y on the image plane.
- All optical paths from -y/m to y have *equal* lengths.
 - A fundamental property of geometric imaging.
 - Applies to the imaged ray passing through the slit at *v*.
- Consider a ray leaving $Y \neq -y/m$ that diffracts in the slit at v with an angle that brings it to y.
 - Its path matches the imaging path from -y/m to v to Y after the slit...but not before.
 - This lets us compute the path difference Δs from the reference.

Difference in the Optical Path Length

$$\Delta s = \sqrt{(v - Y)^{2} + z_{0s}^{2}} - \sqrt{\left(v + \frac{z_{0l}}{z_{li}}y\right)^{2} + z_{0s}^{2}}$$

$$\approx \frac{1}{2z_{0s}} \left[-2v \left(Y + \frac{z_{0l}}{z_{li}}y\right) + Y^{2} - \left(\frac{z_{0l}}{z_{li}}y\right)^{2} \right]$$

$$= \frac{1}{2z_{0s}} \left[-2v \left(Y + \frac{fy}{z_{fi}}\right) + Y^{2} - \left(\frac{fy}{z_{fi}}\right)^{2} \right]$$

$$= -(gv + h)$$
where $\frac{1}{f} = \frac{1}{z_{0l}} + \frac{1}{z_{li}} = \frac{1}{z_{0l}} + \frac{1}{f + z_{fi}}$

Fraunhofer Diffraction Integral

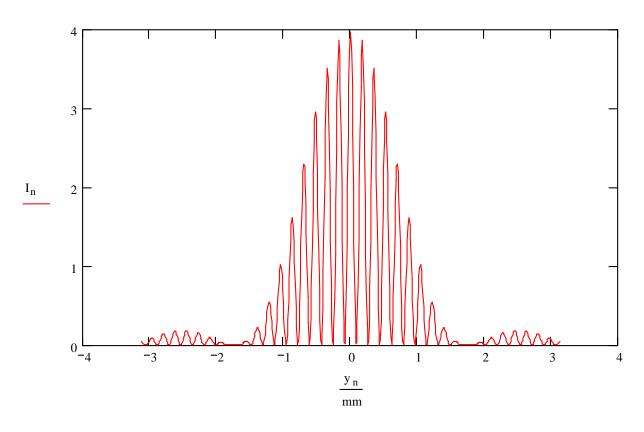
$$E(y,Y,k) = \int_{\text{slits}} e(v) \frac{1}{s_{Y,v}} \exp\left[iks_{Y,v} + iks_{v,y}\right] dv$$

$$= \int_{\text{slits}} \sqrt{A(v)} \exp\left[ik\Delta s + i\phi(v)\right] dv$$

$$= ae^{-ikh} \operatorname{sinc}\left(\frac{kga}{2}\right) \left(\sqrt{A_1}e^{-ikgd/2} + \sqrt{A_2}e^{ikgd/2 + i\phi_0}\right)$$

$$I(y,Y,k) = a^2 \operatorname{sinc}^2\left(\frac{kga}{2}\right) \left[A_1 + A_2 + 2\sqrt{A_1}A_2 \cos\left(kgd + \phi_0\right)\right]$$
Envelope from Individual Interference single-slit diffraction slits between slits

Fringes of a Monochromatic Point Source



Fringe pattern of a monochromatic point source at 450 nm, using parameters for the PEP-II HER interferometer at SLAC. $A_1 = A_2 = 1$, d = 5 mm, a = 0.5 mm.

Diffraction from an Extended Source #1

Replace point source at Y with a Gaussian:

$$\frac{1}{\sqrt{2\pi}\sigma_0} \exp \left[-\frac{1}{2} \left(\frac{Y - Y_0}{\sigma_0} \right)^2 \right]$$

- Source consists of independent electrons: Incoherent.
 - Integrate the intensity, not the electric field.
- Compare arguments: $sinc^2(kga/2)$ versus $cos(kgd + \phi_0)$
 - Recall that:

$$g = \frac{1}{z_{0s}} \left(Y + \frac{fy}{z_{fi}} \right) \sim \frac{1}{z_{0s}} \left(\sigma_0 + \frac{fy}{z_{fi}} \right)$$

- For d=5 mm, a=0.5 mm, $\lambda=450$ nm, $\sigma_0=0.3$ mm, $z_{0s}=10$ m:
 - $k\sigma_0 a/(2z_{0s}) = 0.105$

Small compared to zero of sinc at π

• $k\sigma_0 d/z_{0s} = 2.09$

Significant change in cosine phase

Diffraction from an Extended Source #2

• We remove the sinc from the integral over the source, getting:

$$I(y,k) = a^{2} \operatorname{sinc}^{2} \left[\frac{ka}{2z_{0s}} \left(Y_{0} + \frac{fy}{z_{fi}} \right) \right]$$

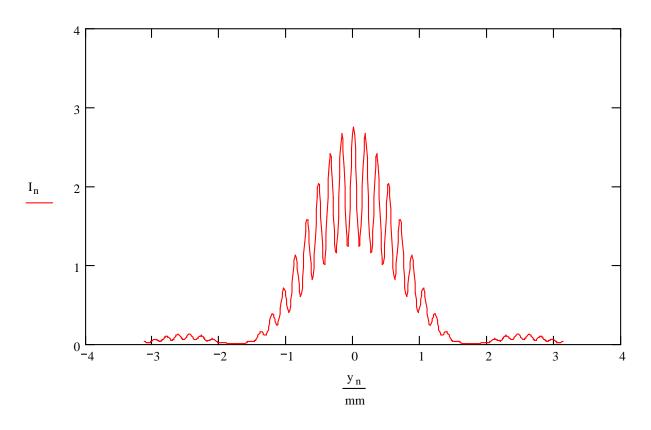
$$\bullet \left\{ A_{1} + A_{2} + \frac{2\sqrt{A_{1}A_{2}}}{\sqrt{2\pi}\sigma_{0}} \int \exp\left[-\frac{1}{2} \left(\frac{Y - Y_{0}}{\sigma_{0}} \right)^{2} \right] \cos\left[\frac{kd}{z_{0s}} \left(Y + \frac{fy}{z_{fi}} \right) + \phi_{0} \right] dY \right\}$$

$$= a^{2} \operatorname{sinc}^{2} \left[\frac{kg_{0}a}{2} \right] \left\{ A_{1} + A_{2} + 2\sqrt{A_{1}A_{2}} \exp\left[-\frac{1}{2} \left(\frac{k\sigma_{0}d}{z_{0s}} \right)^{2} \right] \cos\left(kg_{0}d + \phi_{0}\right) \right\}$$

where

$$g_0 = \frac{1}{z_{0s}} \left(Y_0 + \frac{fy}{z_{fi}} \right) = \frac{fy}{z_{0s} z_{fi}} - \theta_0 = \frac{y}{f + z_{fi} (1 - z_{sl} / f)} - \theta_0$$

Fringes of an Extended Source



Fringe pattern of an extended source, with σ_0 =0.2 mm

Quasi-Monochromatic Light #1

Pass synchrotron light through a narrow Gaussian filter:
$$\frac{1}{\sqrt{2\pi}\sigma_k} \exp\left[-\frac{1}{2}\left(\frac{k-k_0}{\sigma_k}\right)^2\right]$$

- Compare arguments: $\operatorname{sinc}^2(kg_0a/2)$ versus $\cos(kg_0d + \phi_0)$
 - Recall that:

$$g_0 = \frac{y}{f + z_{fi}(1 - z_{sl}/f)} - \theta_0$$

- Essentially g_0 is a scaled vertical coordinate with an offset θ_0 .
- Compare effect of σ_k to an argument of π , where sinc = 0.
- For $\Delta \lambda = 30$ nm FWHM:
 - $\pi \sigma_k / k_0 = 0.09$ Small
- Again we can remove the sinc from the integration over the bandpass filter.

Quasi-Monochromatic Light #2

$$I(y) = a^{2} \operatorname{sinc}^{2} \left[\frac{k_{0}g_{0}a}{2} \right]$$

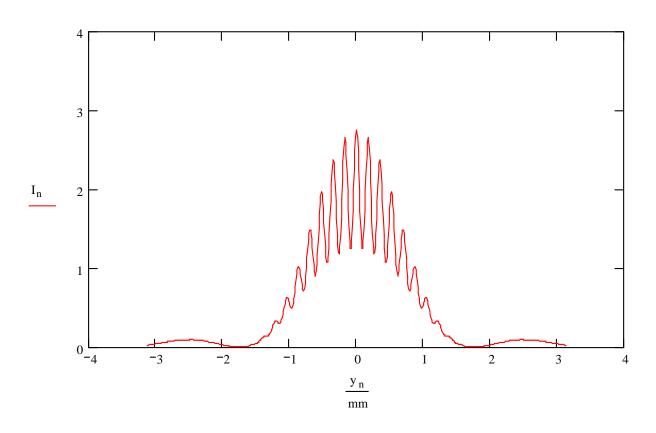
$$\bullet \left\{ A_{1} + A_{2} + \frac{2\sqrt{A_{1}A_{2}}}{\sqrt{2\pi}\sigma_{k}} \int \exp\left[-\frac{1}{2} \left(\frac{k - k_{0}}{\sigma_{k}} \right)^{2} \right] \exp\left[-\frac{1}{2} \left(\frac{k\sigma_{0}d}{z_{0s}} \right)^{2} \right] \cos\left(kg_{0}d + \phi_{0}\right) dk \right\}$$

$$= a^{2} \operatorname{sinc}^{2} \left[\frac{k_{0}g_{0}a}{2} \right] \left\{ A_{1} + A_{2} \right]$$

$$+ \frac{2\sqrt{A_{1}A_{2}}}{\sqrt{1 + \left(\frac{\sigma_{k}\sigma_{0}d}{z_{0s}} \right)^{2}}} \exp\left[\frac{\left(\frac{k_{0}\sigma_{0}d}{z_{0s}} \right)^{2} + \left(\sigma_{k}g_{0}d}{z_{0s}} \right)^{2}}{2\left[1 + \left(\frac{\sigma_{k}\sigma_{0}d}{z_{0s}} \right)^{2} \right]} \cos\left[\frac{k_{0}g_{0}d}{1 + \left(\frac{\sigma_{k}\sigma_{0}d}{z_{0s}} \right)^{2}} + \phi_{0} \right] \right\}$$
Beam size

Bandwidth

Fringes with a Bandpass Filter



Fringe pattern using a Gaussian bandpass filter with a full width at half maximum (FWHM) of $\Delta \lambda = 30$ nm.

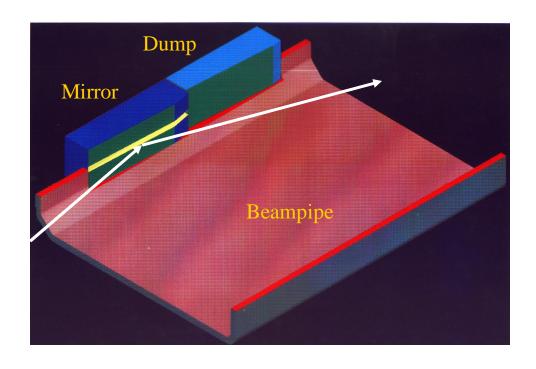
Compare to van Cittert and Zernicke

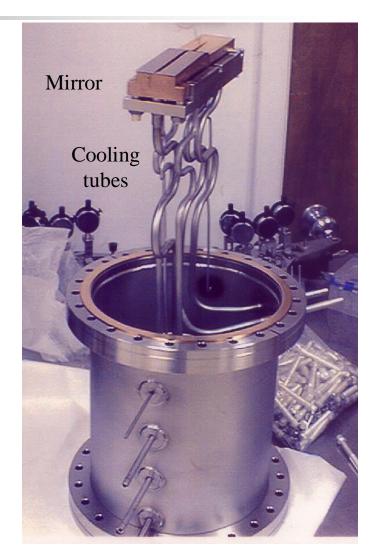
- We previously looked at the derivation of van Cittert and Zernicke (VCZ). Is this approach the same?
- VCZ:
 - The "degree of coherence" $\mu(A_1,A_2)$ between two apertures due to the finite source.
 - VCZ says that, for a narrow-band source, this expression resembles the diffraction pattern on the slit plane due to the source.
 - The intensity pattern on the camera is then determined from the single-aperture patterns and μ .
- My approach changes the order, but reaches the same result:
 - First do the full calculation through two slits to the camera for a monochromatic point source.
 - Next include the finite size.
 - Finally add the narrow bandwidth.

Interferometry on SPEAR-3



First Mirror (M1) in the HER of PEP-II





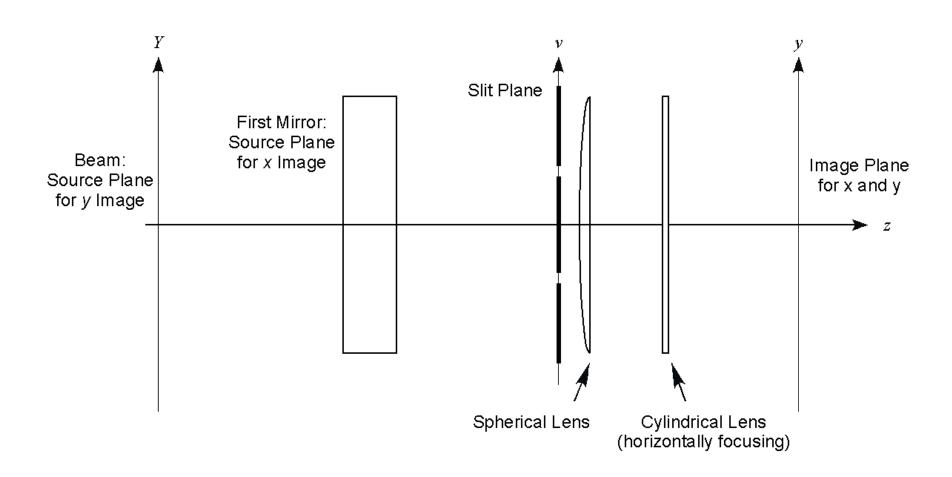
Distortion of PEP's First Mirror

- The first mirror in PEP-II takes a huge heat load, even with grazing incidence to spread out the heat.
 - Extensive (and stiff) stainless-steel water-cooling tubes on the rear add mechanical stress.
- A slot along the midplane of the mirror is meant to allow the narrow and hot x-ray fan to bypass the mirror and hit a separate dump.
 - Some folding of the mirror about the slot.
- Thermal and mechanical stresses reduce image quality and would decrease fringe contrast in an interferometer.

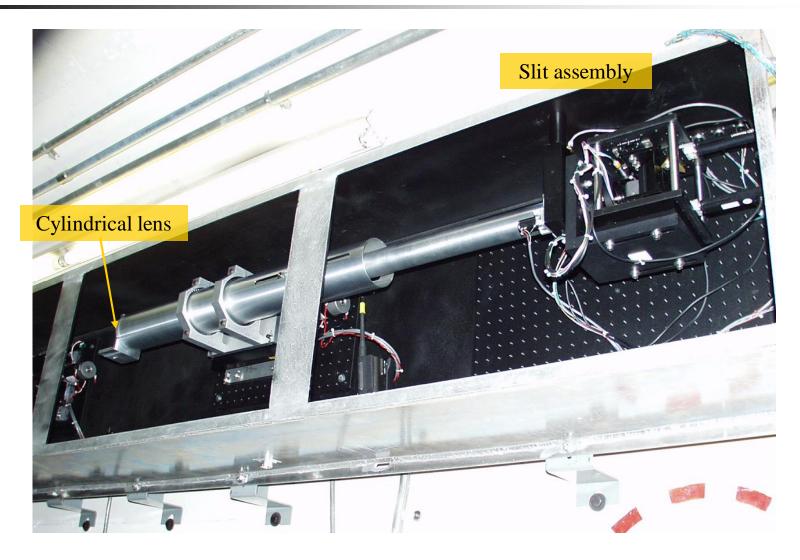
Compensation with a Cylindrical Lens

- Interferometer slits pass light from two thin horizontal stripes along M1.
 - Little of M1's surface contributes...and we can reduce this more.
- Beam is imaged through the slits onto the camera.
 - Fringes of a vertical (y) interferometer measurement form a series of parallel horizontal lines on the camera.
 - Beam size is calculated from the intensity variation along y.
- The direction along the stripes (x) is less interesting.
 - Change the focal length horizontally to image M1, not the beam.
 - Insert a cylindrical lens to shorten the focal length in *x* only.
 - Position along each stripe corresponds to an *x* coordinate of M1.
 - Computer selects x value with best fringe visibility on the camera.
- The interferometer uses only two small rectangles, selected for fringe quality, on M1's surface.

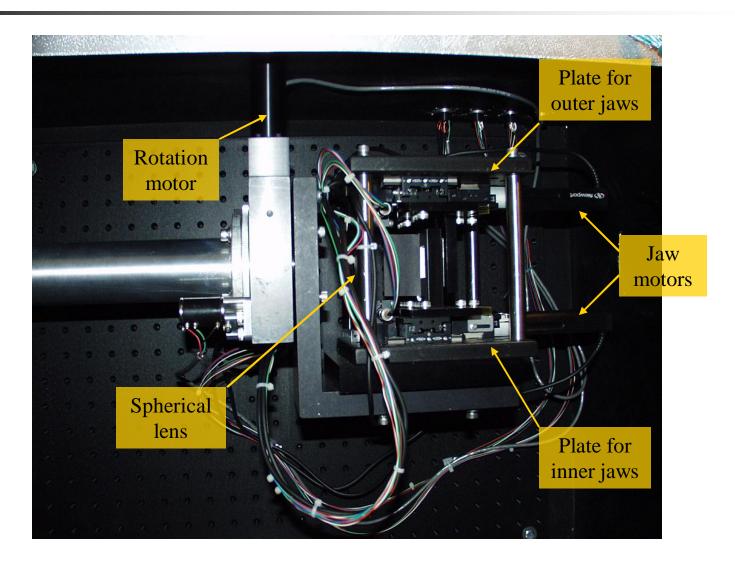
Adding the Cylindrical Lens



LER Interferometer on Tunnel Wall

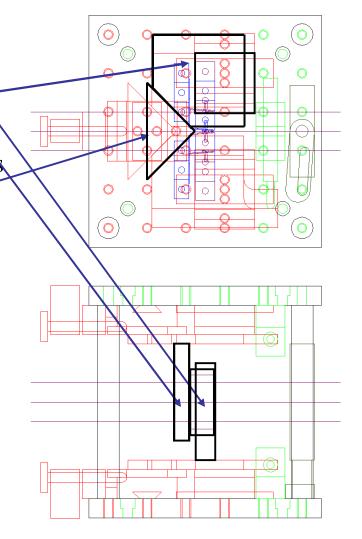


Double-Slit Assembly



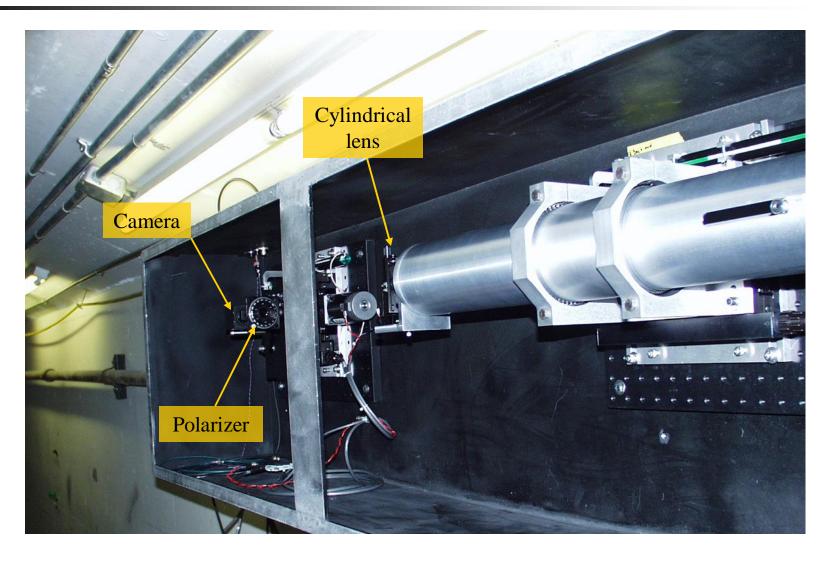
Sketch of Slit Assembly

- Inner jaws mounted from lower plate.
- Outer jaws mounted from upper plate,
- Each jaw is on a translation stage with no motor, moving transversely.
- A third, motorized stage on each plate moves longitudinally, spreading the jaws with a wedge.

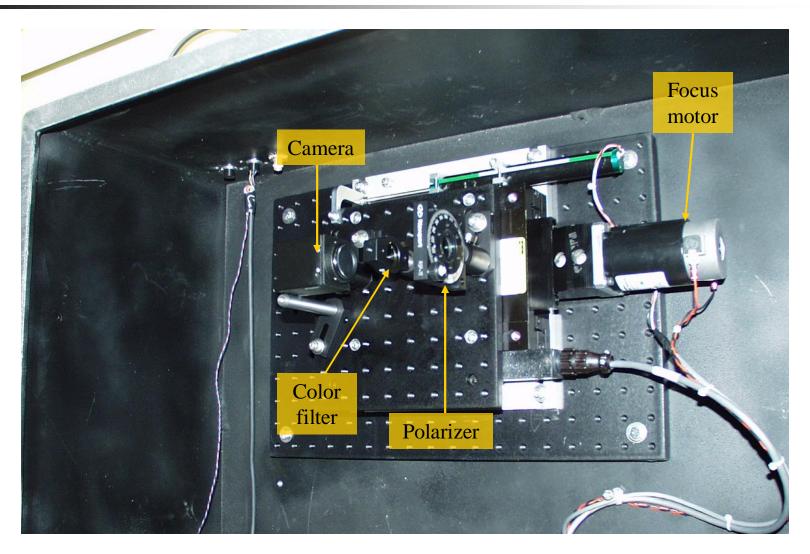


Fisher — Synchrotron-Light Interferometers

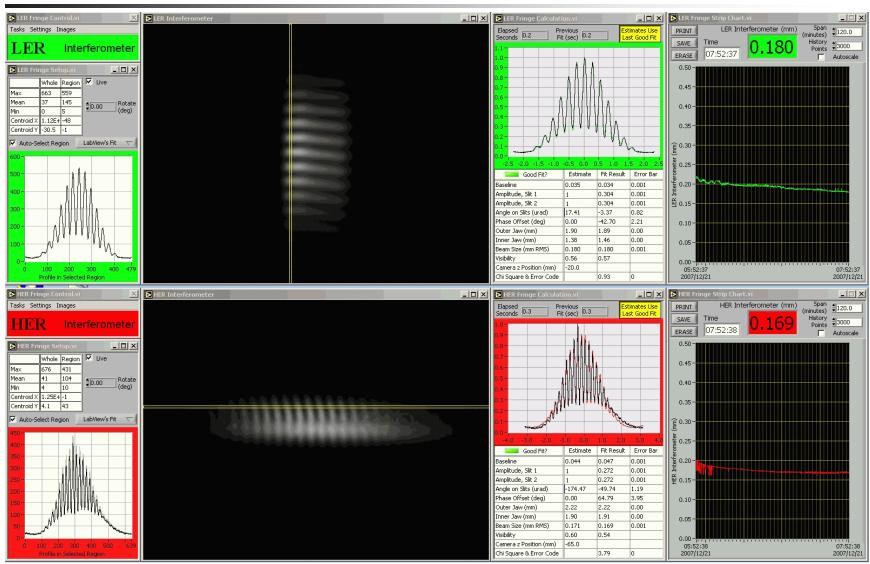
Cylindrical Lens to Camera



Polarizer, Filter, and Camera



PEP-II Interferometer Software



2010-01-20

Fisher — Synchrotron-Light Interferometers