5.2 Cryogenic Safety

Main issues that must be considered in the design of a safe cryogenic system

1. Potential for over pressure leading to container rupture 2. Possibility of asphyxiation due to displacement of air 3. Danger of low temperature exposure to personnel 4. Fire hazard (H_2 , O_2 , CH_4)

Over pressure leading to container rupture

	ρ(T _{NBP}),kg/m ³	Ρ(300Κ , ρ _{NBP}), M Pa	V (300K, 1 atm)/V _{liq}
He	125	192	700
H ₂	70	115	788
N ₂	800	183	646

- The equivalent pressure of liquid density gas at room temperature is sufficiently high to burst any container.
- Containers must have pressure relief devices to prevent overpressure
- The size of the relief devise depends on requirements for safety

T = 300 K P > 100 MPa

Designing a pressure vessel

- Typically all cryogenic vessels are designed according to ASME code (or similar), which has particular requirements for design stresses.
 - A rough "rule-of-thumb" is that the maximum stress should not exceed 2/3 σ_y of the material. Thus, complex structural designs require significant stress analysis (FEA) to determine requirements.
 - Strictly, the ASME code requires that the material be tested at operating conditions (low temperature) to determine properties. This is required for ASME code stamping.
 - ASME code has many requirements about vessel penetrations
- Determining the stress state of a cryogenic vessel
 - Assumptions about peak pressure. Thermal excursions can lead to large pressure swings
 - Must consider the effect of thermal contraction
- Typical approach: analyze the system to death then pressure test (P > P_{design}) before operation

USPAS Short Course

Cryogenic pressure vessel

- Consider a spherical vessel made from 2024-T4 Al.
 Calculate how thick the wall needs to be to meet ASME code (2/3 σ_y).
 - Design pressure = 0.5 MPa
 - Operating temp = 4.2 K
- 2024-T4 Al:

 $\sigma_{\rm v}(4 \text{ K}) = 520 \text{ MPa}$

- t = 0.5 MPa x 1 m/1.33 x 520 MPa = 0.07 mm!!
- Under ideal conditions, wall can be very thin.

Sealed Vessel Pressurization

 Internal energy, U(J), increases with time due to heat leak into cryogenic space

$$U(t) = U_o + \int q(t) dt$$

• With $k_{eff} \sim 4 \times 10^{-5}$ W/m-K for MLI insulation:

$$q(t) = Ak_{eff} \frac{T_{amb} - T(t)}{W_{MLI}}$$

- While P < P_{crit}, the fraction of liquid (or vapor) will increase or decrease depending on the initial overall specific volume (constant) as compared to v_{crit}.
 - Path (a) will exhibit an increase in liquid fraction until the vapor dome is reached
 - Path (b) will exhibit an decrease in liquid fraction

USPAS Short Course

Example: LN₂

Example LHe

USPAS Short Course

System venting

- Any time there is a closed vessel containing a cryogen, it is essential to provide over pressure relief.
 Liquid Helium Container Design Features (Green Helium Container Design Features)
- A redundant system (i.e. two relief valves set at different pressures is good practice

Fig. 1 Potential for trapping liquid between valves.

Boston, MA 6/14 to 6/18/2010

USPAS Short Course

Designing a vent port for helium cryostat

 Depending on the heat generation rate, the flow through vent line may be "choked" (i.e. limited by sound speed in venting gas)

$$c = \sqrt{\frac{\gamma RT}{M}}$$
 ~ 120 m/s for helium @ 4.2 K; $\gamma = C_p/C_v$

- Mass flow rate through the vent, $\dot{m}_{flow} \approx \rho A_{flow}c$
- Flow rate is also determined by the rate of heat transfer to the vessel

$$\dot{m}_{flow} = \frac{qA_{vessel}}{h_{fg}} \longrightarrow A_{flow} = \frac{qA_{vessel}}{\rho_{vapor}ch_{fg}} = \frac{qA_{vessel}}{\rho_{vapor}h_{fg}} \sqrt{\frac{M}{\gamma RT}}$$

This is an upper limit since it does not tell us what the pressure is inside the vessel
 USPAS Short Course
 Boston, MA 6/14 to 6/18/2010
 9

Designing a vent port for helium cryostat

Friction limited mass flow:

$$\dot{m} = A_{flow} \sqrt{\frac{2\rho(P_1 - P_2)}{K}}$$
 where $\rho = \frac{1}{2}(\rho_1 + \rho_2)$

"K" is the total loss coefficient including tube friction and losses in bends, elbows, and other discrete components

Flow is compressible

USPAS Short Course

LO_2 and LH_2 safety issues

- LO₂ and LH₂ are unique cryogenic fluids because of the potential for combustion
- LO₂ will augment any combustion process and can allow things to burn that are normally inert (metals, for example)
- LH₂ will burn in air producing an invisible flame

Condensation of O_2 enriched air

- Cold surfaces during transfer of LHe, LH₂ and even LN₂ can condense air.
- The "phase rule" indicates that the condensation will be enriched with LO₂.
- Numerous "inert" materials will burn in LO₂ (decreased ignition temperature)

Composition

Figure 11-4 Oxygen-nitrogen phase diagram showing ambient and condensate compositions.

H₂ Flammability

- The use of moderate quantities of LH₂ requires special safety considerations
- Ignition temperature in Air:
 - $T(H_2) = 858 \text{ K}$
 - T(CH₄) = 813 K
 - T(kerosene) = 523 K
 - Low ignition energy makes hydrogen more flammable than kerosene
- Flammability limits
 - In Air: 4 to 75%
 - In pure O_2 : 4 to 96%

FIGURE 3. Electric spark ignition energy requirements for methane-air and hydrogen-air mixtures as a function of composition.³⁰

Liquid nitrogen safety

- Danger from low temperature exposure (same with other cryogens)
- Asphyxiation
 - Normal air is 80% $N_2/19\% O_2/1\%$ other
 - 15 to 19% O₂ causes impaired coordination
 - 12 to 15% O₂ Deep respiration, impaired coordination, perception
 - 10 to 12% O₂ lips turn blue, poor coordination
 - 8 to 10% O₂ Nausea, fainting, unconsciousness
 - 6 to 8% O_2 is fatal in about 8 minutes
 - 4 to 6% O_2 is fatal in less than 1 minute.
- Always use good ventilation when exposed to LN₂ in open container

Materials safety issues

- Embrittlement resulting from low temperatures
 - FCC materials better than BCC
 - Low temperature phase transitions
 - Many polymer based materials get brittle at low temperature (PVC)
- Hydrogen embrittlement
 - High strength steel, Ti and Ni alloys are bad
 - Al alloys, copper and austenitic steels (300 series) are good.
- It is important to avoid mechanical failure due to thermal contraction (Design issue)

Safety review of a cryogenic system

- Before a cryogenic system is built, the design should undergo a thorough safety review
- Safety system should be passive (not requiring a control system)
- Structural safety (mechanical properties)
- Fluid safety (over pressure)
- Electrical safety

