

Sources and Properties of Synchrotron Radiation

Alan Fisher

SLAC National Accelerator Laboratory

Beam Diagnostics Using Synchrotron Radiation: Theory and Practice US Particle Accelerator School University of California, Santa Cruz San Francisco — 2010 January 18 to 22

- A relativistic charge q = Ze with mass $m = \mu m_e$, velocity $\beta c \approx c$, and energy $E = eE_{eV} = \gamma mc^2$ travels through a dipole with a uniform field B_d .
 - Radius of curvature of the orbit:

$$\rho = \frac{\gamma \beta mc}{qB_d} \approx \frac{E_{\rm eV}}{ZcB_d}$$

- In the LHC, lead ions will sometimes be used in place of 7-TeV protons. Since ρ and B_d are unchanged, the maximum ion energy must be Z = 82 times higher—574 TeV, or 100 µJ *per ion*!
- Power emitted in synchrotron radiation: $P_s = \frac{2}{3}Z^2 W_0 \gamma^4 \frac{c^2}{\rho^2}$

• We define:
$$W_0 = \frac{e^2}{4\pi\varepsilon_0 c} = r_e m_e c = 7.6956 \times 10^{-37} \,\mathrm{J} \cdot \mathrm{s}$$

- $r_e = 2.818$ fm is called the "classical electron radius"
- The factor of γ^4 can make the radiated power substantial—except in the LHC, where $\rho = 6$ km.

• The "critical energy" for the charge in the dipole is:

$$E_c = \hbar \omega_c = \frac{3}{2} \gamma^3 \hbar \frac{c}{\rho}$$

- ω_c is the revolution frequency c/ρ , but scaled by γ^3 .
- Half the total energy is below E_c , half above.
- For electrons (and positrons), the factor of γ^3 moves ω_c from the revolution frequency (~1 MHz) to x-rays.
 - Almost all power is emitted as hard photons.
 - Visible light is far into the tail.

• The charge passing through the magnet emits energy:

$$W_{d} = Z^{2} \frac{3}{4\pi^{2}} W_{0} \left(\frac{\omega}{\omega_{c}}\right)^{2} \left[\left(1+\psi^{2}\right)^{2} K_{2/3}^{2}(\zeta) + \left(1+\psi^{2}\right)\psi^{2} K_{1/3}^{2}(\zeta)\right] d\omega d\xi d\psi$$

- $d\omega$ is the frequency interval.
- $d\xi d\psi = d\Omega / \gamma^2$ is the normalized solid angle:
 - ξ and ψ are the horizontal and vertical angles respectively, both divided by the characteristic $1/\gamma$ angle of the radiation.
 - Note that Hofmann does not normalize these angles.
- $K_{2/3}$ and $K_{1/3}$ are modified Bessel functions, with argument:

$$\zeta = \frac{\omega}{2\omega_c} \left(1 + \psi^2\right)^{3/2}$$

- The Bessel terms describe the two polarization components:
 - $K_{2/3}$: In the plane of the bend (usually the horizontal plane)
 - $K_{1/3}$: Perpendicular to the bend plane (and so usually vertical)

	Particle Type	Beam Energy	Normalized Energy	Beam Current	Ring Circum- ference	Dipoles		Synchrotron Radiation		
Ring						Radius of Curvature	Critical Wave- length	Power in Dipoles	Average Power	Per Particle Per Turn
		E	$\gamma = \frac{E}{mc^2}$	Ι	С	ρ	λ_{c}	$\frac{I}{ec}P_s$	$2\pi\rho \frac{I}{ec}P_s$	$\frac{2\pi\rho}{c}P_s$
		[GeV]		[A]	[m]	[m]	[nm]	[W/m]	[W]	[eV]
SPEAR-3	<i>e</i> ⁻	3.0	5,870	0.5	234	7.86	0.163	9,230	460,000	912,000
PEP-2 HER	<i>e</i> ⁻	9.0	17,610	2.0	2,200	165	0.127	6,790	7,040,000	3,520,000
PEP-2 LER	<i>e</i> ⁺	3.15	6,160	2.5	2,200	13.75	0.246	18,300	1,580,000	633,000
LHC	p	450	480	0.582	26,659	6,013	228,000	8.2E-07	0.0309	0.0531
LHC	р	7,000	7,460	0.582	26,659	6,013	60.7	0.048	1,810	3,110
LHC	208Pb ⁸²⁺	574,000	2,960	0.0061	26,659	6,013	968	0.084	3,170	520,000

Spectrum near Critical Frequency 10 10 10 W_d / W_0 , integrated over ψ 10 10 10 10 10 10⁻² 10⁻¹ 10⁰ 10¹ 10 E/E

- Normalized dipole emission, intergrated over vertical angle ψ, versus energy E/E_c
- Long tail for $E < E_c$
 - Visible light $\ll E_c$ for electron rings
- Rapid drop in emission for $E > 10E_c$
- Peak is below E_c

Critical Wavelength vs. LHC Beam Energy

- Cameras respond from near IR to near UV
- Proton emission wavelengths are too long to see below ~1.2 TeV
- Ion emission is too long below ~3 TeV
 - Ion energy given as "equivalent proton energy": Dipole set to the same field as for 3-TeV protons

2010-01-18

- The vertical component is zero on the midplane ($\psi = 0$).
 - Symmetry: No preference for upward versus downward field.
- 7 times more radiation is polarized horizontally than vertically.
- Low photon energies span a wider range of angles.

- Profile in visible light is much weaker and broader than with x rays.
- Profile of horizontally polarized light is roughly Gaussian, but with a flatter top and smaller tails.
- Plots here are for emission from the PEP-2 HER at $\lambda = 450$ nm.
- The area under the horizontal profile is ~3 times the area under the vertical.

- Characteristic RMS angular size of the radiation:
 - A function of λ/λ_c
 - At the critical wavelength (x rays), the angular width is $0.6/\gamma$.
 - $1/\gamma$ is also typical of the full spectrum.
 - But for visible light (from electrons, with λ >> λ_c), the RMS width is almost *independent* of γ.

$$\sigma_{\lambda} = \frac{2.8}{\gamma} \sqrt{\frac{2}{\pi}} \cdot \begin{cases} \left(\frac{\lambda}{10\lambda_{c}}\right)^{0.354} \text{ for } \lambda > 10\lambda_{c} \\ \left(\frac{\lambda}{10\lambda_{c}}\right)^{0.549} \text{ for } \lambda < 10\lambda_{c} \end{cases} = 2.8 \sqrt{\frac{2}{\pi}} \cdot \begin{cases} \gamma^{0.062} \left(\frac{3}{40\pi} \frac{\lambda}{\rho}\right)^{0.354} \text{ for } \lambda > 10\lambda_{c} \\ \gamma^{0.647} \left(\frac{3}{40\pi} \frac{\lambda}{\rho}\right)^{0.549} \text{ for } \lambda < 10\lambda_{c} \end{cases}$$

- We've implicitly assumed that our distant observer receives the full $1/\gamma$ light cone of the particle as it bends through an angle θ in a constant dipole field.
 - The dipole must be long enough: $L_d = \rho \theta > \rho / \gamma$

Ring	Particle	E	L_d	ρ	ρ/γ	Comments
		[GeV]	[m]	[m]	[m]	
PEP-2 LER	Positron	3.15	0.45	13.75	0.0022	Dipoles in e^{\pm} rings are generally long
LHC	Proton	450	9.5	6013	12.5	Dipole emits no visible at this energy
		3000	9.5	6013	1.88	Begin to use light from dipole center
		7000	9.5	6013	0.81	
LHC	Pb Ion	7000	9.5	6013	2.03	

- If the dipole is short, the observer sees a faster "blip" of radiation, which pushes the spectrum to higher frequencies.
- Rapidly rising edge field of a (long) dipole has the same effect.

$$B(z) = \frac{B_d}{2} \left(1 + \frac{2}{\pi} \arctan \frac{z}{L_e} \right)$$

• Edge radiation can be useful with protons, since the wavelengths from the central region of the dipole are often too long for the camera.

• A charge passing through a magnet edge emits energy:

$$W_{e} = Z^{2} \frac{8}{9\pi^{2}} W_{0} \left(\frac{\omega_{c}}{\omega}\right)^{2} \frac{\left(1 - \xi^{2} + \psi^{2}\right)^{2} + \left(2\xi\psi\right)^{2}}{\left(1 + \xi^{2} + \psi^{2}\right)^{6}} \exp\left[-\frac{\omega L_{e}}{\gamma^{2}c} \left(1 + \xi^{2} + \psi^{2}\right)\right] d\omega d\xi d\psi$$

- Note that this expression diverges at low frequencies. Why?
 - Time the observer receives the edge radiation: $(1/\beta 1)L_e/c = L_e/(2\gamma^2 c)$
 - Characteristic time of radiation from the center of the magnet: $1/\omega_c$
 - To make a useful distinction between edge and central radiation, we assume that the edge radiation is faster: $L_e/(2\gamma^2 c) << 1/\omega_c$
 - But this is the same as the condition that the edge is short: $L_e << \rho/\gamma$
 - The derivation is only meaningful for $\omega >> \omega_c$
 - No divergence in the region of validity

- Combine radiation from many consecutive bends.
 - Alternate bend directions to enter and exit on the same line.
- Periodic motion introduces new considerations:
 - A wavelength resonant with the "wiggle" motion.
 - The amplitude of the wiggle makes a difference.

- An undulator made with permanent magnets.
- Other designs use permanent magnets with iron poles (a "hybrid"), electromagnets, and superconductors.
- The light is horizontally polarized on the midplane.
- Helical undulators are also used. The light is circularly polarized on axis.

- Sinusoidal vertical magetic field B_{y} , with period λ_{u}
- Acceleration of charge q
 - t' is the time at q
 - The observer receives the radiation at a later time t
 - Significant because q moves toward the observer
- Velocity (*x* and *z*)

$$B_{y}(z) = B_{u} \cos(k_{u} z)$$
$$\lambda_{u} = 2\pi/k_{u}$$
$$\frac{d^{2}x}{dt'^{2}} = -\frac{qB_{u}}{\gamma m}\frac{dz}{dt'}\cos[k_{u} z(t')]$$

moves toward the observer
Velocity (x and z)

$$\frac{dx}{dt'} = -\frac{qB_u}{\gamma m k_u} \sin(k_u z) = -\frac{c}{\gamma} K_u \sin(k_u z)$$

$$\frac{dz}{dt'} = \sqrt{\left(\beta c\right)^2 - \left(\frac{dx}{dt'}\right)^2} = \beta c \sqrt{1 - \left(\frac{K_u}{\beta \gamma}\right)^2} \sin^2(k_u z)$$
Angle of wiggle to the z axis

$$\frac{dx}{dz} = \frac{dx/dt'}{dz/dt'} = -\frac{K_u}{\beta \gamma} \frac{\sin(k_u z)}{\sqrt{1 - \left[\frac{K_u}{\beta \gamma} \sin(k_u z)\right]^2}}$$
Ob 18

2010-01-18

Fisher — Imaging with Synchrotron Light

14

$$K_{u} = \frac{qB_{u}}{mck_{u}} = \frac{Z}{\mu} \cdot \frac{eB_{u}\lambda_{u}}{2\pi m_{e}c} = \frac{Z}{\mu}K_{ue} = 0.9337\frac{Z}{\mu}B_{u}[T]\lambda_{u}[cm]$$

- Since $\gamma >> 1$ and $\beta \approx 1$:
 - $dx/dt' \ll c$ and $dz/dt' \approx \beta c \approx c$
 - The maximum of the angle $dx/dz = K_u/(\beta\gamma) \approx K_u/\gamma <<1$
- K_u is the ratio of the angle of the wiggle motion to the opening angle of the radiation, $1/\gamma$.
 - As the particle passes through the undulator, the observer is always inside the radiation cone.
 - Each undulator pole (each half period) is a short magnet.
- Due to the large mass, protons or lead ions have $K_u \ll 1$

- Angle remains small, but requires expanding to 2^{nd} order in $K_u/\gamma \ll 1$.
- Can't neglect the modulation of the *z* velocity.
 - A magnetic field does not change the beam energy: γ and $\beta = \sqrt{1 - 1/\gamma^2}$ are still constants.
 - But this energy is shared between x and z.
 - The z motion has an average drift velocity β^*c :

$$\left\langle \frac{dz}{dt'} \right\rangle \equiv \beta^* c = \beta c \left(1 - \frac{K_u^2}{4\beta^2 \gamma^2} \right) < \beta c$$
$$\gamma^* = \frac{1}{\sqrt{1 - \beta^{*2}}} = \frac{\gamma^2}{1 + K_u^2/2}$$

• In a frame moving at this drift velocity, the charge moves in a figure 8.

- Charge moves along z axis by one undulator period in time $t = \lambda_u / (\beta^* c)$
- Wavefront of light at an angle $\theta \ll 1$ to z moves along z by $ct/\cos\theta > \lambda_u$
 - Charge slips behind phase of light
- At the resonant optical wavelength λ_1 (with *n*th harmonic $\lambda_n = \lambda/n$):
 - Charge slips behind light by λ_1 per undulator period λ_u
 - Each period, kinetic energy is lost (gained): converted to (or taken from) light
 - Spontaneous emission from undulator has peaks at λ_n
 - In a free-electron laser (FEL), this gives gain at λ_1 :
 - Charges form one bunch per wavelength λ_1 , causing stronger emission at λ_1

Slippage:
$$\frac{\lambda_u}{\beta^* \cos \theta} - \lambda_u = \lambda_1$$

Gives resonance condition:

$$\frac{\lambda_1}{\lambda_u} = \frac{1 + \gamma^2 \theta^2 + K_u^2/2}{2\gamma^2}$$

2010-01-18

Fisher — Imaging with Synchrotron Light

Fisher — Imaging with Synchrotron Light

Undulator: Angular Spectral Energy Density

$$W_{u} = \frac{Z^{4}}{\mu^{2}} W_{0} N_{u}^{2} K_{ue}^{2} \frac{\left(1 - \xi^{2} + \psi^{2}\right)^{2} + \left(2\xi\psi\right)^{2}}{\left(1 + \xi^{2} + \psi^{2}\right)^{4}} f_{\omega} d\omega d\xi d\psi$$
$$f_{\omega} = \left(\frac{2\omega}{\omega + \omega_{1}}\right)^{2} \operatorname{sinc}^{2} \left(\pi N_{u} \frac{\omega - \omega_{1}}{\omega_{1}}\right)$$

- The sinc term (where sinc $x = (\sin x)/x$) causes the spectrum to peak at the first harmonic $\omega_1 = 2\pi c/\lambda_1$
- The peak is very narrow when the number of periods, N_u , is large.

Wiggler: Angular Spectral Energy Density

• A complicated sum over harmonics *h* and Bessel functions *l*.

$$\begin{split} W_{w} &= \frac{Z^{4}}{\mu^{2}} W_{0} N_{u}^{2} K_{ue}^{2} \sum_{h=1}^{\infty} h^{2} F_{h}(\theta, \phi) f_{\omega h} d\omega \gamma^{2} \theta d\theta d\phi \\ f_{\omega h} &= \operatorname{sinc}^{2} \left(\pi N_{u} \frac{\omega - h\omega_{1}}{\omega_{1}} \right) \\ F_{h} &= \frac{\left(2S_{h1} \gamma^{*} \theta \cos \phi - S_{h2} K_{u}^{*} \right)^{2} + \left(2S_{h1} \gamma^{*} \theta \sin \phi \right)^{2}}{K_{u}^{*2} \left(1 + K_{u}^{2} / 2 \right)^{2} \left(1 + \gamma^{*2} \theta^{2} \right)^{2}} \\ S_{h1} &= \sum_{l=-\infty}^{\infty} J_{l}(ha_{u}) J_{2l+h}(hb_{u}) \qquad S_{h2} &= \sum_{l=-\infty}^{\infty} J_{l}(ha_{u}) \left[J_{2l+h+1}(hb_{u}) + J_{2l+h-1}(hb_{u}) \right] \\ K_{u}^{*2} &= \frac{K_{u}^{2}}{1 + K_{u}^{2} / 2} \qquad a_{u} &= \frac{K_{u}^{*2}}{4 \left(1 + \gamma^{*2} \theta^{2} \right)} \qquad b_{u} &= \frac{2K_{u}^{*} \gamma^{*} \theta \cos \phi}{1 + \gamma^{*2} \theta^{2}} \end{split}$$

Fisher — Imaging with Synchrotron Light

• Same shape, but bandwidth is inversely proportional to the number of periods.

- At high K_u , there is more power in the odd harmonics than in the fundamental.
- Symmetry forbids power in even harmonics on axis ($\theta = 0$).
- Increasing K_u lowers the fundamental energy, following the resonance condition.

Spontaneo	us		
1.000	Beam Energy [GeV]	Spontaneous Emission from an Undulator	
250	Bunch Charge (pC)	Select a Task	Energy in Harmonics
0.3	Undulator K	Emission vs photon energy at fixed theta and phi	Harmonic J/rad^2*eV
30	Undulator Period [mm]		2 0
50	Number of Periods		4 0 5 7.27e-008
0	Theta [urad]		7 3.445e-010
0	Phi [degrees]		9 1.506e-012 10 0 11 6.274e-015
1:25	Harmonic Range		
First-Harm	nonic Emission:		14 0
302.91	Photon Energy [eV]		15 9.9726-020
4.0931	Wavelength [nm]		17 3.861e-022 18 0
— Polariza C X ar	tion nd Y	Definitions: Theta = Angle from z (spherical coordinates) Phi = Angle from x on xy plane (spherical coordinates)	

LCLS Wiggler Section on the Test Stand

- $N_u = 113$
- $\lambda_w = 30 \text{ mm}$
- $L_u = 3.38 \text{ m}$
- $K_u = 3.5$
 - A wiggler or an undulator?
- $B_u = 1.25 \text{ T}$
- Gap = 6.8 mm with small taper to vary K_u
- Number of sections = 33
- Total undulator length = 132 m

- In the crossover region between undulator and dipole radiation:
 - Weak signal
 - Two comparable sources: poor focus over a narrow energy range
- Focus moves with energy: from undulator, to dipole edge, and then to dipole center.
- Dipole egde radiation is distinct from central radiation only for $\omega >> \omega_c$

- 2008-09-09: First protons stored at 450 GeV
- 2008-09-19: Busbar failure and liquid-helium explosion
- No testing of the old synchrotron-light monitor
- 2008-11: Started redesign of SLM
- 2009-07: Installed two new SLMs in tunnel
- 2009-11: Restart of LHC. Protons stored at 450 GeV, and later ramped to 1.18 TeV.
- 2009-12-09: Current in undulator for Beam 2. No current in other undulator, pending a 12hour test of helium level sensor.
- 2009-12-10: First image of 450-GeV protons in Beam 2, using undulator light
- 2009-12-15: Image of Beam 1 using dipole light

- Imaging a typical source (ordinary photography):
 - An object reflects unpolarized incident light in all directions.
 - A lens collects some of this light over a range of angles.
 - The object's transverse size is greater than its depth.
- Imaging synchrotron light:
 - The source of the light is the object's own emission.
 - Light is radiated only in the forward direction.
 - Longitudinal profile is Gaussian at any instant.
 - But over the exposure time, the source goes around the ring many times.
 - Dipole light is emitted tangent to the beam's instantaneous circular path.
 - Vertically: A narrow forward-directed cone.
 - Horizontally: A stripe of light painted along the midplane of the vacuum chamber.
 - Like a car rounding a bend in the dark with its bright headlights on.
 - The camera images a glowing, curved string along a tangent.
 - Undulator or wiggler light is emitted all along the axis.
 - A narrow forward-directed cone, both vertically and horizontally.
 - The camera images a glowing string head-on.
 - A telescope: We must image a ~ 100 -µm object from a distance of ~ 10 m.

- Visible light has advantages (in addition to being easy to see):
 - You can use common parts like windows, lenses, mirrors, video cameras, and specialized instruments like streak cameras.
 - Want to avoid thermal distortion of the first mirror (M1), with little effect on the visible image
 - Recall that the opening angle for visible light is wider than at the critical wavelength
 - The narrow x-ray fan has most of the heat. Remove it using:
 - A "cold finger": a narrow cooled mask on the midplane, upstream of M1, that blocks the x-ray fan while casting a thin shadow across the mirror.
 - A slot along the middle of M1, to let the x-rays bypass the mirror.
 - A thin, low-*Z* substrate (beryllium) for M1, to transmit most of the x-rays.
 - But beryllium is toxic and thin mirrors are hard to keep flat.

- Midplane slot allowed x-ray fan to bypass M1 and strike the thermal dump.
 - But slot was a mechanical weak point.
 - PEP's x-ray fan was very narrow and very hot: too difficult to cool a cold finger.

"Cold Finger" Mask in SPEAR-3

Protons—with their negligible heat load—can use a simple mirror.