

Beam Diagnostics with Synchrotron Radiation - An Overview

J.Corbett, W. Cheng, A.Fisher and W. Mok US Particle Accelerator School January 18-22, 2010

Motivations for SR diagnostics

- ➢ 'eye' into the accelerator
- faithful photon image reproduces electron beam distribution (x,y,z)
- > optics verification, coupling, brightness
- ➢ impedance and instabilities
- other techniques less accurate (e.g. scraper, RMA)

Electron beam properties: β -functions and beam size

Hofmann: chapter 13

Electron beam properties: Phase Space

Photon beam properties: Phase Space

Hofmann: chapter 15

5

Photon beam properties: Angular spectral power density

Angular spectral power density (Schwinger, 1946)

Photon beam properties: Beam power

visible beam line (1.5eV) 25mm aperture at 5 m (5 mrad) P_{SR} ~150W *lucky to get 100µW visible* (Class I laser pointer)

 $\frac{\text{pinhole camera (15keV)}}{25\mu\text{m aperture at 5 m (5 }\mu\text{rad})}$ $P_{\text{SR}}\sim100\mu\text{W before filter}$

Hofmann: chapter 5

Photon beam timing pattern - storage rings

9

Visible beam line components

USPAS January 18, 2010

Visible beam line components (cont'd)

Beam line optics Windows - quartz can pass down to about 220nm Mirrors – flat or focusing, UV enhanced Lenses – focusing, defocusing, doublets, achromats >350nm Filters –highpass and bandwidth to about 10n FWHM Slits and diaphrams – 1ms mechanical shutters, 10ps Pockel cells

About 90% transmission per element

Diffraction Limited Resolution

Hofmann: chapter 12

more diffraction later...

USPAS January 18, 2010

$$d \approx \sigma_r'^2 \rho$$
$$d \approx \frac{1}{3} \cdot \left(\lambda^2 \rho\right)^{1/3}$$

~same result as diffraction

(source length related to opening angle)

Hofmann: chapter 12

USPAS January 18, 2010

Cameras Part-I: CCD's and Video

14

USPAS January 18, 2010

PEP-II: visible light monitor software (LabView)

X-ray pinhole cameras – Reduce diffraction with small λ

USPAS January 18, 2010

Zone plate optics

Zone plates act as a thin lens, with

$$f = 4N(\Delta r)^2 / \lambda$$

where N is the number of zones, Δr is the width of the outermost zone, and λ is the wavelength of the light. Thus the zone plate can act as a *linear monochromator* if one selects a particular focus (using a pinhole).

nth zone radius:

$$r_n = \sqrt{nf\lambda + \frac{n^2\lambda^2}{4}} \approx \sqrt{nf\lambda}$$

 λ – photon wavelength f – focal length for the wavelength

PEP-II: x-ray pinhole camera software (LabView)

Photon beam propagation programs

SRW (synchrotron radiation workshop)

Cameras Part-II: Gated ICCD's

Fig. 8: Walking along a bunch train with the ICCD camera. This sequence shows every

Injected beam in SPEAR3

The Roper/PiMax Camera Experiment

Rotating Mirror and Timing System

Fast image sweep across photocathode

Slow image sweep across photocathode

Cameras III - Streak tubes

Hamamatsu C5680 Optronis (ASP)

speed: up to 2 pixel/ps chromaticity: BP filter needed -bunch length -impedance and instabilities

The Stellar Interferometer

H. Mitsuhashi - Photon Factory 23

USPAS January 18, 2010

The Stellar Interferometer (cont'd)

Fringe Formulas

The slits have width a and center-to-center spacing d. The pattern from a single slit is:

 $\theta_{\pm}(y) = \frac{y \pm 1}{f + \Delta z} \left(\int_{-\infty}^{\infty} \frac{1}{f + \Delta z} \right)$

The interference from both slits at height y on the CCD, integrated over the optical bandpass filter, shows decreasing modulation with beam size:

$$I(y) = \int_{-\infty}^{\infty} \left[I_{+} + I_{-} + 2\sqrt{I_{+}I_{-}} \exp\left(-\frac{(kd\sigma_{y})^{2}}{2s_{0}^{2}}\right) \cos\left(\frac{kdy}{f + \Delta z}\right) \right] g(\lambda) d\lambda$$

The ray leaving the slit at an angle θ hits the CCD at height *y*:

A. Fisher - SLAC

USPAS January 18, 2010

Small beam size - Vertical polarization technique

Vertical angular spectral density

Measurements at MaxLab

USPAS January 18, 2010

Bunch Length Measurement - Statistical Fluctuations

Intra-pulse fluctuation of the electric field Statistics of pulse-to-pulse variations

USPAS January 18, 2010

Fluctuation measurement

Summary of beam size measurements

- Photon emission provides valuable diagnostic of e⁻ beam
- > Need to unfold γ_r , DOF, diffraction, PSF, etc. from image
- > Visible has advantage of commercial optics and cameras but suffers from large γ_r and diffraction
- Broad array of cameras, fast shutters, streak frames
- X-ray pinhole has advantage of less diffraction but generally less versatile
- Interferometers and central-null technique improve resolution
- Fluctuation measurements cheaper than streak, provide insight
- other techniques:
 - screens, OTR, wires and lasers in transmission lines
 - scraper in storage ring (quantum lifetime)
 - response matrix analysis