Lecture 13 Practical Cathodes*

High Brightness Electron Injectors for Light Sources – June 14-18, 2010

*Talk given at Future Light Sources 2010

Laser Power Requirements

Average laser power vs. quantum efficiency to produce various average beam currents. The QE ranges for the general cathode types are shown along with their vacuum requirements.

UV Wavelength good for high QE however:

•UV laser is difficult but possible

•Careful design mitigates optical damage

•UV light decomposes hydrocarbons in vacuum which attach to cathode •Electron beam also decomposes vacuum constituents

Estimating metal and semiconductor thermal emittances

Due to electron-phonon scattering the excited electrons can thermalize with the lattice, giving GaAs a thermal-like emission component:

$$\frac{\mathcal{E}_{GaAs,n}}{\sigma_x} = A_{slow} \sqrt{\frac{k_B T}{mc^2}} + A_{fast} \sqrt{\frac{\hbar\omega - E_G - E_A}{3mc^2}}$$

This gives rise to a slow thermionic-like emission and a fast prompt photoelectric emission which is dependent upon wavelength band gap energy and affinity.

Thermionic Cathodes

Thermionic emittance: $\frac{\varepsilon_{th,n}}{\sigma_{x}}$

$$\frac{\varepsilon_{th,n}}{\sigma_x} = \sqrt{\frac{k_B T}{mc^2}}$$

Some properties of the SCSS Thermionic Cathode

	Typical	Emission	Surface	Work	Thermal
Thermionic	Temperature,	Radius	Current	Function,	Emittance
Cathodes	$T(^{o}K), (eV)$	(<i>mm</i>)	Density	$\phi_W(eV)$	(microns
			(A/cm^2)		/mm(rms))
CeB ₆	1723K,	1.5	42	2.3	0.54
single crystal	0.15 eV				

For a desired bunch charge, Q, the required bunch length can be estimated from the Richardson-Dushman eqn. for the thermionic current density,

$$j_{thermal}(T) = AT^2 e^{-\frac{\phi_{eff}}{k_B T}}$$
 $A = \frac{-em}{2\pi^2 \hbar^3} = 120A/cm^2 K^2$

$$Q(T, t_{bunch}) = j_{thermal}(T)\Delta t_{bunch}$$
$$\Delta t_{bunch} = \frac{Q}{\pi R_c^2 j_{thermal}(T)} = \frac{Q}{4\pi \sigma_x^2 j_{thermal}(T)}$$

SCSS example: A 250 pC bunch requires a bunch length of 83 ps from the cathode which is then compressed to ~10 degRF before accelerating in linac.

Metal Cathodes

Metal photocathodes are commonly used in high gradient, high frequency RF guns and are the mainstay of the BNL/SLAC/UCLA and the LCLS s-band guns. Due to the high work function UV photons are needed for reasonable QE, which makes them impractical for high average current applications such as ERLs. However, they are the most robust of all the photoemitters and can survive for years at the high cathode fields required to produce a high brightness beam. The current copper cathode in the LCLS gun has operated for the x-ray FEL for over a year.

Metal Cathodes	Wavelength & Energy: λ _{opt} (nm), ħω(eV)	Quantum Efficiency (electrons per	Vacuum for 1000 Hr Operation (Torr)	Work Function, $\phi_W(eV)$	Thermal Emittance (microns/mm(rms))	
		photon)			Theory	Expt.
Bare Metal						
Cu	250, 4.96	1.4x10 ⁻⁴	10-9	4.6 [34]	0.5	1.0±0.1 [39]
						1.2±0.2 [40]
						0.9±0.05 [3]
Mg	266, 4.66	6.4x10 ⁻⁴	10-10	3.6 [41]	0.8	0.4±0.1 [41]
Pb	250, 4.96	6.9x10 ⁻⁴	10-9	4.0 [34]	0.8	?
Nb	250, 4.96	~2 10-5	10-10	4.38 [34]	0.6	?
Coated Metal						
CsBr:Cu	250, 4.96	7x10 ⁻³	10-9	~2.5	?	?
CsBr:Nb	250, 4.96	7x10 ⁻³	10-9	~2.5	?	?

The thermal emittances are computed using the listed photon and work function energies in eqn. on previous slide and expresses the thermal emittance as the normalized rms emittance in microns per rms laser size in mm. The known experimental emittances are given with references.

Intrinsic Emittance versus Laser Wavelength

Slide compliments of H. Braun and R. Ganter, PSI

Coated Metal Cathodes

Quantum efficiency(%) at 257nm of CsBr/Cu sample as deposited and after exposure to air for 1 minute and pumped down to low pressure without bake out.

J. Maldonado et al., "A Robust CsBr/Cu photocathode for the LINAC COHERENT LIGHT SOURCE (LCLS)", Phys. Rev. ST Accel. Beams 11, 060702 (2008) Depositing a thin layer of CsBr increases Nb QE a factor of 350! Possibility of a superconducting cathode as thin layer maintains super conductivity of Nb-substrate.

J. Maldonado et al., "Performance of a CsBr coated Nb photocathode at room temperature", JAP 107, 013106 (2010).

Semiconductor Cathodes

The thermal emittances are computed using the listed photon, gap and electron affinity energies and expresses the thermal emittance as the normalized rms emittance in microns per rms laser size in mm.

Cathode Type	Cathode	Typical Wavelength,	Quantum Efficiency (electrons per photon)	Vacuum for 1000 Hrs (Torr)	Gap Energy + Electron Affinity	Thermal Emittance (microns/mm(rms))	
Туре		$\lambda_{opt}(nm), (eV)$			$E_A + E_G \ (eV)$	Theory	Expt.
PEA: Mono-alkali	Cs ₂ Te	211, 5.88	~0.1	10-9	3.5 [42]	1.2	0.5±0.1 [35]
		264, 4.70	-	-		0.9	0.7±0.1 [35]
		262, 4.73	-	-	"	0.9	1.2 ±0.1 [43]
	Cs ₃ Sb	432, 2.87	0.15	?	1.6 + 0.45 [42]	0.7	?
	K ₃ Sb	400, 3.10	0.07	?	1.1 + 1.6 [42]	0.5	?
	Na ₃ Sb	330, 3.76	0.02	?	1.1 + 2.44 [42]	0.4	?
	Li ₃ Sb	295, 4.20	0.0001	?	?	?	?
PEA: Multi-alkali	Na ₂ KSb	330, 3.76	0.1	10-10	1+1 [42]	1.1	?
	(Cs)Na ₃ KSb	390, 3.18	0.2	10-10	1+0.55 [42]	1.5	?
	K ₂ CsSb	543, 2.28	0.1	10-10	1+1.1 [42]	0.4	?
	K ₂ CsSb(O)	543, 2.28	0.1	10-10	1+<1.1 [42]	~0.4	?
NEA	GaAs(Cs,F)	532, 2.33	~0.1	?	1.4±0.1 [42]	0.8	0.44±0.01 [44]
		860, 1.44	-	?	22	0.2	0.22±0.01 [44]
	GaN(Cs)	260, 4.77	-	?	1.96 + ? [44]	1.35	1.35±0.1 [45]
	GaAs(1-x)Px x~0.45 (Cs,F)	532, 2.33	_	?	1.96+? [44]	0.49	0.44±0.1 [44]
S-1	Ag-O-Cs	900, 1.38	0.01	?	0.7 [42]	0.7	?

Thermal Emittance and Response Time of GaAs

I. V. Bazarov et al., Proceedings of PAC07

Plot of data taken from I.V. Bazarov et al., APL (2008) and Proceedings of PAC07

Cathodes by Design

Warm cathodes in SRF gun require a technically challenging RF choke for thermal isolation

Advanced Diamond Amplified Cathode Being Developed at BNL for SRF Gun

J. Smedley, I. Ben-Zvi, J. Bohon, X. Chang, R. Grover, A. Isakovic, T. Rao, Q. Wu, "Diamond Amplified Photocathodes", in Diamond Electronics—Fundamentals to Applications II, Mater. Res. Soc. Symp. Proc. 1039, Warrendale, PA, 2007, 1039-P09-02.

X. Chang, I. Ben-Zvi, A. Burrill, J. Kewisch, T. Rao, J. Smedley, Y-C. Wang, Q. Wu, "First Observation of an Electron Beam Emitted from a Diamond Amplified cathode, PAC 09, Vancouver, Canada

Cathode Design and Engineering: Tunable Cathodes Fabrication of S1-cathode over a structured substrate to induce photoemission from plasmon surface states

FIG. 2. Method for producing shallow-etched gratings. A split laser beam is used to expose striped areas of precise period in a resist. The resist is developed, aluminum coated, and cleaned off leaving Al stripes. An easily controlled 100-300-Å sputter etch is carried out, followed by removal of residual aluminum.

FIG. 3. Quantum efficiency of a grating-tuned S1 cathode. Shown are quantum efficiency curves vs free-space wavelength for *p*-polarized light at normal and at 7° and 15° angles of incidence. Response of a similar S1 on a smooth substrate is shown for comparison.

J.G. Endriz, Applied Physics Letters, 25,1974 p261 T. Tsang, T. Srinivasan-Rao, J. Fischer, Phys. Rev. B Vol. 43, pp. 8870-8878, 1991 F. Sabary et al., "Silver-covered diffraction gratings as possible high-efficiency laser driven photoemitters", Applied Physics Letters, 1991. 58(12): p. 1230-1232

Cathode Surface Roughness

Emittance Growth Due to Non-Uniform Emission & Field Enhancement -Highest cathode field not necessary best emittance-

Emittance Growth Due to Field Enhancement

Cathode Contamination

Three sources of cathode contamination

- •Residual contaminants left by fabrication, handling and storage
- •Contamination by the gun vacuum
 - •Ambient vacuum
 - •Operating vacuum
- •Contamination during operation due to molecular cracking:
 - By the laser
 - •By the electron beam

For LCLS contamination by molecular cracking (?) is problematic.

Electron beam emission image of the cathode after >1 year of operation. The UV laser beam has left a QE hole at its location.

Estimates of the rate of molecular cracking can be done using the ideal gas law and the cross sections for electron-impact bombardment and photoionization of molecules. The ideal gas law gives the molecular density (molecules/unit volume) at temperature T and pressure P.

For example, C_6H_6 (benzene) at ambient temperature (300 degK) and P = 10⁻⁹ Torr,

$$n_{molecules} = \frac{P}{k_B T} = 3.2 \times 10^7 \, molecules / \, cm^3$$

The cross sections gives the number of ions produced per electron or UV photon over some interaction length $L_{interaction}$. The interaction length for electrons is the distance over which the cross section is large (see fig). In this case,

$$L_{interaction} = \frac{T(eV) = 1KeV}{50MV/m} \approx 20microns$$

$$N_{ions,e} = N_e \sigma_{C_6H_6} n_{molecules} L_{interaction}$$

$$= 6.25 \times 10^9 e^- \times 10^{-15} cm^2 \times 3.2 \times 10^7 molecules / cm^3 \times 20microns$$

$$N_{ions,e} \approx 0.4 ions / nC$$

The calculation for photoionization gives an even lower ion production rate.

For LCLS operating at 120 nC/s the ion contamination due to electron-impact and photoionization is too small to explain the QE hole. Thus it appears the monolayer of adsorbed molecules is what is being photoionized into its constituents which then strongly bind to the surface and increase the work function.

The molecular flux on the cathode surface is $\Gamma = n \sqrt{\frac{kT}{2\pi m}}$

Where n is molecular volume density, m is the mass of the C_6H_6 molecule. At 10⁻⁹ Torr,

$$\Gamma = 3.2 \times 10^{13} \text{ molecules}/m^3 \sqrt{\frac{1.38 \times 10^{-23} J / \deg K \times 300 \deg K}{2\pi \times 78 \times 1.67 \times 10^{-27} kg}} = 2.3 \times 10^{11} \text{ molecules}/(cm^2 s)$$

Monolayer formation time is then (assuming area occupied by each deposited molecule is $d_0^2 \sim (10 \text{ angstroms})^2$

 $t_{ml} = \frac{1}{\Gamma d_0^2} = \frac{1}{2.3 \times 10^{11} \times (1 \times 10^{-7})^2} \approx 430 \operatorname{second} \operatorname{sec$

The ion yield at the surface with 100 µJ (for ~1nC) of laser at 4.8 eV is then,

$$n_{ion} = 2 \times 1.3 \times 10^{14} \gamma' s / 100 \mu J \times 10^{-26} cm^2 \times 10^{14} molecules / cm^2 = 260 ions / 100 \mu J \times 10^{-26} cm^2 \times 10^{14} molecules / cm^2 = 260 ions / 100 \mu J \times 10^{-26} cm^2 \times 10^{14} molecules / cm^2 = 260 ions / 100 \mu J \times 10^{-26} cm^2 \times 10^{14} molecules / cm^2 = 260 ions / 100 \mu J \times 10^{-26} cm^2 \times 10^{14} molecules / cm^2 = 260 ions / 100 \mu J \times 10^{-26} cm^2 \times 10^{14} molecules / cm^2 = 260 ions / 100 \mu J \times 10^{-26} cm^2 \times 10^{14} molecules / cm^2 = 260 ions / 100 \mu J \times 10^{-26} cm^2 \times$$

Since laser runs at 30 Hz and beam size is 1.2 mm dia, the time to decompose 10% of the monolayer is $\frac{10^{14} / cm^2 \times \pi \times (0.06 cm)^2 (0.1 \text{ coverage})}{260 ions \times 30 Hz} \approx 1.5 \times 10^7 s = 174 days$

Thus in the LCLS case, it is more likely that the monolayer is being photo-dissociated rather than the free molecules in the vacuum.

Summary and Conclusions

Reviewed Laser Requirements for cathodes at low and high average current
Developed heuristic theory of thermal emittance for comparing metal and semiconductor cathodes

•Listed QE and thermal emittance properties for thermionic, metal and semiconductor cathodes

Described the impact of surface roughness on thermal emittance
Argued contamination of LCLS cathode is due to dissociation of monolayer rather than cracking vacuum constituents

The lack of commercial interest forces us to do our own cathode R&D
Cathode R&D should be directed into three basic aspects of cathode physics and technology

•Fundamental Physics of cathodes and electron emission

•Electron Dynamics near the cathode

•Operational Testing in the gun and injector (two regimes)

•Low average current, ultra-low emittance beams

•High average current, low emittance beams

Acknowledgements

This work was motivated by the BES Light Source Workshop held Sept 2009. I'd like to acknowledge the contributions of my coauthors on the following preprint approved for publication in NIMA.

Cathode R&D for Future Light Sources*

D. H. Dowell¹, I. Bazarov², B. Dunham², K. Harkay³, C. Hernandez-Garcia⁴, R. Legg⁵, H. Padmore⁶, T. Rao⁷, J. Smedley⁷ and W. Wan⁶ ¹SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA ²Cornell University, Cornell Laboratory for Accelerator-Based Sciences and Education (CLASSE) Wilson Laboratory, Cornell University, Ithaca, NY 14853, USA ³Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Il 60439, USA ⁴Thomas Jefferson Laboratory, 12000 Jefferson Ave, Free Electron Laser Suite 19 Newport News, VA 23606, USA ⁵University of Wisconsin, SRC, 3731 Schneider Dr., Stoughton, WI 53589, USA ⁶Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA ⁷Brookhaven National Laboratory, 20 Technology Street, Bldg. 535B, Brookhaven National Laboratory Upton, NY 11973 USA

*SLAC-PUB-14002