

Imaging a Beam with Synchrotron Radiation

Alan Fisher

SLAC National Accelerator Laboratory

Beam Diagnostics Using Synchrotron Radiation: Theory and Practice US Particle Accelerator School University of California, Santa Cruz San Francisco — 2010 January 18 to 22

- Diffraction limits the resolution at long wavelengths.
 - An important consideration when the beam is small (usually in *y*).
 - Image a point near a defocusing quad, where the beam is largest vertically.
 - A cold finger or slot also adds diffraction.
- Small beams drive the design toward shorter wavelengths.
 - Blue rather than red, but often ultraviolet or x rays.
 - More about using these wavelengths later.

- All points in an aperture are considered point sources, reradiating light incident from a point source at (*X*,*Y*)
 - Wavelength is $\lambda = 2\pi / k$.
- The field at (x,y) is given by a Fresnel-Kirchhoff integral over the (small) aperture:

$$E(x, y) = -\frac{Ai}{2\lambda} \iint_{\text{aperture}} \frac{e^{ik(r+s)}}{rs} (\cos \alpha + \cos \beta) dS$$
$$\approx -\frac{Ai}{2\lambda r_0 s_0} (\cos \alpha + \cos \beta) \iint_{\text{aperture}} e^{ik(r+s)} dS$$

• Everything is essentially constant except the phase from each point in the aperture.

$$r = \sqrt{(X-u)^{2} + (Y-v)^{2} + r_{0}^{2}} \approx r_{0} + \frac{(X-u)^{2} + (Y-v)^{2}}{2r_{0}}$$

$$s = \sqrt{(x-u)^{2} + (y-v)^{2} + s_{0}^{2}} \approx s_{0} + \frac{(x-u)^{2} + (y-v)^{2}}{2s_{0}}$$

$$e^{ik(r+s)} \approx \exp\left[ik\left(r_{0} + s_{0} + \frac{X^{2} + Y^{2}}{2r_{0}} + \frac{x^{2} + y^{2}}{2s_{0}}\right)\right] \exp\left[ik\left(\frac{u^{2} + v^{2}}{2r_{0}} + \frac{u^{2} + v^{2}}{2s_{0}}\right)\right] \exp\left[-ik\left(\frac{Xu + Yv}{r_{0}} + \frac{xu + yv}{s_{0}}\right)\right]$$

- First factor: Independent of the aperture coordinates *u*, *v*.
 - Contributes only an overall phase to the *uv* integral over the aperture.
- Second: Quadratic in *u* and *v*. Neglegible since the aperture is small.
- Third: Products of u, v with cosines (X/r_0 , etc.) of the ray angles from the source or measurement points to the horizontal and vertical axes.
- The only factor that matters in the integral over the aperture is:

$$e^{ik(r+s)} \approx \exp\left[-ik\left(pu+qv\right)\right]$$

where $p = X/r_0 + x/s_0$ and $q = Y/r_0 + y/s_0$

Fisher — Imaging with Synchrotron Light

• The diffraction pattern on the *xy* plane becomes a **Fourier transform** in the spatial coordinates *uv* of the aperture:

$$E(x, y) = -\frac{Ai}{2\lambda r_0 s_0} (\cos\alpha + \cos\beta) \iint_{\text{aperture}} e^{-ik(pu+qv)} dudv$$

- One example of this principle is a *spatial filter*:
 - Laser light is sometimes focused through a small hole to remove noisy, non-Gaussian parts of the beam's transverse profile.
 - Since the noise is found at high *spatial frequencies*, which appear at larger values of *u* and *v*, it can be clipped by a properly sized hole, which acts as a spatial filter.

• The length *S* of each optical path from source (X,Y) to image (x_i,y_i) is *equal*.

$$S = \int_{(X,Y)}^{(x_i,y_i)} n(s) \, ds$$

- The integral along each path element *ds* is scaled by the index of refraction *n*.
- This is a fundamental property of geometric imaging.
- The phase difference in the uv integral arises from the different paths from (X,Y) to (x,y), compared to the equal paths from (X,Y) to (x_i,y_i) .
 - It is helpful to subtract this reference path, so that the phase difference becomes the difference between (u,v) to (x,y) and (u,v) to (x_i,y_i) .

$$\sqrt{(x-u)^2 + (y-v)^2 + s_0^2} - \sqrt{(x_i - u)^2 + (y_i - v)^2 + s_0^2}$$

$$\approx -\frac{(x-x_i)u + (y-y_i)v}{s_0} = -\frac{\rho w}{s_0} \cos(\phi - \psi)$$

• Here we used polar coordinates: $(u,v) \rightarrow (w,\psi)$ and $(x - x_i, y - y_i) \rightarrow (\rho,\phi)$

• The diffraction integral (neglecting constants) becomes:

$$E(x, y) = \int_0^{2\pi} \int_0^{D/2} \exp\left[-ik\frac{\rho w}{s_0}\cos(\phi - \psi)\right] w dw d\psi$$
$$= 2\pi \int_0^{D/2} J_0\left(\frac{k\rho w}{s_0}\right) w dw = \left(\frac{\pi D^2}{4}\right) \frac{2J_1\left(\frac{k\rho D}{2s_0}\right)}{\frac{k\rho D}{2s_0}}$$

where we have used two Bessel-function identities.

• This is called the Airy diffraction pattern.

• Concentric circles, with the first minimum at radius r_A :

$$r_A = 1.22 \frac{s_0}{D} \lambda = 0.61 \frac{\lambda}{\theta} \approx 1.22 \frac{f}{D} \lambda = 1.22F\lambda$$

- θ is the half angle of the light cone exiting the lens.
- *F* is called the "F-number" of the lens.
- We plot this pattern for $\lambda = 450$ nm, D = 50 mm, and $s_0 = 1$ m
 - Top right: The central circle is saturated by a factor of 30 to highlight the faint rings.
 - Bottom right: The blue curve is multiplied by 10 to highlight the rings.
- r_A is the resolution of the imaging system.
 - Compare it to the size of the geometric image to see if diffraction is a problem.

Diffraction of Dipole Radiation

• For the half angle θ , substitute the Gaussian approximation for dipole radiation given earlier:

$$r_{d} \approx 0.61 \frac{\lambda}{\theta} = \frac{0.61\lambda}{0.60\gamma^{0.062} \left(\lambda/\rho\right)^{0.354}} \approx \rho^{\frac{1}{3}} \lambda^{\frac{2}{3}}$$

- Short wavelengths: In the visible, choose blue at 400 nm (or use UV or x rays).
- Large opening angles: In the LHC at high energy, edge radiation is too narrow.
- A difficult case: The HER of PEP-II has $\rho = 165$ m. At 400 nm, $r_d = 0.25$ mm.
- More thoroughly, use the SR power spectral density from a point source in a Fraunhofer diffraction integral over the area of the lens illuminated through the beamline aperture, to find the field at (x', y') on the image:

$$E(x', y') = A \int_{-x_a}^{x_a} dx \int_{-y_a}^{y_a} dy \frac{\gamma P_s}{\omega_c} F_s(\omega, \psi) e^{-ik(ux+vy)}$$

- The first minimum of the intensity then gives the resolution.
- Optics software like Zemax does (monochromatic) diffraction calculations.

- A dipole emits light along a gradual arc, not from a single plane.
 - What is the source distance?
 - Can it all be in focus?
 - How do you avoid blurring the measurement?

• Diameters of A and C images as they cross the *xy* plane, based on typical rays at angles $\pm \theta/2$:

$$d = 2 \left| \frac{D/4}{2f \mp \Delta z} (\pm \Delta z) \right| \approx \frac{D\Delta z}{4f} = \theta \Delta z$$

- The vertical angle θ lighting the lens is roughly $2\sigma_{\lambda}$.
- If we capture a similar portion of a horizontal arc:

$$\Delta z = \rho \sigma_{\lambda}$$
$$d = \theta \Delta z = 2\rho \sigma_{\lambda}^{2} \approx 0.7 \rho^{\frac{1}{3}} \lambda^{\frac{2}{3}}$$

- This expression is similar to the diffraction resolution.
- As before, short wavelengths are preferable.
- But this time, small opening angles are better.
 - If the source is dipole radiation, the angle and the wavelength are not independent.
- But how much of the orbit do we actually capture?

- Consider the beam's orbit both in the horizontal plane (*xz*) and in horizontal *phase space* (*xx'*).
 - x' is the beam's angle to the direction of motion z.
- Which rays, at which angles, are reflected by M1?

• A point on the orbit near the *xz* origin is given by:

$$(x,z) = (\rho - \rho \cos \theta, \rho \sin \theta) \approx (\frac{1}{2}\rho \theta^2, \rho \theta) = (\frac{1}{2}\rho x'^2, \rho x')$$

• For a point on the orbit, the angle x' to the z axis is equal to θ .

• The rays striking the +x and -x ends of M1 are given by:

$$x + x' \left(z_m \pm \frac{L_m}{2} \cos \alpha_m - z \right) = \pm \frac{L_m}{2} \sin \alpha_m$$
$$x + x' z_m \approx \pm \frac{L_m}{2} \sin \alpha_m$$

• We plot these curves in phase space, along with the beam's 1-sigma phase-space ellipse at three points along its orbit.

Fisher — Imaging with Synchrotron Light

16

- The two mirror edges appear as slanted lines.
- Because the radius of curvature is so long, the mirror receives light from the first 3 m of the dipole.
- The path can be shortened by adding a slit *one focal length* from the first focusing optic (mirror or lens).
 - The position of a ray on this plane corresponds only to its angle x' at the source.
 - We can select light from an adjustable horizontal band across the plot.
- The *x* positions of the proton ellipses shift along this 3-m path.
 - Project light from each ellipse onto the *x* axis
 - The combined light is smeared out along *x* and so blurs the resolution.
- But each proton emits light with an opening angle.
 - We need the photon ellipse, not the proton ellipse.
 - A convolution of the proton ellipse with the opening angle.

Fisher — Imaging with Synchrotron Light

- The ellipses are much bigger, going well outside the slit.
- They get increasing tilted and elongated with distance from the entrance to the dipole.
 - But this plot assumes that the optics are focused at the dipole entrance.
 - Move the focus to the midpoint of the 3-m path.

- Slit excludes the right (+x) side of the elongated ellipses, but includes the left side.
 - Tail on the left side due to depth of field.
 - Right side of total distribution is a good measure of the true beam size.
- This answer pertains only to the LHC. Each machine requires a careful study of depth of field.

- The elongated ellipses create a tail on both sides.
 - The vertical measurement is more affected by depth of field than the horizontal.
 - Broadens the result by as much as 20% at 7 Tev.
 - Adding a vertical slit does little to reduce the effect.

- Accelerator people know that Liouville's theorem conserves the emittance of a beam in a transport line.
 - The phase-space ellipse changes shape, but not area.
 - At each waist, the size-angle product $\sigma_x \sigma_{x'}$ is constant.
 - (But for electrons in a ring, dissipation by synchrotron radiation allows damping that "cheats" Liouville.)
- Light in an optical transport line has an emittance too.
 - At each image, the product of size and opening angle (light-cone angle) is constant.
 - Magnification makes the image bigger, but the angle smaller.
 - The area of the light's phase-space ellipse—the brightness of the source—is conserved.

- The minimum emittance for a light beam is that of the lowest-order Gaussian mode (TEM $_{00}$) of a laser.
 - ω is the beam radius.
 - In the usual definition (where ω is not the one-sigma value):
 - The electric field follows $E(r) = E_0 \exp(-r^2/\omega^2)$
 - The intensity (power) is the square: $I(r) = I_0 \exp(-2r^2/\omega^2)$
 - ω_0 is the radius at the waist (the focus).
 - This size is nonzero due to diffraction.
 - $z_R = \pi \omega_0^2 / \lambda$ is called the Rayleigh length.
 - Characteristic distance for beam expansion due to diffraction.
 - The expansion is given by $\omega^2(z) = \omega_0^2 (1 + z^2/z_R^2)$
 - The angle (for $z >> z_R$) is $\theta = \omega/z = \omega_0/z_R = \lambda/\pi\omega_0$
 - The product of waist size and angle is then $\omega_0 \theta = \lambda / \pi$
 - One-sigma values for the size and angle of *I* give an emittance of $\lambda/4\pi$

- Third-generation light sources (SLS, SOLEIL, Diamond, SSRF, ALBA, PETRA-III, NSLS2...), future HEP accelerators (ILC damping rings, Super-*B*, ERLs) and prototypes (ATF at KEK) have *very* low emittances:
 - Typical emittances: $\varepsilon_x \approx 1 \text{ nm}$ $\varepsilon_y \approx 10 \text{ pm}$
 - Typical beam sizes: $\sigma_x < 100 \ \mu m$ $\sigma_y < 10 \ \mu m$
- An SLM images a beam from many meters away. (It's really a telescope.)
 - F-number must be large: $F = f/D \sim (10 \text{ m})/(50 \text{ mm}) = 200$
 - Resolution with blue light: $r_A = 1.22 F \lambda \sim 100 \mu m$
- Techniques for measuring small beams:
 - In this lecture:
 - Imaging with ultraviolet synchrotron radiation
 - Imaging with x rays
 - Other methods that do not use synchrotron radiation (briefly)
 - Wednesday:
 - Synchrotron-light interferometry (~10 μm resolution)
 - Vertical beam size using the null in vertically polarized light
 - Not in Wednesday's lecture, but similar in concept to an interferometer

Without Synchrotron Light: Wire Scanner

- Methods that don't use synchrotron light are also useful. They're outside the scope of this class, but...
- Wire scanner:
 - While a thin stretched wire is scanned across the (wider) beam, measure scattered radiation or lost electrons vs. wire position.
 - Gives a projection of the beam in the scan direction.
 - Three wires at 0, 45, 90 degrees give major and minor axes and tilt of beam ellipse.
 - Wire size ($\geq 4 \mu m$), limited by wire erosion, sets resolution.
 - Multiple measurements: beam jitter
 - Can be destructive to stored beams

Without Synchrotron Light: Laser Wire

- Laser crosses electrons at a waist smaller than the *e*-beam.
- Focus with a small F-number to get resolution $\approx \lambda \ge 300$ nm.
- Like wire scanner, look for scattered radiaton.
- Compared to wire scanner, better resolution and nondestructive. Still needs many measurements.

- Split a laser beam. Intersect both parts at an angle as they cross the electron beam.
- Interference fringes with maxima and minima across the electrons.
- Move the beam relative to the fringe pattern.
- When the beam is small compared to the fringe spacing, the scatter is heavily modulated by the shift in the fringes.
- Can measure down to tens of nm

Imaging with UV Synchrotron Light

- Can't go far into the UV without problems.
 - Window and lens materials become opaque:
 - Glasses (like BK7 at right) are useful above ~330 nm.
 - Fused silica works above ~170 nm.
 - Special materials like MgF₂ work above ~120 nm.
 - Absorption in air below ~100 nm
 - Must use reflective optics in vacuum.

Fisher — Imaging with Synchrotron Light

- The good news: Most of the beam's emission is in the x-ray region.
- The bad news: How do you form an image?
- We'll discuss some techniques:
 - Pinhole cameras
 - Zone plates
 - Grazing-incidence optics
 - X-ray lenses
- Labs later today on imaging with pinholes and zone plates (along with ordinary lenses)

Imaging X Rays with a Pinhole Camera

- Resolution σ on image plane with a pinhole of radius r: $\sigma = \sqrt{\sigma_g^2 + \sigma_d^2}$
 - Distances: *a* from source to pinhole, *b* from pinhole to image:
 - Geometric optics: Pinhole should be << beam size
 - Diffraction blurs image if the pinhole is too small:
 - Pinhole size for best resolution:
 - Geometric mean of λ (~0.2 nm) and *a* or *b* (~10 m): $r \approx 20 \ \mu m$
- Optimum resolution on the *source* plane:
 - Want small λ , small a, and large magnification b/a
- On image plane, a scintillator converts x rays to visible light.
- Make "pinhole" with a sheet of heavy metal thick enough to stop x rays.
- X-rays surrounding the hole must be blocked upstream, so that pinhole get too hot and deform.
- Most of the x rays are not used for the image

Their 10- μ m pinhole gives a resolution of 13 μ m.

Fisher — Imaging with Synchrotron Light

Gold disk for heat transfer

- Pt:Ir (90:10) disk with 4 pinholes.
 - Diameters of 30, 50, 70, and 100 μm.
- Front: Glidcop with 4 larger holes

2010-01-18

- A diffractive lens, made by microlithography
- Rings of a high-Z metal (gold) deposited on a thin low-Z membrane (SiN)
 - Ring widths as narrow as 50 nm are possible
- Power must be kept low, and bandwidth must be narrow ($\approx 1\%$)
 - Precede with a pair of multilayer x-ray mirrors, which reflect a narrow band and absorb the out-of-band power.

- Consider a transmissive diffraction grating.
 - Parallel opaque lines on a clear plate, with period *a*
 - Parallel rays of wavelength λ passing through adjacent lines and exiting at an angle θ have a difference in optical path of $a \sin \theta$.
 - They are in phase if this difference is $n\lambda$, giving the n^{th} -order diffraction maximum: $\sin\theta_n = n\lambda/a$
- Now wrap these grating lines into a circle.
 - 1st order bends toward center: focusing
 - −1st order bends away from center: defocusing
 - 0th order continues straight ahead
 - Make central circle opaque to block 0th-order light around the focus (a "central stop").
- But the 1st-order rays are parallel and so don't focus
 - Vary the zone spacing as a function of ring radius r so that all the exiting rays meet at a focal point a distance f from the zone plate.

- To focus at f, the ray at radius r_n must exit at an angle θ_n with: $r_n = f \tan \theta_n$
- First-order diffraction gives $\lambda = a_n \sin \theta_n$
- The grating period *a* now varies too: $a_n = r_{n+1} r_{n-1}$
- There are many, closely spaced zones, and so we treat *n* as a continuous variable: $a(n) = \Delta n \frac{dr(n)}{dn} = \frac{2dr(n)}{dn}$
- We use the expression for $\tan \theta(n)$ to substitute for $\sin \theta(n)$:

$$\sin^{2}\theta = \frac{1}{\cot^{2}\theta + 1} = \frac{1}{1 + f^{2}/r^{2}} = \frac{\lambda^{2}}{a^{2}} = \frac{\lambda^{2}}{a^{2}} = \frac{\lambda^{2}}{dn} \Big/ \Big(\frac{2\frac{dr}{dn}}{dn} \Big)^{2}$$
$$\frac{d}{dn} \Big(\frac{r^{2}}{f^{2}} \Big) = \frac{\lambda}{f} \sqrt{1 + \frac{r^{2}}{f^{2}}} \qquad \int_{0}^{n} \frac{\lambda}{f} dn' = \frac{\lambda n}{f} = \int_{0}^{r^{2}/f^{2}} \frac{dx}{\sqrt{1 + x}} = 2\sqrt{1 + \frac{r^{2}}{f^{2}}} - 2$$
$$\frac{r^{2}}{f^{2}} = \Big(\frac{\lambda n}{2f} + 1 \Big)^{2} - 1 \qquad r^{2} = n\lambda f + \frac{n^{2}\lambda^{2}}{4}$$

Fisher — Imaging with Synchrotron Light

- λ = wavelength
 (monochromatic light)
- $\Delta \lambda =$ bandwidth
- $f = \text{focal length of lens at } \lambda$
- N = number of zones
 - Counting both clear and opaque zones
- r_n = radius of nth zone boundary
- $\Delta r = r_N r_{N-1}$ = thickness of outer zone
- $D = 2r_N =$ outer diameter
- F = F-number
- $r_A = (Airy)$ resolution

$$\begin{aligned} r_n &= \sqrt{nf \,\lambda + n^2 \lambda^2 / 4} \approx \sqrt{nf \,\lambda} \\ f &= 4N (\Delta r)^2 / \lambda \qquad D = 2r_N = 4N \Delta r \\ F &= f / D = \Delta r / \lambda \qquad r_A = 1.22F \,\lambda = 1.22 \Delta r \\ \Delta \lambda &< \lambda / N \quad \text{to avoid chromatic blurring} \end{aligned}$$

- A zone plate is designed to focus at a single wavelength.
 - This is called "strong chromatic aberration".
 - Insert a monochromator, to limit bandwidth and to absorb power at other wavelengths.
 - With two crystals, the entering and exiting rays are parallel.

- Monochromator transmits 8.2-keV photons ($\lambda = 0.151$ nm)
- Total magnification = 13.7 (0.2737 by FZP, 50 by XZT)
- 4-μm resolution with the help of the x-ray zooming tube
- Observed a transient in the beam size during top-off operation

2010-01-18

Fresnel zone plate	CZP	MZP
Total number of zone	6444	146
Radius	1.5 mm	37.3 μm
Outermost zone width Δr_N	116 nm	128 nm
Focal length at 3.24 keV	0.91 m	24.9 mm
Magnification	$M_{\rm CZP} = 1/10$	$M_{\rm MZP} = 200$

TABLE II. Specifications of the two FZPs.

- Total magnification = 20
- Detecting 3.24-keV photons ($\lambda = 0.383$ nm)
 - Where's the monochromator? A pinhole at the intermediate waist can be used to reject defocused light at other wavelengths.

- A plasma with electron density n_e has characteristic oscillations of charge and electric field at the "plasma frequency" $\omega_p = \sqrt{n_e e^2/(\varepsilon_0 m_e)}$
- The index of refraction of the plasma is $n = 1 \omega_p^2 / \omega^2 < 1$
- The free electrons in a metal act like a plasma.
 - Visible frequencies are cut off: $\omega \ll \omega_p$ and so n < 0
 - X rays are transmitted: $\omega >> \omega_p$ and so *n* is slightly below 1
- Snell's law: $n_1 \sin \theta_1 = n_2 \sin \theta_2$, or $n_1 \cos \alpha_1 = n_2 \cos \alpha_2$
 - Here $\theta_1 = \pi/2 \alpha_1$ and $\theta_2 = \pi/2 \alpha_2$ are the ray angles to the normal.
- Total internal reflection occurs in medium 1 when $n_1 \sin \theta_1 > n_2$
 - For x-rays in vacuum striking metal at an angle α to grazing:

$$\cos \alpha > 1 - \omega_p^2 / \omega^2$$
, or $\alpha < \sqrt{2}\omega_p / \omega \ll 1$

- Mirrors at small angles to grazing can reflect x rays
 - Flat grazing-incidence mirrors
 - Multilayer mirrors that use interference to get a narrow bandwidth
 - Telescopes and imaging systems using off-axis conic surfaces

Fisher — Imaging with Synchrotron Light

- Multilayer mirror designed for a narrow passband at 8 keV
 - Unpolarized light incident at 1.51 degrees
 - 200 periods with alternating layers of low- and high-Z materials: B_4C and Mo
 - 3-nm spacing: 2.1 nm of B₄C and 0.9 nm of Mo, with an interdiffusion thickness of 0.5 nm

- The refractive index for x rays is slightly below
 1 for any material.
- When a ray in vacuum strikes a material at a non-grazing angle, the transmitted ray enters with a deflection following Snell's law.
- A spherical surface can make an x-ray lens!
 - Collimated x rays: Use a parabolic surface
- n < 1: A focusing lens must be **concave**.
- $1 n \ll 1$: Small deflection, long focal length
 - Stack many lenses for a shorter overall focal length.
 - To avoid absorption: Low-Z material (Be)
- $1 n = \omega_p^2 / \omega^2$: Strong chromatic aberration
 - Only monochromatic x-rays can focus.

Paraboloidal surface, typically with R = 0.2 mm and $R_0 = 0.5$ mm

- Distance to the first mirror (M1)
 - Ports and M1 itself introduce wakefields and impedance.
 - Is M1 flush with the vacuum-chamber wall?
 - The heat load on M1 is reduced by distance.
 - Is the mirror far down a synchrotron-light beamline?
- Distance to the imaging optics
 - In a hutch: Adds distance to get outside the shielding
 - In the tunnel: Inaccessible, but often necessary for large colliders.
- Size and location of the optical table
 - What measurements are needed?
 - Which instruments are available (affordable)?

- Choose a source point with a large y size, to lessen effect of diffraction (for visible light).
- Magnification: Transform expected beam size to a reasonable size on the camera.
 - 6σ < camera size < 12σ : Uses many pixels; keeps the image and the tails on the camera; allows for orbit changes.
 - Needs at least two imaging stages: Since the optics are generally far from the source, the first focusing element strongly demagnifies.
- Optics: Use standard components whenever possible.
 - For example, adjust the design to use off-the-shelf focal lengths from the catalog of a high-quality vendor.
 - Use a color filter to avoid dispersion in lenses (or use reflective optics).
 - Correct lens focal lengths (specified at one wavelength) for your color.

- You can iterate a lot of the basic design in a simple spreadsheet.
 - Enter the fixed distances.
 - Specify the desired magnifications.
 - Solve the lens equations, one stage at a time, to find lenses giving the ideal magnifications.
 - Change the lenses to catalog focal lengths.
 - Correct their focal lengths (using the formula for each material as found in many catalogs).
 - Iterate the magnifications and distances.
- Then optimize your design with optics software
 - I used Zemax for the CERN design.