
Massachusetts Institute of Technology                   RF Cavities and Components for Accelerators                 USPAS 2010

Linac RF System

A. Nassiri -ANL



2

Outline:

 Linac Layout

 Power system

 Klystron Operation

 RF Components

 RF Breakdown and RF Conditioning

Measurement Techniques

 Some Examples 



3

Linac RF Layout
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S-Band 35 MW Klystron
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Velocity Modulation

Velocity 
entering, 
uo

Velocity 
leaving, 
uo+∆u

d

t=to, z=0

visinωt

When electrons are passed 
through the modulating field, 
some electrons have their 
velocities increased and some 
will have their velocities 
decreases when the voltage is 
reversed. 

As the electrons leave the gap, 
those with increased velocities 
overtake the slower electrons, 
as a result electron bunching 
(density modulation) occurs. 



12

0        30            60            90            120

Drive Power  [W]

5 
   

   
   

 1
0 

   
   

   
   

20
   

   
   

  3
0 30 kV

25 kV

20 kV

10 kV

Typical Klystron Saturation Curves

Operating 
Bandwidth

fo

f2         f1 f5               f3            
f4

Cavity Bandwidth



13

Breakdown and Protection

• In the gun (between electrodes,between leads or from electrodes or leads to 
ground)

• In the collector

• In high-power portion of the RF structure
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RF Components:

• Driver amplifier to power klystron

• Klystron is used to generate high peak power ( A small accelerator)

• Need to transport power to the accelerating structure

• Waveguide is used (under vacuum) to propagate and guide  
electromagnetic fields 

• Windows (dielectric material, low loss ceramic) are used to isolate 
sections of the waveguide 

• Termination loads (water loads) are used to provide proper rf 
match

and to absorb wasted power
• Power splitters are used to divide power in different branches of 
the

waveguide run
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RF Components:

• Power dividers are 4-port hybrids of various coupling
(I. E. a 3-dB hybrid splits the input power in half)

Input Power, Pin

Matched Load

Aperture Coupling

Output Power,        =1/2PinPout

Output Power,        =1/2PinPout
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RF Components:

Couplers Window
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SLED
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Disk-Loaded Constant Gradient S-Band Structure
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Accelerating Structure
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W-Band (94 GHz) Accelerating Structure
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How to Accelerate?
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Time of one period, T

Distance of one wavelength, λ

E field H field

Direction of 
propagation
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Voltage Standing-Wave-Ratio   VSWR

VSWR is defined as the ratio of Emax : Emin

Emax = Vi + Vr = Vi (1+P)

Emin = Vi - Vr = Vi (1-P)

VSWR, S = Emax / Emin = 

If  p=0 (matched line), S=1

If p=1 (open or short-circuited line, S = ∞

P
P

−
+

1
1
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Example 1:
A 400 W amplifier is used to drive the input cavity of the linac klystron. Lets assume 
that for the  HV setting of 300 kV and 290 A, a klystron required 120 W to provide 25 
MW of rf power. Suppose that input drive power is transmitted down a 50-Ω loss-free 
line and is terminated at the input cavity of the klystron which presents a 42- Ω load 
to the generator. 

1) what is the reflected power going back to the generator?

2) What is the excitation power into the 1st cavity of the klystron

VSWR, S =

Reflection coefficient, 

Reflected Power, Pr = P2 × Pi = (0.087)2 × 120 W = 0.90 W

Transmitted power to klystron, PL = Pi - Pr = 120 - 0.9 = 119.1 W

19.1
42
500 ==

LR
Z

087.0
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19.0

1
1

==
+
−

=
S
SP
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Example 2:
L1 klystron is set to generate 23 MW, measured at the klystron output coupler. 
The waveguide run from L1 klystron to the input of the ACS1 is roughly 75 feet. 
Assume that there are two windows in this run, each with a 0.12 dB loss. WR-
284 waveguide has a 0.45 dB loss/100 ft. There are 12 flanges in between each 
with a 0.07 dB loss. 

1) what is VSWR for each component? 

2) what is the reflected power at the klystron?

3) what is the forward power to the ACS1?
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How does one measure rf power?

• Cannot measure high peak power with any power 
instruments 

• Need to sample a portion of the peak power so a peak power
meter can be used without damage

• A waveguide coupler inserted in-line with waveguide is used 
for this measurement
• Coupling loops are used to sample a small portion of the peak
power
• A typical forward loop coupling factor is -56 dB

• For a 30 MW peak power, this corresponds to ~75 W (SAFE)

• Attenuation elements can also be added to reduce the peak 
power for measurement purposes
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Some Basic RF Parameters

1. The shunt impedance per unit length is a measure of excellence of a structure as 
an accelerator

Higher shunt impedance is desired since it means more accelerating field for a 
given spent power.

2. The “unloaded” Q-factor is a measure of the merit of rf cavity as a resonator.
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3. The ratio of                 is a very basic parameter in microwave
cavities and structures.
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4. Group velocity,          , is the velocity at which rf energy 

flows through the accelerator. It strongly depends on the 

ratio of disk aperture diameter (2a) to cavity diameter (2b):

is an important parameter:

4.1. The fill time, time that is required to fill the accelerator   
with rf energy depends upon group velocity 

gv

4)( baKc
vg ≈

gv

gv
l

ft =
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4.2. The power flow into the structure and the energy stored per
unit length of the structure are interrelated to  

Since                      , lower value of group velocity is preferred from
the point of view of obtaining maximum accelerating fields for a 
given power flow.

4.3 In general, decreasing           , results in increasing           and
decreasing Q0 which results in increasing 

gv
gv

Pw =

zEw 0
2∝

gv 0r
00 / Qr
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Phase velocity - is the velocity of light (plane wave) in the 
evacuated waveguide.

This is greater than the speed of light at which the particles 
travel. 

Need to slow down the phase velocity inside the structure so 
that it is synchronous with particle velocity. 

µεκ
ω

β
ω 1== pv
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Example: A simple “back-of-the-envelop” calculation

L4 klystron is setup with 290 kV and 270 A on the modulator. L4  
klystron has an efficiency of 42%. What the output power of 
the L4 klystron? What is the output power of the SLED? If the rf 
pulse length of the driver amplifier is set to 4 µsec, what is the 
rf pulse length of the SLED output? How long does it take to fill 
the SLED? What is the power level at each accelerator 
structure? Assume 7% loss at each power split. If the klystron 
and the structure are operating at 30 Hz, what is the average 
power dissipated in the klystron and the structure?
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After the first split, output power is 125.1/2 = 62.55 MW. After the 
second split, output power of each feed is 58.17/2 = 29 MW. So 
each structure receives ~29 MW rf power. 

kW
MWstructureP

kW

MWklyP

avg

avg

74.1                         

 sec  2 pps 3029)(
4               

 sec104 pps 3010 32.8                
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××=
−

µ
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Example:
Each RF gun in the linac needs approximately 5 MW to provide a 
beam energy of about 1.6 MeV for injection into the linac. If the 
output power of L1 klystron is 23 MW, what is the maximum rf 
power available to each gun?    
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Forward Coupling Coupling, forward

-20 dB
0.01 mW

-0.046 dBm

0.99 mW

Coupling Factor (dB) =
incident

forward

P
P

log10−

Zo
Source

0 dBm
1 mW
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Zo
Source

0 dBm
1 mW

-0.046 dBm

0.99 mW

Coupling, reverse
-50 dBm
0.00001 mW (10 nW)

incident

reverse

P
Plog10−Isolation Factor (dB) =

Directional Coupler Isolation
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Directional Coupler Directivity

(dB) Loss-Factor(db) Coupling-dB)Isolation(  (dB)y Directivit

Isolation
LossFactor Coupling

 y Directivit
(reverse)

arm)(through (fwd)

=

×
=

50 dB 20 dB

Directivity = 50 dB - 20 dB = 30 dB
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Handy Formulas 

For a constant-gradient structure:
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Handy Formulas 
The energy gain        of a charged particle is Ε
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Handy Formulas 

Structure efficiency:

SuppliedEnergy 
Energy Stored
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Breakdown depends on:
 The applied field level and local field enhancement

 The breakdown field of the medium (gas,Vacuum,solid)

Gas              ~10’s V/cm  - 10 kV/cm (depends on pressure and type)

Vacuum       ~ 0.5 - 1MV/cm

Types:

- DC Breakdown in Gas

- DC Breakdown in Vacuum

- RF Breakdown in Gas

- RF Breakdown in Vacuum
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RF Breakdown in Gas:
 DC breakdown field for air at atmospheric pressure is about 30 kV/m

 RF breakdown field depends on the frequency, spacing and pressure
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RF Breakdown in Vacuum:
1. Kilpatrick’s criterion: Relates max. field Ek[MV/m] at any frequency f[Hz];

Very often, however, another king of discharge develops at voltage levels well 
below the Kilpatrick level. This discharge is called Multipactor Discharge.

Multipacting occurs when electrons move back and forth across a gap in 
synchronism with an rf field. If the secondary emission ratio of the gap surface is 
greater than unity, then the number of electrons involved in the process build up 
with time and electron avalanche will be initiated and sparking might result.

)/5.8exp(1064.1 26
kk EEf −×=

n=1        n=2          n=3
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RF Conditioning with short Pulse:
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