3.2 Cryogenic Convection Heat Transfer

m

- Involves process of heat transfer between solid material and adjacent cryogenic fluid
- Classic heat transfer problem (Newton's law)
 q(kW/m²) = h (T_s T_f)
- Configurations of interest
 - Internal forced flow (single phase, $T_f = T_{mean}$)
 - Free convection (single phase, $T_f = T_{\infty}$)
 - Internal two phase flow
 - Pool boiling (two phase)
- Understanding is primarily empirical leading to correlations based on dimensionless numbers
- Issue is relevant to the design of:
 - Heat exchangers
 - Cryogenic fluid storage
 - Superconducting magnets
 - Low temperature instrumentation

Single phase internal flow heat transfer

Classical fluid correlations

Forced

Convection

- The heat transfer coefficient in a classical fluid system is generally correlated in the form where the Nusselt number, where, $Nu_D \equiv \frac{hD}{k_f}$ and D is the characteristic length
- For laminar flow, Nu_D^{r} = constant ~ 4 (depending on b.c.)
- For turbulent flow ($Re_D > 2000$)

 $Nu_D = f(\operatorname{Re}_D, \operatorname{Pr}) = C\operatorname{Re}_D^n \operatorname{Pr}^m$ and $\operatorname{Pr} \equiv \frac{\mu_f C_p}{k_f}$ (Prandtl number)

Dittus-Boelter Correlation for classical fluids (+/- 15%)

$$Nu_D = 0.023 \,\mathrm{Re}^{\frac{4}{5}} \,\mathrm{Pr}^{\frac{2}{5}}$$

Note that fluid properties should be computed at T_f (the "film temperature"):

$$T_f \equiv \frac{T_s + T_f}{2}$$

USPAS Short Course

Johannes Correlation (1972)

 Improved correlation specifically for helium (+/- 8.3%)

$$Nu_D = 0.0259 \,\mathrm{Re}_D^{4/5} \,\mathrm{Pr}^{2/5} \left(\frac{T_s}{T_f}\right)^{-0.71}$$

- Last factor takes care of temperature dependent properties
- Note that one often does not know T_f, so iteration may be necessary.

Example

Application: Cryogenic heat exchangers

- Common types of heat exchangers used in cryogenic systems
 - Forced flow single phase fluid-fluid
 - E.g. counterflow heat exchanger in refrigerator/liquefier
 - Forced single phase flow boiling liquid (Tube in shell HX)
 - E.g. LN₂ precooler in a cooling circuit
 - Static boiling liquid-liquid
 - E.g. Liquid subcooler in a magnet system

Simple 1-D heat exchanger T_s D \dot{m}, T_f

 Differential equation describing the temperature of the fluid in the tube:

$$\dot{m}C\frac{dT_f}{dx} + hP(T_f - T_s) = 0$$

For constant T_s, the solution of this equation is an exponential

$$T_{s} - T_{f} = (T_{s} - T_{f})_{0} \exp\left(-\frac{hP}{\dot{m}C}x\right) \qquad T_{s} - T_{f} \qquad \text{Increasing } \dot{m}$$

USPAS Short Course

Liquid nitrogen precooler (continued)

$$UA = h\pi DL = \frac{Q}{\Delta T_{lm}} = 1144 \text{ W/51 K} = 22.4 \text{ W/K}$$

- The heat transfer coefficient is a function of Re_D and Pr = 0.67
- Assuming the flow is turbulent and fully developed, use the Dittus Boelter correlation

$$Nu_{D} = \frac{hD}{k_{f}} = 0.023 \operatorname{Re}_{D}^{0.8} \operatorname{Pr}^{0.3} \text{ and } \operatorname{Re}_{D} = \frac{4\dot{m}}{\pi D\mu}$$

Substituting the Re_D and solving for h
$$h = 0.023 \frac{k_{f}}{D} \left(\frac{4\dot{m}}{\pi D\mu}\right)^{0.8} \operatorname{Pr}^{0.3} = \frac{0.0247 \times 0.1 \text{ W/m K x (10^{-3} \text{ kg/s})^{0.8}}{(15 \times 10^{-6} \text{ Pa s})^{0.8} \times D^{1.8}}$$
$$= 0.07/D(\text{m})^{1.8}$$

$$h\pi DL = 0.224 \text{ x (L/D^{0.8})} = 22.4 \text{ W/K}$$

or L/D^{0.8} = 100 m^{0.2} \leftarrow 1 equation for two unknowns

Liquid nitrogen precooler (continued)

Pressure drop equation provides the other equation for L & D

 ~ 2

$$\Delta p = f \frac{L}{2\rho D} \left(\frac{\dot{m}}{A_{flow}} \right) \quad ; A_{flow} = \pi D^2/4 \text{ and } f \sim 0.02 \text{ (guess)}$$
$$\operatorname{Re}_D = \frac{4\dot{m}}{\pi D\mu}$$

Substituting for
$$Re_D$$
 and f
 $\Delta p \approx 0.016 \frac{\dot{m}^2}{\rho} \frac{L}{D^5} = \frac{0.016 \text{ x} (10^{-3} \text{ kg/s})^2}{0.3 \text{ kg/m}^3} \left(\frac{L}{D^5}\right)$ $\sim 13,700$
Substitute:
 $\Delta p = 5.33 \text{ x} 10^{-8} \left(\frac{L}{D^5}\right) \leftarrow 2nd \text{ equation for two unknowns}$
Eq. 1: $L = 100 D^{0.8} \rightarrow \Delta p = 5.33 \text{ x} 10^{-6}/D^{4.2}$ with $\Delta p = 10,000 \text{ Pa}$
 $D = [5.33 \text{ x} 10^{-6}/\Delta p]^{1/4.2} = 6.2 \text{ mm and } L = 100 \text{ x} (0.0062 \text{ m})^{0.8} = 1.7 \text{ m}$

USPAS Short Course

Single phase free convection heat transfer

- Compressible fluid effect: Heat transfer warms the fluid near the heated surface, reducing density and generating convective flow.
- Free convection heat transfer is correlated in terms of the Rayleigh number,

$$Nu_L = f(Gr, \Pr) \sim CRa_L^n$$
 where $Ra_L \equiv Gr \Pr = \frac{g\beta\Delta TL^3}{D_{th}V}$

where g is the acceleration of gravity, β is the bulk expansivity, v is the kinematic viscosity (μ/ρ) and D_{th} is the thermal diffusivity ($k/\rho C$). L (or D) are the scale length of the problem (in the direction of \overline{g})

USPAS Short Course

Free convection correlations

- For very low Rayleigh number, Nu = 1 corresponding to pure conduction heat transfer
- For Ra < 10⁹, the boundary layer flow is laminar (conv. fluids)

 $Nu_L \approx 0.59 Ra_L^{0.25}$

 For Ra > 10⁹, the boundary layer is turbulent

Free convection correlation for low temperature helium

Boston, MA 6/14 to 6/18/2010

USPAS Short Course

Pool Boiling Heat Transfer (e.g. Helium)

Nucleate Boiling Heat Transfer

- Nucleate boiling is the principal heat transfer mechanism for static liquids below the peak heat flux (q* ~ 10 kW/m² for helium)
- Requirements for nucleate boiling
 - Must have a thermal boundary layer of superheated liquid near the surface

$$\delta_{th} = rac{k_f \Delta T}{q}$$
 ~ 1 to 10 μ m for helium

 Must have surface imperfections that act as nucleation sites for formation of vapor bubbles.

Critical Radius of Vapor Bubble

 $P_v = P_L + \frac{2\sigma}{r}$ σ is the surface tension

- <u>Critical radius</u>: For a given T, p, the bubble radius that determines whether the bubble grows of collapses
 - r > r_c and the bubble will grow
 - r < r_c and the bubble will collapse
- Estimate the critical radius of a bubble using thermodynamics
 - Clausius Clapeyron relation defines the slope of the vapor pressure line in terms of fundamental properties

$$\left(\frac{dp}{dT}\right)_{sat} = \frac{\Delta s}{\Delta v} = \frac{h_{fg}}{T(v_v - v_L)} \approx \frac{h_{fg} p}{RT^2}$$

If the gas can be approximated as ideal and $v_v \gg v_L$

USPAS Short Course

Critical radius calculation

• Integrating the Clausius Clapeyron relation between p_s and $p_s + 2\sigma/r$

$$r_{c} = \frac{2\sigma}{p_{s}} \left(e^{h_{fg}\Delta T/RT^{2}} - 1 \right)^{-1} \approx \frac{2\sigma RT_{s}^{2}}{h_{fg} p_{s}\Delta T}$$

- Example: helium at 4.2 K (NBP)
 - Empirical evidence indicates that $\Delta T \sim 0.3$ K
 - This corresponds to $r_c \sim 17$ nm
 - Number of helium molecules in bubble ~ 10,000
 - Bubble has sufficient number of molecules to be treated as a thermodynamic system
- Actual nucleate boiling heat transfer involves heterogeneous nucleation of bubbles on a surface. This is more efficient than homogeneous nucleation and occurs for smaller AT.

Nucleate Boiling Heat Transfer He I

Note that h_{nb} is not constant because $Q \sim \Delta T^{2.5}$

USPAS Short Course

Nucleate Boiling Heat Transfer Correlations

- The mechanism for bubble formation and detachment is very complex and difficult to model
- Engineering correlations are used for analysis
- Kutateladse correlation

$$\frac{h}{k_{l}} \left(\frac{\sigma}{g\rho_{l}}\right)^{1/2} = 3.25 \times 10^{-4} \left[\frac{qC_{pl}\rho_{l}}{h_{fg}\rho_{v}k_{l}} \left(\frac{\sigma}{g\rho_{l}}\right)^{1/2}\right]^{0.6} \times \left[g\left(\frac{\rho_{l}}{\mu_{l}}\right)^{2} \left(\frac{\sigma}{g\rho_{l}}\right)^{3/2}\right]^{0.125} \left(\frac{p}{(\sigma g\rho_{l})^{1/2}}\right)^{0.7}$$

Rearranging into a somewhat simpler form,

$$q = 1.90 \times 10^{-9} \left[g \left(\frac{\rho_l}{\mu_l} \right)^2 \chi^3 \right]^{0.3125} \left(\frac{p\chi}{\sigma} \right)^{1.75} \left(\frac{\rho_l}{\rho_v} \right)^{1.5} \times \left(\frac{C_p}{h_{fg}} \right)^{1.5} \left(\frac{k_l}{\chi} \right) (T_s - T_b)^{2.5}$$
where $\chi = \left(\frac{\sigma}{g\rho_l} \right)^{1/2} \quad q(W/cm^2) = 5.8\Delta T^{2.5}$ For helium at 4.2 K

USPAS Short Course

Peak Heat Flux (theory)

 Understanding the peak nucleate boiling heat flux is based on empirical arguments due to instability in the vapor/liquid flow

Instability due to balance between surface energy and kinetic energy

$$c^{2} = \frac{2\pi\sigma}{\lambda(\rho_{L}+\rho_{v})} - \frac{\rho_{L}\rho_{v}}{(\rho_{L}+\rho_{v})^{2}}(v_{v}-v_{L})^{2}$$

Transition to unstable condition when $c^2 = 0$

USPAS Short Course

Peak Heat Flux Correlations

Zuber correlation:

$$q^* \approx Kh_{fg} \rho_{v} \left[\frac{\sigma(\rho_{l} - \rho_{v})g}{\rho_{v}^{2}} \right]^{\frac{1}{4}} \left[\frac{\rho_{l}}{\rho_{l} + \rho_{v}} \right]^{\frac{1}{2}}$$

- Empirical based on Zuber Correlation $q^* \approx 0.16h_{fg} \rho_v^{\frac{1}{2}} [\sigma g(\rho_l - \rho_v)]^{\frac{1}{4}}$ ~ 8.5 kW/m² for He I at 4.2 K
- Limits:
 - $T \rightarrow T_c$; $q^* \rightarrow 0$ since $h_{fg} \rightarrow 0$ and $\sigma \rightarrow 0$
 - T→0; q* ~ ρ_v^{1/2} (decreases)
 - q*_{max} near 3.6 K for LHe

ANGLE OF INCLINATION, Φ (DEGREES)

100

USPAS Short Course

Film Boiling

- Film boiling is the stable condition when the surface is blanketed by a layer of vapor
 - Film boiling heat transfer coefficient is generally much less that that in nucleate boiling
 - Minimum film boiling heat flux, q_{mfb} is related to the stability of the less dense vapor film under the more dense liquid

"Taylor Instability" governs the collapse of the vapor layer

Film Boiling Heat Transfer Correlations

- Factors affecting the process
 - Fluid properties: C_p , h_{fq} , σ , ρ_l , ρ_v
 - Fluid state: saturated or pressurized (subcooled)
 - Heater geometry (flat plate, cylinder, etc.)
- Breen-Westwater correlation

$$h_{fb} \left(\frac{\sigma}{g(\rho_l - \rho_v)}\right)^{1/8} \left(\frac{\mu_v(T_s - T_b)}{k_v^3 \rho_v(\rho_l - \rho_v)g\lambda'}\right)^{1/4} = 0.37 + 0.28 \left(\frac{\sigma}{gD^2(\rho_l - \rho_v)}\right)^{1/2}$$
Where,
$$\lambda' = \frac{\left[h_{fg} + 0.34C_{pv}(T_s - T_b)\right]^2}{h_{fg}}$$

$$h_{fb} = 0.37 \left(\frac{g(\rho_l - \rho_v)}{\sigma} \right)^{1/8} \left(\frac{k_v^3 \rho_v(\rho_l - \rho_v)g\lambda'}{\mu_v(T_s - T_b)} \right)^{1/4} \implies q \approx (T_s - T_f)^{3/4}$$

USPAS Short Course

Minimum film boiling heat flux

- Minimum film boiling heat flux is less than the peak heat flux
- Recovery to nucleate boiling state is associated with Taylor Instability.

$$q_{mfb} = 0.16h_{fg} \rho_{v} \left[\frac{g\sigma(\rho_{l} - \rho_{v})}{(\rho_{l} + \rho_{v})^{2}} \right]^{\frac{1}{4}}$$

Dimensionless ratio:

$$\frac{q_{mfb}}{q^*} = \left[\frac{\rho_v}{\rho_l + \rho_v}\right]^{\frac{1}{2}}$$

Prediction of Nucleate/Film Boiling for Helium

USPAS Short Course

Experimental Heat Transfer (Helium)

USPAS Short Course

Prediction of Nucleate/Film Boiling for Nitrogen

Experimental Heat Transfer (Nitrogen)

USPAS Short Course

Internal two phase flow

- Heat transfer depends on various factors
 - Mass flow rate
 - Orientation w/r/t gravity
 - Flow regime
 - Quality (χ)
 - Void fraction (α)
- Total heat transfer rate

 $Q_T = Q_{fc} + Q_b$

where: Q_{fc} is convective and Q_b is gravity enhanced boiling.

Depending on factors above, either contribution may dominate

Horizontal flow two phase heat transfer

- Consider the case where gravitational effects are negligible
 - Horizontal flow at moderate Re so that inertial forces dominate
- Correlation based on enhanced Nusselt number

$$\frac{Nu_{2\phi}}{Nu_{L}} = f(\chi_{tt}) \text{ where } \chi_{tt} = \left(\frac{1-x}{x}\right)^{0.9} \left(\frac{\mu_{L}}{\mu_{v}}\right)^{0.1} \left(\frac{\rho_{v}}{\rho_{L}}\right)^{0.5}$$

and $Nu_{L} = 0.023 \operatorname{Re}_{L}^{0.8} \operatorname{Pr}_{L}^{0.4}$; $\operatorname{Re}_{L} = \frac{\dot{m}(1-x)}{\mu_{L}A_{flow}}$

Typical correlation (de la Harpe):

$$\frac{Nu_{2\phi}}{Nu_L} \approx A\chi_{tt}^{-m} \longrightarrow \quad 1 \text{ for } \chi_{tt} \text{ large}$$

with m ~ 0.385 and A ~ 5.4

USPAS Short Course

Vertical channel heat transfer

- Main difference between this problem and pool boiling is that the fluid is confined within channel
- At low mass flow rate and self driven flows (natural circulation) the heat transfer is governed by buoyancy effects
- Process is correlated against classical boiling heat transfer models
- In the limit of large D the correlation is similar to pool boiling heat transfer (vertical surface)

USPAS Short Course

Vertical channel maximum heat flux

$$\beta = \frac{\rho_l}{\rho_v}$$

and
$$\chi_c = \frac{\dot{m}_v}{\dot{m}}_{max}$$
 "Critical quality" ~ 0.3 for helium

>> 1

q* ~ constant for w/z

Example: Cryogenic Stability of Composite Superconductors (LTS in LHe @ 4.2 K)

- Used in large magnets where flux jumping and other small disturbances are possible and must be arrested
- General idea: in steady state ensure that cooling rate exceeds heat generation rate (Q > G)
- Achieved by manufacturing conductor with large copper (or aluminum) fraction and cooling surface
- Lower overall current density
- Potentially high AC loss (eddy currents)

G/S I²R/S

Cryogenic Stability (LHe @ 4.2 K)

Case 1: Unconditional stability, recovery to fully superconducting state occurs uniformly over length of normal zone Case 2: Cold End recovery (Equal area criterion): Excess cooling capacity (area A) > Excess heat generation (area B)

Q/S or G/S $T_{b}(K)$ $T_{cs}(K)$ $T_{c}(K)$ $T_{x}(K)$

Q/S is the LHe boiling heat transfer curve for bath cooling normalized per surface area

G/S is the two part heat generation Curve for a composite superconductor T_{cs} is the temperature at which $T_{op} = T_c$

USPAS Short Course

Transient Heat Transfer

- Heat transfer processes that occur on time scale short compared to boundary layer thermal diffusion. Why is this important in cryogenics? (D_{th} (copper) ~ 10⁻⁴ m²/s @ 300 K; ~ 1 m²/s @ 4 K)
- Normal liquid helium has a low thermal conductivity and large heat capacity

- Lumped capacitance condition: $Bi = \frac{hL}{k} << 1 \sim 10L \text{ [m]}$
- Note that this subject is particularly relevant to cooling superconducting magnets, with associated transient thermal processes
- Important parameters to determine
 - $\Delta E = q \Delta t^*$ (critical energy)

• T_s - surface temperature during heat transfer USPAS Short Course Boston, MA 6/14 to 6/18/2010

Transient Heat Transfer to LHe @ 4.2 K

Time evolution of the temperature difference following a step heat input: Steady state is reached after ~ 0.1 s

USPAS Short Course

Critical Energy for Transition to Film Boiling

- Hypothesis: The "critical energy" is determined by the amount of energy that must be applied to vaporize a layer of liquid adjacent to the heated surface.
 - Energy required
 - d $\Delta E = \rho_l h_{fg} \delta_{th}$
 - Layer thickness determined by diffusion

$$\delta_{th} = \frac{\pi}{2} \left(D_f t \right)^{\frac{1}{2}}$$

Critical flux based on heat diffusion:

USPAS Short Course

Surface Temperature (Transient HT)

- During transient heat transfer, the surface temperature will be higher than the surrounding fluid due to two contributions:
 - Fluid layer diffusion: transient conduction in the fluid layer will result in a finite temperature difference
 - Kapitza conductance: At low temperatures, there can be a significant temperature difference, ΔT_k , due to thermal impedance mismatch (more on this subject later). This process is dominant at very low temperatures, but is small above ~ 4 K, so is normally only important for helium systems.
- Fluid layer diffusion equation:

$$\frac{\partial^2 \Delta T_f}{\partial x^2} = \frac{1}{D_f} \frac{\partial \Delta T_f}{\partial t}; D_f = \frac{k}{\rho C_p}$$

- Boundary conditions:
 - $\Delta T_f(x,0) = 0$; initial condition
 - ΔT_f (infinity, t) = 0; isothermal bath
 - $q = -k_f d\Delta T_f / dt)_{x=0}$; heat flux condition
 - Solid is isothermal (Bi = hL/k << 1)

Solution is a standard second order differential equation with two spatial and one time boundary condition.

Transient diffusion solution

Integrating the diffusion equation:

$$\Delta T_f = \frac{q}{k_f} \left[2 \left(\frac{D_f t}{\pi} \right)^{1/2} \exp \left(-\frac{x^2}{4D_f t} \right) - xerfc \left(\frac{x}{2(D_f t)^{1/2}} \right) \right]$$

Evaluating at x = 0 (surface of heater)

$$\Delta T_f(x=0) = \frac{2q}{\sqrt{\pi}} \left(\frac{t}{\rho C_p k_f}\right)^{1/2}$$

The transient heat transfer coefficient can then be defined

$$h = \frac{q}{\Delta T_f} = \frac{\sqrt{\pi}}{2} \left(\frac{\rho C_p k_f}{t}\right)^{1/2}$$

$$h \approx \frac{0.1}{\sqrt{t}}$$
 ; kW/m²K for helium near 4 K

At $t = 10 \ \mu\text{s}$; $h \sim 30 \ \text{kW/m^2}$ K and for $q = 10 \ \text{kW/m^2}$; $\Delta T_f \sim 0.3 \ \text{K}$ Note: this value of $h >> h_h$ (nucleate boiling HT coefficient) USPAS Short Course Boston, MA 6/14 to 6/18/2010

Summary Cryogenic Heat Transfer

- Single phase heat transfer correlations for classical fluids are generally suitable for cryogenic fluids
 - Free convection
 - Forced convection
- Two phase heat transfer also based on classical correlations
 - Nucleate boiling
 - Peak heat flux
 - Film boiling
- Transient heat transfer is governed by diffusive process for ΔT and onset of film boiling