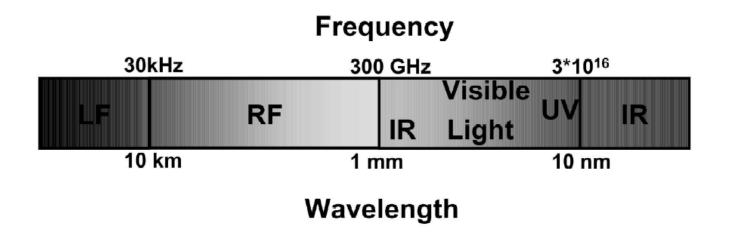
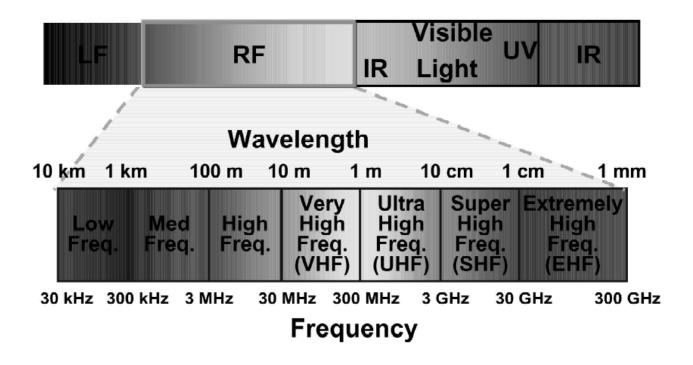


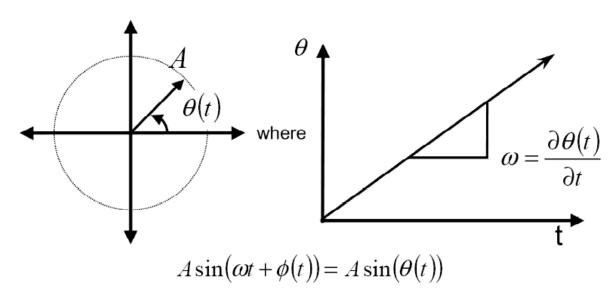
S-Parameters

A. Nassiri-ANL

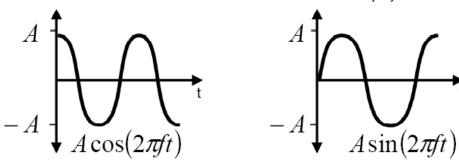


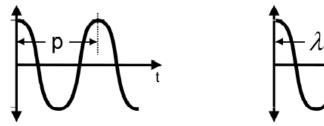

What is RF? (1)

Radio Frequency (RF) ranges from 30KHz to 300GHz



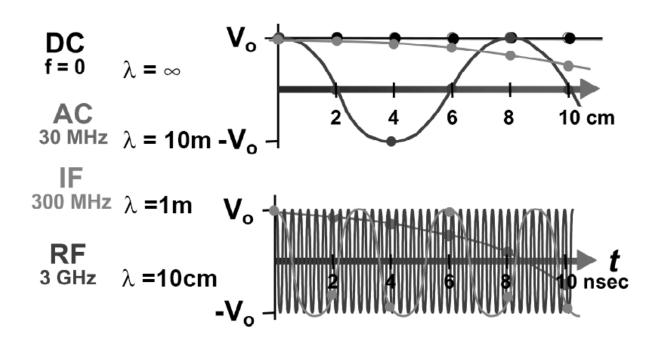
What is RF? (2)


Fundamentals of a Wave (1)


- In polar display (magnitude & phase represented together) a wave can be represented like a rotating vector (phasor)
- \blacksquare A wave's angular frequency ω is the derivative of phase with respect to time
- lacksquare A wave's frequency is $f = \omega/2\pi$

Fundamentals of a Wave (2)

The phasor's x and y axis projections, as a function of time, map out cosine and sine waves, respectively



The speed of light defines the relationship between time and length for a wave

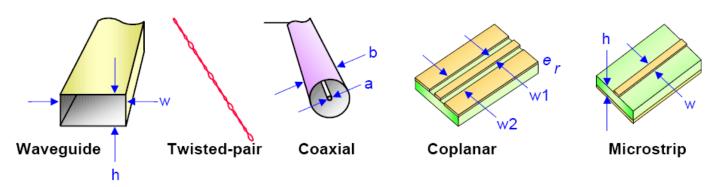
$$\lambda = \frac{c}{f} = c \bullet p$$

Fundamentals of a Wave (3)

Why Measure Signal Power at RF?

Low frequencies

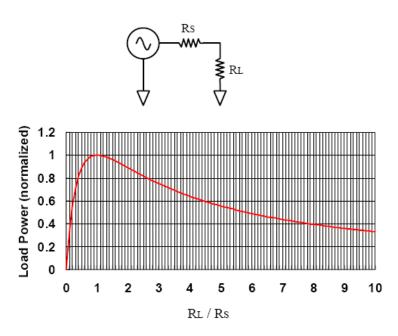
- wavelengths >> wire length
- current (I) travels down wires easily for efficient power transmission
- measured voltage and current not dependent on position along wire



High frequencies

- wavelength ~ or << length of conductor ⇒ traveling waves</p>
- measured envelope voltage dependent on position along line
- power is a reliable signal attribute and is constant along a lossless line
- need transmission lines for efficient power transmission
- RMS voltage & current can be extracted directly from RF signal power

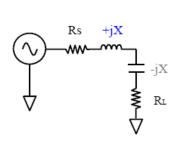
Transmission Line Basics

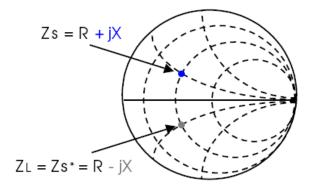


- The fundamental parameter of a transmission line is its characteristic impedance Z₀
- Z_0 describes the relationship between the voltage and current traveling waves and is a function of physical dimensions and the dielectric constant ε_r
- Z₀ is usually defined a real impedance (e.g. 50 or 75 ohms)
- For a loss-less transmission line:

$$Z_0 = \sqrt{\frac{L}{C}}$$
 L - the distributed inductance of the line C - the distributed capacitance of the line

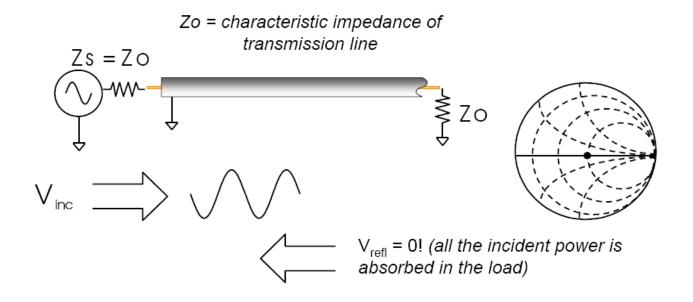
Power Transfer Efficiency (1)



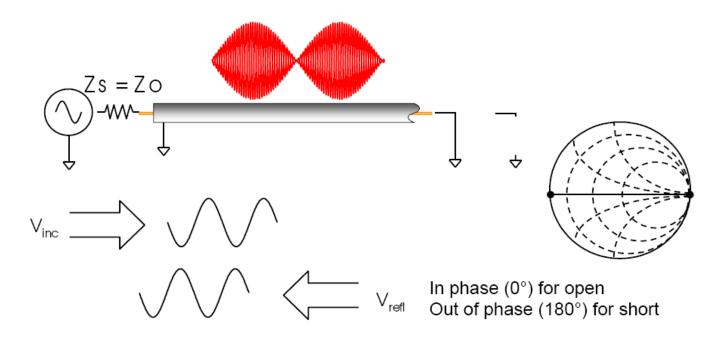

Maximum power is transferred when $R_L = R_S$

Power Transfer Efficiency (2)

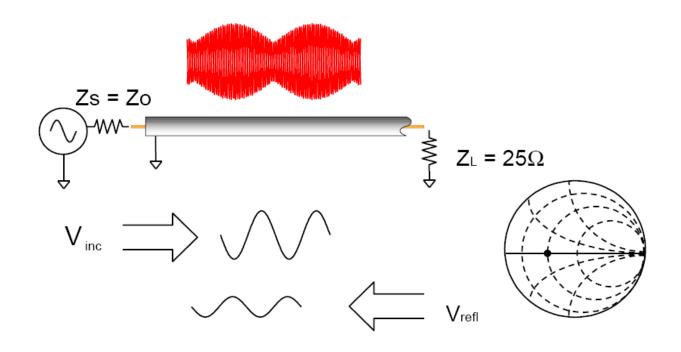
For complex impedances, maximum power transfer occurs when $Z_L = Z_S^*$ (conjugate match)



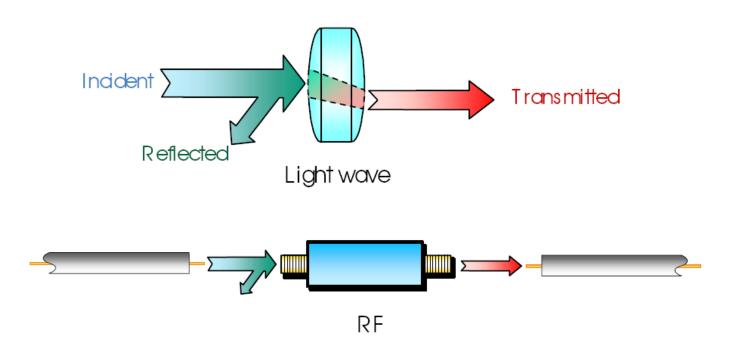
At high frequencies, maximum power transfer occurs when $R_S = R_L = Z_0$


Transmission Line Terminated with Z₀

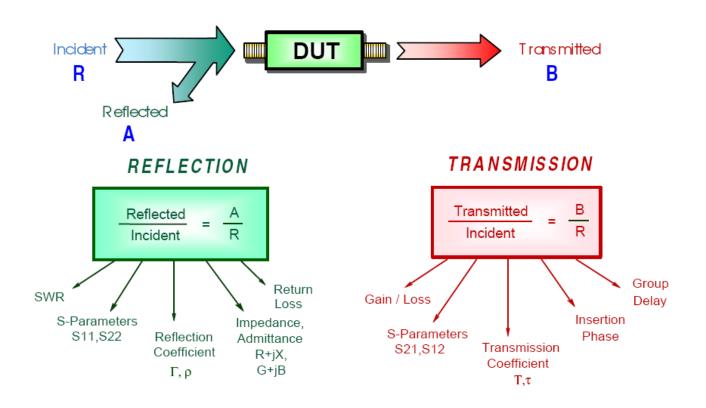
For reflection, a transmission line terminated in Zo behaves like an infinitely long transmission line


Transmission Line Terminated with Short, Open

For reflection, a transmission line terminated in a short or open reflects all power back to source

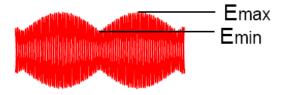

Transmission Line Terminated with 25 Ω

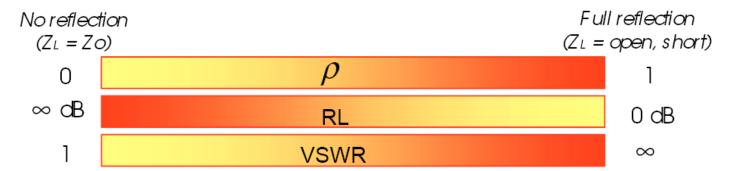
Standing wave pattern does not go to zero as with short or open



Light Wave Analogy to RF Energy

High-Frequency Device Characterization


Reflection Parameters


$$\text{Reflection Coefficient (Γ)} \quad \Gamma = \frac{V_{reflected}}{V_{incident}} = \rho \ \angle \Phi = \frac{Z_L - Z_0}{Z_L + Z_0}$$

Return Loss (RL)
$$RL = -20\log(\rho)$$
, $\rho = |\Gamma|$

Voltage Standing Wave Ratio (VSWR)

$$VSWR = \frac{E_{\text{max}}}{E_{\text{min}}} = \frac{1+\rho}{1-\rho}$$

Transmission Parameters

Transmission Coefficient (T)
$$T = \frac{V_{transmitted}}{V_{incident}} = \tau \angle \Phi$$

Insertion Loss (IL)
$$IL(dB) = -20\log(\tau)$$

Gain
$$Gain(dB) = 20\log(\tau)$$

Insertion Phase Insertion Phase
$$(deg) = \angle \frac{V_{transmitted}}{V_{incident}} = \phi$$

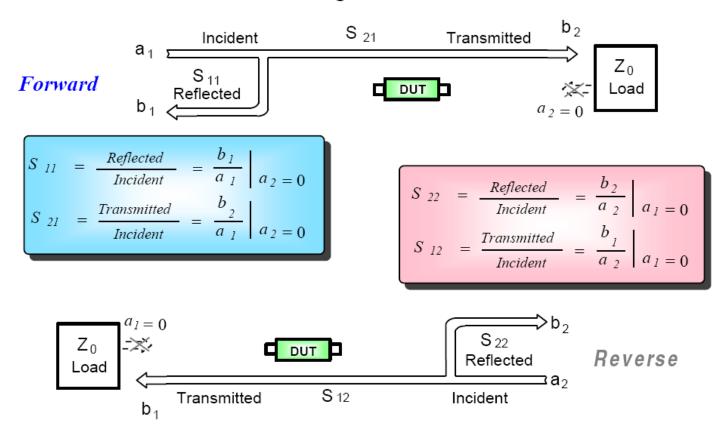
Characterizing Unknown Devices

Using parameters (H, Y, Z, S) to characterize devices:


- gives us a linear behavioral model of our device
- measure parameters (e.g. voltage and current) versus frequency under various source and load conditions (e.g. short and open circuits)
- compute device parameters from measured data
- now we can predict circuit performance under any source and load conditions

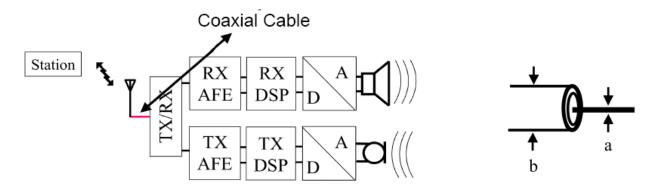
$$\begin{array}{ll} \underline{\textit{H-parameters}} & h_{11} = \frac{V_1}{I_1} \bigg|_{V_2 = 0} & \textit{(requires short circuit)} \\ V_1 = h_{11}I_1 + h_{12}V_2 & I_2 = h_{21}I_1 + h_{22}V_2 & h_{12} = \frac{V_1}{V_2} \bigg|_{I_1 = 0} & \textit{(requires open circuit)} \end{array}$$

Why Use S-Parameters?


- relatively easy to obtain at high frequencies
 - measure voltage traveling waves with a vector network analyzer
 - don't need shorts/opens which can cause active devices to oscillate or self-destruct
- relate to **familiar** measurements (gain, loss, reflection coefficient ...)
- can cascade S-parameters of multiple devices to predict system performance
- can compute H, Y, or Z parameters from S-parameters if desired
- can import and use S-parameter files in electronic-simulation tools

$$b_1 = S_{11}a_1 + S_{12}a_2$$
$$b_2 = S_{21}a_1 + S_{22}a_2$$

Measuring S-Parameters


Equating S-Parameters with Common Measurement Terms

- ▶ S11 = forward reflection coefficient (input match)
- S22 = reverse reflection coefficient (output match)
- S21 = forward transmission coefficient (gain or loss)
- ➤ S12 = reverse transmission coefficient (isolation)

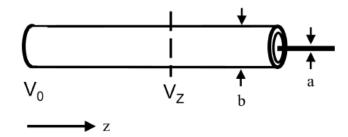
Remember, S-parameters are inherently linear quantities -- however, we often express them in a log-magnitude format

Why 50Ω ? (1)

Use of coaxial cable: Antenna / PCB interface

Considering the dielectric **air** (μ_R =1, ϵ_R = 1) the characteristic impedance is:

$$Z_0 = \sqrt{\frac{\mu_0 \mu_R}{\varepsilon_0 \varepsilon_R}} \frac{\ln \frac{b}{a}}{2\pi} \approx 60 \ln \frac{b}{a}$$


Receiver: attenuation of the coaxial cable as low as possible - Z_0 = ?

Transmitter: power efficiency of the coaxial cable as high as possible $-Z_0 = ?$

Why 50Ω ? (2)

Cable attenuation

Considering only resistive loss:

$$V_z = V_0 e^{-\alpha z}$$

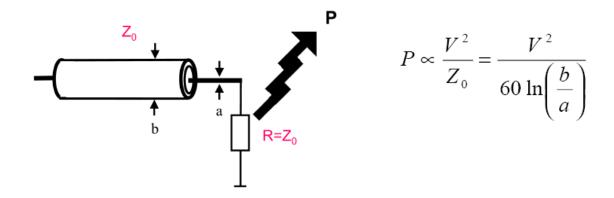
$$lpha pprox rac{2~R~*}{Z_{_0}}$$
 R* - resistance / meter
$$R* pprox rac{1}{2\pi\delta\sigma} \left(rac{1}{a} + rac{1}{b}
ight) \qquad \qquad \sigma ext{ - wire conductivity [1/$\Omega m]}$$

$$\delta = \sqrt{\frac{1}{\pi f \mu_0 \mu_R \sigma}}$$

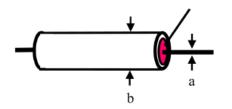
Why 50Ω ? (3)

$$\alpha \approx \frac{R^*}{2Z_0} \approx \frac{\frac{1}{2\pi\delta\sigma} \left(\frac{1}{a} + \frac{1}{b}\right)}{2\left[60 \ln\left(\frac{b}{a}\right)\right]}$$
Minimum of α :
$$\frac{\partial \alpha}{\partial a} = 0 \Rightarrow \frac{\partial}{\partial a} \frac{\left(\frac{1}{a} + \frac{1}{b}\right)}{\ln\left(\frac{b}{a}\right)} = 0$$

$$\ln\left(\frac{b}{a}\right) = 1 + \frac{a}{b}$$
 and after few iterations $\frac{b}{a} = 3.6$


$$Z_0 \approx 60 \ln (3.6) \approx 77 \Omega$$

75 Ω - is used for Radio/TV cables



Why 50Ω ? (4)

Power transfer efficiency

Power efficiency will be limited by the electric field between the 2 conductors

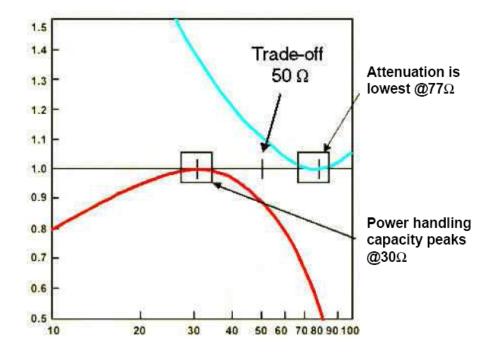
$$E_{\text{max}} \propto \frac{V}{a \ln\left(\frac{b}{a}\right)}$$

Why 50Ω ? (5)

$$P = \frac{E^2_{\text{max}} a^2 \ln\left(\frac{b}{a}\right)}{60}$$

Maximum power efficiency:

$$\frac{\partial P}{\partial a} = 0 \Rightarrow \frac{\partial}{\partial a} \left[a^2 \ln \left(\frac{b}{a} \right) \right] = 0$$


$$\frac{b}{a} = \sqrt{e}$$

$$Z_0 \approx 60 \ln \left(\sqrt{e} \right) \approx 30 \Omega$$

Why 50Ω ? (6)

Attenuation / Power efficiency (normalized)

Characteristic impedance for coaxial airlines (Ω)

Why use dB? (1)

In applications where analog signals levels span multiple decades, logarithmic scales are employed

$$x(Bel) = \log_{10} \frac{P}{P_{ref}} = \log_{10} a$$

Example: $P/P_{ref} = 100:1 = 2Bel$

$$x(Deci-Bel) = x(dB) = 10\log_{10}\frac{P}{P_{ref}} = 10\log_{10}a$$

Linear to logarithmic transformation

$$10\log_{10} a = xdB$$

Logarithmic to linear transformation

$$10^{\frac{xdB}{10}} = a$$

Why use dB? (2)

"dB" properties

1) Linear multiplication \Rightarrow dB addition

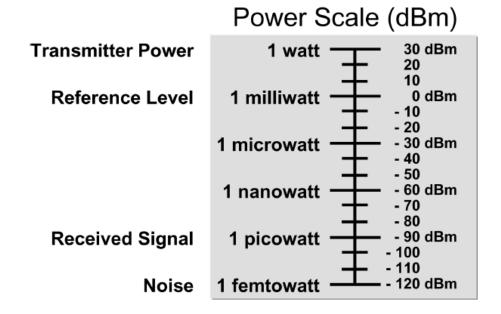
$$10\log_{10}(a \bullet b) = 10\log_{10} a + 10\log_{10} b$$

2) Linear division ⇒ dB subtraction

$$10\log_{10}(a/b) = 10\log_{10}a - 10\log_{10}b$$

3) Linear power ⇒ dB multiplication

$$10\log_{10}(a^x) = x \bullet 10\log_{10} a$$


Power can be expressed in dBW, dBm:

$$PdB(W) = 10\log_{10}\left(\frac{P}{1W}\right) \qquad PdBm(W) = 10\log_{10}\frac{P}{1mW}$$

dBm – logarithmic power measurements employing 1mW as the reference level

Why use dB? (3)

Why use dB? (4)

Basic Relationships

1/10	10 ^{-1.0}	-10 dB
1/5	10 ^{-0.7}	-7 dB
1/2	10 ^{-0.3}	-3 dB
1	100.0	0 dB
2	10 ^{0.3}	3 dB
5	10 ^{0.7}	7 dB
10	10 ^{1.0}	10 dB
20	10 ^{1.3}	13 dB
50	10 ^{1.7}	17 dB
100	10 ^{2.0}	20 dB

Basic RF dB Arithmetic

2 x 2 = 4	•	3 + 3 = 6 dB
5 x 5 = 25	•	7 + 7 = 14 dB
10 / 2 = 5	•	10 - 3 = 7 dB
$2 \times 2 \times 2 \times 10 = 80$	•	3 + 3 + 3 + 10 = 19 dB
5 x 100 = 500	•	7 + 20 = 27 dB
1000 / 2 = 500	•	30 - 3 = 27 dB
2 / 100 =0.02	•	3- 20 = - 17 dB

Why use dB? (5)

A voltage or a current can be also expressed in dB: $VdB = 20\log_{10}\left(\frac{V}{V_{ref}}\right)$

$$VdB(V) = 20\log_{10}\left(\frac{V}{1V}\right) \qquad VdBm(V) = 20\log_{10}\left(\frac{V}{1mV}\right)$$

The factor 20 appears because the power is proportional to the squared voltage Attention: the factor values for powers expressed in (dB) should be multiplied by 2 when referred like voltages (dB)!

Example:

a factor of 2 represents in "power" 3dB a factor of 2 represents in "voltage / current" 6dB

Why use dB? (6)

Examples

- 1. For a GSM mobile phone the max signal power is 1W while the weakest signal is only $10\mu W$. Determine the dynamic range.
 - for the linear scale: $1W/10\mu W = 10^5$
 - in dB: $10\log_{10} 10^5 = 50dB$

The range from 1W to 10µW is 50dB

2. An amplifier has a 26dB **voltage gain**. What is the output voltage for an input voltage of 100mV.

26dB = 20dB + 6dB
$$\Rightarrow$$
 the multiplication factor is 10x2 = 20 $V_{out} = V_{in}x20 = 100mVx20 = 2V$

Why use dB? (7)

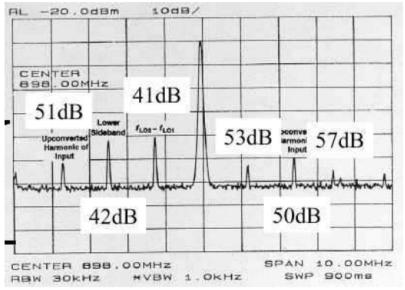
3. Calculate the voltage corresponding to a power of 0dBm and -20dBm in a 50Ω system.

$$P_1 = 0dBm \implies P_1 = 1mW = 10^{-3} W,$$

 $P_1 = V_1^2/R \implies V_1^2 = P_1xR = 0.05V^2 \implies V_{rms} = 0.224V = 224mV$

$$P_2 = -20 dBm \implies P_2 = 10^{-20/10} \text{ mW} = 10^{-5} \text{ W},$$

 $P_2 = V_2^2/R \implies V_2^2 = P_2 xR = 0.0005 V^2 \implies V_{rms} = 0.0224 V = 22.4 mV$



Why use dB? (8)

dBc (c = carrier) ⇒ difference in dB between an interfering signal / noise (interferer) and the desired signal (carrier)

$$dBc = 10\log_{10}\left(\frac{P_{carrier}}{P_{interferer}}\right)$$

$$= P_{carrier}(dB) - P_{interferer}(dB)$$
Upconverted Harmonic of Harmonic

For 50 Ω System

dBm	mW	dBmV	mV _{RMS}	m۷ _P	mV _{PP}
-50	0.000	-3.0	0.7	1.0	2.0
-45	0.000	2.0	1.3	1.8	3.6
-40	0.000	7.0	2.2	32	6.3
-35	0.000	12.0	4.0	5.6	11.2
-30	0.001	17.0	7.1	10.0	20.0
-25	0.003	22.0	12.6	17.8	35.6
-20	0.010	27.0	22.4	31.6	63.2
-15	0.032	32.0	39.8	56.2	112.5
-10	0.100	37.0	70.7	100.0	200.0
-5	0.316	42.0	125.7	177.8	355.7
0	1.000	47.0	223.6	316.2	632.5
1	1.259	48.0	250.9	354.8	709.6
2	1.585	49.0	281.5	398.1	796.2
3	1.995	50.0	315.9	446.7	893.4
4	2.512	51.0	354.4	501.2	1002.4
5	3.162	52.0	397.6	562.3	1124.7
6	3.981	53.0	446.2	631.0	1261.9
7	5.012	54.0	500.6	707.9	1415.9
8	6.310	55.0	561.7	794.3	1588.7
9	7.943	56.0	630.2	891.3	1782.5
10	10.000	57.0	707.1	1000.0	2000.0
11	12.589	58.0	793.4	1122.0	2244.0
12	15.849	59.0	890.2	1258.9	2517.9
13	19.953	60.0	998.8	1412.5	2825.1
14	25.119	61.0	1120.7	1584.9	3169.8
15	31.623	62.0	1257.4	1778.3	3556.6
16	39.811	63.0	1410.9	1995.3	3990.5
17	50.119	64.0	1583.0	2238.7	4477.4
18	63.096	65.0	1776.2	2511.9	5023.8
19	79.433	66.0	1992.9	2818.4	5636.8
20	100.000	67.0	2236.1	3162.3	6324.6
21	125.893	68.0	2508.9	3548.1	7096.3
22	158.489	69.0	2815.0	3981.1	7962.1
23	199.526	70.0	3158.5	4466.8	8933.7
24	251,189	71.0	3543.9	5011.9	10023.7
25	316.228	72.0	3976.4	5623.4	11246.8
26	398.107	73.0	4461.5	6309.6	12619.1
27	501.187	74.0	5005.9	7079.5	14158.9
28	630.957	75.0	5616.7	7943.3	15886.6
29	794.328	76.0	6302.1	8912.5	17825.0
30	1000.000	77.0	7071.1	10000.0	20000.0

Conversion table for 50Ohm systems