3.3 He II Heat and Mass Transfer

- Heat transfer characteristics of He II are sufficiently unique that conventional heat transfer (convection, conduction) do not apply.
- Important questions
 - What is the limit to heat transfer, q^* , critical energy, ΔE ?
 - What is the associated thermal gradient in the He II?
 - How is the surface temperature determined?
- Understanding and modeling must be based on transport properties of He II
- Examples to be considered
 - Thermal stability of He II cooled magnet
 - Design of a He II bath heat exchanger

Surface heat transfer - general form

- Surface heat transfer characteristics look similar to ordinary fluids
- Physical interpretation different
 - h_k is the Kapitza conductance regime (non-boiling)
 - q* is the peak heat flux
 - q_{mfb} minimum film boiling heat flux
 - h_{fb} film boiling heat transfer coefficient
- All above processes are similar to boiling heat transfer in normal liquids, but the physical interpretation is different

Heat Conductivity of He II

- 'Anomalous heat transport
 - Effective heat conductivity comparable to that of high purity metals
 - Low flux regime dT/dx ~ q
 - High flux regime $dT/dx \sim q^3$
 - Transition between two regimes depends on the diameter of channel
- Heat transport in He II can be understood in terms of the motion of two interpenetrating fluids. This "Two Fluid" model effectively describes the transport properties
- High heat flux regime of greatest technical interest

Peak Heat Flux in He II Channel

- Thermal gradient in He II channel allows T(x = 0) to increase above T_b
 - For practical channel dimensions, gradient is controlled by mutual friction interaction

- Heat flux is limited by maximum allowable temperature at x = 0 (usually T_{λ})
 - Steady state gradient
 - Thermal diffusion

USPAS Short Course

He II Heat Conductivity Function, $f^{1}(T,p)$

 Correlation based on He II turbulent flow

$$f^{-1}(T) \cong \frac{\rho^2 s_{\lambda}^4 T_{\lambda}^3}{A_{\lambda}} \left[t^{5.6} \left(1 - t^{5.6} \right) \right]^3; t = \frac{T}{T_{\lambda}(p)}$$

Where $A_{\lambda} \sim 145 \text{ cm s/g}$

- Above correlation is good to about 10%
- Results indicate that the peak heat flux, Q*, should decrease with increasing p and T.
- Improved correlation by Sato (2003)

Maximum Steady State Heat Flux (q*)

Integrating the heat transport equation over the length of the channel

Transient Heat Transfer in He II

- Heat pulse diffuses through conductor and is transferred to He II by conduction
- δ = thermal diffusion length into
 LHe ≈ cm rather than μm as in He I
- Surface temperature difference $\Delta T_s = \Delta T_K + \Delta T_{He II}$ where $\Delta T_K = Q/h_K S$ (Kapitza Conductance)
- Take-off power is equivalent to energy to raise local He II temperature to $T_{\lambda} = 2.2$ K

Note: this problem has significant implications to the thermal stability of He II cooled superconducting magnets.

USPAS Short Course

Boston, MA 6/14 to 6/18/2010

<u>Kapitza Conductance</u> Def: Interfacial temperature difference due to thermal mismatch between two media. In He II heat transfer, h_k ≈ 5 kW/m²K

Heat transport is described by the diffusion equation

$$\frac{\partial T}{\partial t} = D_{th} \frac{\partial^2 T}{\partial x^2} \quad \text{where} \quad D_{th} = \frac{k}{\rho C}; \left[\frac{m^2}{s}\right]$$

• Characteristic time for diffusion over length L:

$$\tau_D \sim \frac{L^2}{D_{th}}$$
 Corresponds to a Fourier number = 1 (Fo = $\frac{D_{th}t}{L^2}$)

- Metals at low temperature
 - Copper: $D_{th} \sim 1 \text{ m}^2/s$; for L = 1 m then $\tau_D \sim 1 \text{ s}$
 - Stainless steel: $D_{th} \sim 3 \times 10^{-3} \text{ m}^2/\text{s}$; for L = 1 m then $\tau_D \sim 3000 \text{ s}$

USPAS Short Course

Thermal "diffusion" - He II

$$\frac{dT}{dx} = f(T)q^3 \Longrightarrow k_{eff} = \frac{1}{f(T)q^2}$$

- The effective thermal conductivity of He II is heat flux dependent
 - At T = 1.8 K, $f^{-1}(T)$ ~ 10000 kW³/m⁵ K
 - For heat flux q = 10 kW/m², $k_{eff} \sim 10^5$ W/m K
 - For heat flux q = 100 kW/m², $k_{eff} \sim 1000$ W/m K ~ k_{cu} @ 2 K
- Volume heat capacity of He II is much larger than that of metals at low temperature (ρC_{He II} ~ 1000 kJ/m³K; ρC_{cu} ~ 0.2 kJ/m³K)
- Effective thermal diffusivity for He II
 - $D_{eff} = k_{eff} / \rho C \sim 0.1 \text{ m}^2/\text{s} \otimes 10 \text{ kW/m}^2$
 - Characteristic diffusion time (L = 1 m): $\tau_D \sim L^2/D_{eff} \sim 10 s$
- Significance: thermal diffusion is an important heat transport mechanism in He II (contrary to normal liquids except at very short times)

USPAS Short Course

He II thermal diffusion equation

$$\rho C \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(f^{-1} \frac{\partial T}{\partial x} \right)^{\frac{1}{3}} \quad \text{where}$$

 $\tau_d \approx \rho C f^{\frac{1}{3}} L^{\frac{4}{3}} \Delta T^{\frac{2}{3}}$

- Non-linear partial differential equation
- Methods of solution
 - Approximate methods (similarity solution)
 - Numerical methods

Step Function Heat Flux (Clamped flux) q(t) q(t) T_b

 Non-linear diffusion equation that can be solved by numerical methods of approximate methods (constant properties)

$$\frac{\partial \theta}{\partial \tau} = \frac{\partial}{\partial x} \left[\frac{\partial \theta}{\partial x} \right]^{\frac{1}{3}}$$

where
$$\theta \equiv \frac{T - T_b}{T_\lambda - T_b}$$
 and $\tau \equiv \frac{t}{f^{1/3} \rho C (T_\lambda - T_b)^{2/3}}$

- Boundary conditions: Heat transfer b.c. at x = 0: $\left. \frac{\partial \theta}{\partial x} \right|_{x=0} = -\frac{q^3 f}{T_{\lambda} - T_b} \forall t > 0$
 - $T = T_b$ or $\Theta = 0$ @ x = infinity (approximate solution for x << L)
 - For finite length, L, numerical solution is required. Solution should asymptotically approach steady state profile

USPAS Short Course

Boundary conditions @ x = L

- Recall for ideal superflow the (laminar) pressure drop is associated with the normal fluid viscous drag (fountain effect)
- In turbulent flow (Re_D > 1200) He II behaves more as a classical fluid $\operatorname{Re}_{D} = \frac{\rho v D}{\mu_{n}}$ Since μ_{n} is small, turbulent flow is common in helium
- Associated pressure drop is given by the classical expression

$$\frac{dp}{dx} = -4\frac{f_d}{d} \left(\frac{1}{2}\rho v^2\right) \quad \text{where the friction factor, } f_d(\text{Re}_d)$$

Friction factor for He II

Surface Heat Transfer (He II)

There are three regimes of heat transfer that can occur at a heated surface in He II

- 1. Kapitza Conductance (non-boiling) Temperature difference occurs at surface, $\Delta T_s \sim 1 \text{ K}$ Due to a surface thermal impedance
- 2. Transition to film boiling (unstable) Exchange between boiling and non-boiling condition

3. Film boiling

Vapor layer covering surface ΔT can be large ~ 10 to 100 K

Kapitza Thermal Boundary Conductance

- discovered by Kapitza (1941) while studying heat flow around a heated Cu block in He II
- general term associated with thermal resistance at low temperatures

How measured:
$$h_k \equiv \lim_{\Delta T \to 0} \frac{q}{\Delta T_s}$$

 $q \longrightarrow \begin{array}{c} \hline \\ SOLID \\ \hline \\ T_1 \\ T_2 \\ T_3 \\ T_3 \\ T_4 \\ T_5 \\ \hline \end{array} T(x)$

USPAS Short Course

Practical Significance of Kapitza Conductance

- Kapitza conductance causes largest ΔT in a non-boiling heat transfer process in He II
 - $h_k \sim 10 \text{ kW/m}^2 \text{ K} \longrightarrow \Delta T_s(q = 10 \text{ kW/m}^2 \text{ K}) \sim 1 \text{ K}$
 - $dT/dx_{He II} \sim 100 \text{ mK/m}$ $\Delta T_{He II} \sim (T_{\lambda} T_{b}) \sim 400 \text{ mK} \text{ over 4 m}$
- Kapitza conductance is important in the design of numerous technical devices
 - He II heat exchangers
 - Composite superconductors stability
 - Low temperature refrigerators and instrumentation

Theory of Kapitza Conductance

- Phonon Radiation Limit
 - Heat exchange occurs by phonons (quantized lattice vibrations) impinging on the interface
 - Analogue to radiation heat transfer

$$q = \sigma (T + \Delta T)^4 - \sigma T^4$$

where $\sigma = \frac{\pi^4}{10\hbar} \left(\frac{k_B}{\Theta_D}\right)^2 \left(\frac{3N}{4\pi V}\right)^{2/3}$ • Expand

$$q = 4\sigma T^{3} \Delta T \left[1 + \frac{3}{2} \frac{\Delta T}{T} + \left(\frac{\Delta T}{T}\right)^{2} + \frac{1}{4} \left(\frac{\Delta T}{T}\right)^{3} \right]$$

$$h_{k}$$

Note: h_k ~ T³/ Θ_{D}^{-2}

Comparison of Highest Experimental Values for the Kapitza Conductance with the Phonon Radiation Limit^a

Solid	$\Theta_{D}(\mathbf{K})$	$h_{K}^{P}(1.9 \text{ K})$ (kW/m ² ·K)	$\frac{h_{\mathcal{K}}(1.9 \text{ K})}{(\text{kW/m}^2 \cdot \text{K})}$
Hg	72	440	30
Pb	100	190	32
In	111	171	11
Au	162	155	8.8
Ag	226	55	6
Sn	195	54	12.5
Cu	343	30	7.5
Ni	440	19	4.0
W	405	18	2.5
KCl	230	22	6.9
SiO ₂ (quartz)	290	19	5.7
Si	636	6.4	4.2
LiF	750	5.1	4.5
Al_2O_3	1000	1.5	1.6

" Compiled by Snyder.31

USPAS Short Course

Theory of Kapitza Conductance (cont.)

- Phonon radiation limit is an upper limit because it does not take into consideration boundary reflections due to dissimilarity between solid & He II
- Acoustic mismatch theory
 - Based on impedance mismatch between dissimilar materials
 - Similar to optical transmission between media with different refractive indices
- Similar expression to Phonon Radiation Limit

$$q = \sigma (T + \Delta T)^4 - \sigma T^4$$

Where in this case,

$$\sigma = \frac{4\pi^5 k_B^4 \rho_L c_L}{15\hbar^3 \rho_s c_s^3} \approx \Theta_D^{-3} \quad \text{and} \quad h_k \sim T^3 / \theta_D^3$$

This is a lower limit to heat transfer

USPAS Short Course

Experimental values for Kapitza Conductance

Example Copper:

- i) Phonon radiation limit $h_K^{pk} = 4.4 \text{ T}^3 \text{ kW/m}^2\text{K}$
- ii) Acoustic mismatch theory $h_K^A = 0.021 \text{ T}^3 \text{ kW/m}^2\text{K}$
- iii) Experimental results
 - a) clean surfaces h ~ 0.9 T³ kW/m²K
 - b) dirty surfaces
 - h ~ 0.4 T³ kW/m²K

Large variations \Rightarrow

Kapitza conductance is an empirical quality.

USPAS Short Course

Kapitza Conductance for $\Delta T/T \sim 1$

Expand from theory

$$q = \sigma \left(T + \Delta T\right)^4 - \sigma T^4$$

$$q = 4\sigma T^3 \Delta T \left[1 + \frac{3}{2} \frac{\Delta T}{T} + \left(\frac{\Delta T}{T}\right)^2 + \frac{1}{4} \left(\frac{\Delta T}{T}\right)^3\right] \approx h_k \Delta T$$

Alternate correlation
$$q = a \left(T_s^n - T_b^n \right) \quad \text{for finite } \Delta T$$

. 1

where a and n are empirically determined T_s : surface temperature = $T_b + \Delta T$ T_b : fluid temperature near surface

USPAS Short Course

Large Heat Flux Kapitza Conductance

Empirical correlation

$$q = a \left(T_s^n - T_b^n \right)$$

8			varnish-Cu (Ref	45)
7 -	-		Pt (Ref 39)	
~ F			High Cu (Ref 42)
(¥) ^S 4 ⊢ 3			Ag (Ref 29) Al (Ref 41) Low Cu (Ref 45 Pb-Sn (Ref 45))
, [, c) 1 2 3	4	5	
	q (W/cm ⁻)		- ara = ŝa	
Metal	q (W/cm ⁻) Surface condition	T_s at 1 W/cm ²	$Q(W/cm^2 \cdot K)$	n
Metal Cu	q (W/cm ⁻) Surface condition As received	T_s at 1 W/cm ²	Q (W/cm ² · K) 0.0486	n 2.8
Metal Cu	q (W/cm ⁻) Surface condition As received Brushed and baked	<i>T_s</i> at 1 W/cm ² 3.1 2.85	Q (W/cm ² ⋅ K) 0.0486 to	n 2.8
Metal Cu	q (W/cm ⁻) Surface condition As received Brushed and baked Annealed	T_s at 1 W/cm ² 3.1 2.85 2.95	Q.(W/cm ² · K) 0.0486 to 0.02	n 2.8 3.8
Metal Cu	q (W/cm ⁻) Surface condition As received Brushed and baked Annealed Polished	$\frac{T_s \text{ at } 1 \text{ W/cm}^2}{3.1}$ $\frac{3.1}{2.85}$ 2.95 2.67	Q.(W/cm ² · K) 0.0486 to 0.02 0.0455	n 2.8 3.8 3.45
Metal Cu	q (W/cm ⁻) Surface condition As received Brushed and baked Annealed Polished Oxidized in air for	$\frac{T_s \text{ at } 1 \text{ W/cm}^2}{3.1}$ $\frac{3.1}{2.85}$ 2.95 2.67	Q.(W/cm ² · K) 0.0486 to 0.02 0.0455	n 2.8 3.8 3.45
Metal Cu	q (W/cm ⁻) Surface condition As received Brushed and baked Annealed Polished Oxidized in air for 1 month	<i>T_s</i> at 1 W/cm ² 3.1 2.85 2.95 2.67 2.68	Q.(W/cm ² · K) 0.0486 to 0.02 0.0455 0.046	n 2.8 3.8 3.45 3.46
Metal Cu	q (W/cm ⁻) Surface condition As received Brushed and baked Annealed Polished Oxidized in air for 1 month oxidized in air at	<i>T_s</i> at 1 W/cm ² 3.1 2.85 2.95 2.67 2.68	Q.(W/cm ² · K) 0.0486 to 0.02 0.0455 0.046	n 2.8 3.8 3.45 3.46
Metal Cu	q (W/cm ⁻) Surface condition As received Brushed and baked Annealed Polished Oxidized in air for I month oxidized in air at 200° C for 40 min	<i>T_s</i> at 1 W/cm ² 3.1 2.85 2.95 2.67 2.68 2.46	Q.(W/cm ² · K) 0.0486 to 0.02 0.0455 0.046 0.052	n 2.8 3.8 3.45 3.46 3.7
Metal Cu	q (W/cm ⁻) Surface condition As received Brushed and baked Annealed Polished Oxidized in air for I month oxidized in air at 200° C for 40 min 50–50 PbSn solder coated	$T_s \text{ at } 1 \text{ W/cm}^2$ 3.1 2.85 2.95 2.67 2.68 2.46 2.43	Q.(W/cm ² · K) 0.0486 to 0.02 0.0455 0.046 0.052 0.076	n 2.8 3.8 3.45 3.46 3.7 3.4
Metal Cu	q (W/cm ⁻) Surface condition As received Brushed and baked Annealed Polished Oxidized in air for 1 month oxidized in air at 200° C for 40 min 50–50 PbSn solder coated Varnish coated	$T_s \text{ at } 1 \text{ W/cm}^2$ 3.1 2.85 2.95 2.67 2.68 2.46 2.43 4.0	Q.(W/cm ² · K) 0.0486 to 0.02 0.0455 0.046 0.052 0.076 0.0735	n 2.8 3.8 3.45 3.46 3.7 3.4 2.05
Metal Cu	q (W/cm ⁻) Surface condition As received Brushed and baked Annealed Polished Oxidized in air for 1 month oxidized in air at 200° C for 40 min 50–50 PbSn solder coated Varnish coated Machined	$T_s \text{ at } 1 \text{ W/cm}^2$ 3.1 2.85 2.95 2.67 2.68 2.46 2.43 4.0 3.9	Q.(W/cm ² ·K) 0.0486 to 0.02 0.0455 0.046 0.052 0.076 0.0735 0.019	n 2.8 3.8 3.45 3.46 3.7 3.4 2.05 3.0
Metal Cu Pt Ag	q (W/cm ⁻) Surface condition As received Brushed and baked Annealed Polished Oxidized in air for 1 month oxidized in air at 200° C for 40 min 50–50 PbSn solder coated Varnish coated Machined Polished	$T_s \text{ at } 1 \text{ W/cm}^2$ 3.1 2.85 2.95 2.67 2.68 2.46 2.43 4.0 3.9 2.8	Q.(W/cm ² · K) 0.0486 to 0.02 0.0455 0.046 0.052 0.076 0.0735 0.019 0.06	n 2.8 3.8 3.45 3.46 3.7 3.4 2.05 3.0 3.0

USPAS Short Course

Film Boiling Heat Transfer Modes

Near saturation (p < p_λ)
 Low density vapor blankets surface
 significantly reducing heat transfer

- Pressurized to p > p_λ
 Triple phase phenomena (He II, He I, vapor)
- 3. Near T_{λ} permits nucleate boiling in He I phase w/o exceeding q^{*}

Film Boiling Heat Transfer (He II)

Sample	$T_b(\mathbf{K})$	$T_{s}(\mathbf{K})$	$\Delta p (\mathrm{kPa})^a$	$h(kW/m^2 \cdot K)$
Wire $(d = 76 \mu\text{m})$	1.8	150	0.42	1.1
Wire $(d = 25 \mu\text{m})$	1.8 K	150	0.56	2.2
Flat rectangular plate	1.8	75	0.14	0.22
$(39 \text{ mm} \times 11 \text{ mm})$	1.8	75	0.28	0.3
	1.8	75	0.84	0.55
Flat surface $(d = 13.7 \text{ mm})$	2.01	40	0.13	0.69
	2.01	25	0.237	0.98
Horizontal cylinder	1.88	40	0.10	0.2
(d = 14.6 mm)	2.14	40	0.10	0.2
Wire $(d = 200 \ \mu m)$	2.05	150	0.14	0.66
Cylinder ($d = 1.45 \text{ mm}$)	1.78	80	0.06	0.22

^a 1 kPa = 7.5 torr = 70.3 cm He.

- Typical value $h_{fb} \sim 0.5 \text{ kw/m}^2 \text{K}$
- h_{fb} (flat plates) < h_{fb} (wires)
- h_{fb} increases with pressure

USPAS Short Course

USPAS Short Course

Application: He II Heat Exchanger

- Performance of He II heat exchangers are governed by several processes:
 - Surface heat transfer coefficient due to Kapitza conductance
 - Thermal gradient in He II channel allows T(x = 0) to increase above T_b
 - Solution is similar to a conductive fin problem

$$\frac{d}{dx}\left(f^{-1}\frac{dT}{dx}\right)^{1/3} + \frac{PU}{A}\left(T_b - T\right) = 0$$

 Heat flux is limited by the temperature along the heat exchanger exceeding the local saturation temperature

He II Heat Exchanger Requirements

- 1. The heat exchanger must have sufficient surface area $A_{s} \geq \frac{Q}{U(T_{b} - T_{0})}$ U = overall heat transfer coefficient
- 2. Bulk boiling in the heat exchanger should be avoided.
 - $T < T_{Sat}$ everywhere within the heat exchanger
- 3. Temperature gradient along heat exchanger should be minimized to not degrade performance
 - $T_L < T_b$ otherwise heat transfer at the end is poor (low effectiveness)

Summary of He II heat transfer

- Heat conductivity of He II is very high and thus models to interpret heat transfer are different from classical fluids
- Thermal gradient (dT/dx) in He II governed by two mechanisms
 - Normal fluid viscous drag (μ_n) yielding dT/dx ~ q
 - Turbulent "mutual friction" (dT/dx ~ q³)
- Peak heat flux is determined by the He II near the heater reaching a maximum with onset of local boiling
- Thermal diffusion-like mechanism controls heat transfer for short times and can result in significantly higher peak heat flux
- Forced flow He II pressure drop is similar to that of classical fluids
- Non-boiling heat transfer controlled by Kapitza conductance process (thermal impedance mismatch)
- Boiling heat transfer forms vapor film over surface.

USPAS Short Course