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For a cubical resonator with a = b = d, we have 
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Skin depth of the
surrounding metallic
walls, where µm is the
permeability of the
metallic walls.
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Air-filled cubical cavity

We consider an air-filled cubical cavity designed to be resonant in TE101 mode at 
10 GHz (free space wavelength λ=3cm)with silver-plated surfaces (σ=6.14×107S-
m-1, µm= µ0.. Find the quality factor.
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At 10GHz, the skin depth for the silver is given by
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Observations

Previous example showed that very large quality factors can be achieved with 
normal conducting metallic resonant cavities. The Q evaluated for a cubical 
cavity is in fact representative of cavities of other simple shapes. Slightly higher 
Q values may be possible in resonators with other simple shapes, such as an 
elongated cylinder or a sphere, but the Q values are generally on the order of 
magnitude of the volume-to-surface ratio divided by the skin depth. 
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Where Scavityis the cavity surface enclosing the cavity volume Vcavity.

Although very large Q values are possible in cavity resonators,
disturbances caused by the coupling system (loop or aperture coupling),
surface irregularities, and other perturbations (e.g. dents on the walls) in
practice act to increase losses and reduce Q.



Massachusetts Institute of Technology                   RF Cavities and Components for Accelerators                 USPAS 2010 5

Observations

Dielectric losses and radiation losses from small holes may be especially important
in reducing Q. The resonant frequency of a cavity may also vary due to the
presence of a coupling connection. It may also vary with changing temperature due
to dimensional variations (as determined by the thermal expansion coefficient). In
addition, for an air-filled cavity, if the cavity is not sealed, there are changes in the
resonant frequency because of the varying dielectric constant of air with changing
temperature and humidity.
Additional losses in a cavity occur due to the fact that at microwave frequencies for
which resonant cavities are used most dielectrics have a complex dielectric
constant . A dielectric material with complex permittivity draws an
effective current , leading to losses that occur effectively due to
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Dielectric Losses

Using the expression for Ey for the TE101 mode, we have
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Teflon-filled cavity
We found that an air-filled cubical shape cavity resonating at 10 GHz has a Qc of
11,000, for silver-plated walls. Now consider a Teflon-filled cavity, with ε= ε0(2.05-
j0.0006). Find the total quality factor Q of this cavity.
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µr=1 for Teflon. This shows that the the cavity is smaller, or a=b=d=1.48
cm. Thus we have

Or times lower than that of the air-filled cavity. The quality factor Qd due
to the dielectric losses is given by
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Thus, the presence of the Teflon dielectric substantially reduces the quality factor
of the resonator.
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Cylindrical Wave Functions
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Cylindrical Wave Functions
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Cylindrical Wave Functions

These are harmonic equations. Any solution to the harmonic 
equation we call harmonic functions and here is denoted by h(nφ)
and h(kzz). Commonly used cylindrical harmonic functions are:  

Where                    is the Bessel function of the first kind,                

Is the Bessel function of the second kind,                   is the Hankel 

function of the first kind, and                      is the Hankel function of 
the second kind.
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equation we call harmonic functions and here is denoted by h(nφ)
and h(kzz). Commonly used cylindrical harmonic functions are:  

Where                    is the Bessel function of the first kind,                
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Cylindrical Wave Functions

Any two of these are linearly independent. 

A constant times a harmonic function is still a harmonic function

Sum of harmonic functions is still a harmonic function

We can write the solution as :

( ) ( ) ( )zkhnhkB znknk z
φρ=ψ ρρ ,,
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Bessel functions of 1st kind
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Bessel functions of 2nd kind
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Bessel functions

The                 are nonsingular at ρ=0. Therefore, if a field is finite at

ρ=0,                  must be               and the wave functions are
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real. Thus                     must be                      if there are 

no sources at ρ→∞. The wave functions are 

( )( )ρρkH n
2

( )ρρkBn
( )( )ρρkH n
2

( )( ) zjkjn
nknk

z
z

eekH φ
ρρ=ψ

ρ

2
,,



Massachusetts Institute of Technology                   RF Cavities and Components for Accelerators                 USPAS 2010 16

( )
( )

( )( )
( )( ) ρ

ρ

−
ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

jk
n

jk
n

n

n

ekH

ekH

kρkN

kρkJ

   toous    analog

    togous     analo

     toogous      anal

     tologous       ana

2

1

sin

cos

Bessel functions



Massachusetts Institute of Technology                   RF Cavities and Components for Accelerators                 USPAS 2010 17

Bessel functions

The and functions represent cylindrical
standing waves for real k as do the sinusoidal functions. The

and functions represent traveling waves for

real k as do the exponential functions. When k is imaginary (k = -
jα)it is conventional to use the modified Bessel functions:
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Circular Cavity Resonators

As in the case of rectangular cavities, a circular cavity resonator can be
constructed by closing a section of a circular wave guide at both ends with
conducting walls.
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The resonator mode in an actual case depends on
the way the cavity is excited and the application
for which it is used. Here we consider TE011mode,
which has particularly high Q.
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Circular Cavity Resonators
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Circular Cavity Resonators

The separation constant equation becomes
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 For the TM and TE modes, 

respectively. Setting                   ,                   
we can solve for the resonant 
frequencies

µεπ= fk 2
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Circular Cavity Resonators
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Circular Cavity Resonators
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Circular Cavity Resonators

Cylindrical cavities are often used for microwave frequency meters. The cavity is
constructed with movable top wall to allow mechanical tuning of the resonant
frequency, and the cavity is loosely coupled to a wave guide with a small aperture.

The transverse electric fields (Eρ, Eφ) of the TEmn or TMmn circular wave guide mode
can be written as
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Circular Cavity Resonators

Now in order to have Et =0 at z=0, d, we must have A+= -A-, and A+sin βnmd=0 or

βmnd =lπ, for l=0,1,2,3,…, which implies that the wave guide must be an integer
number of half-guide wavelengths long. Thus, the resonant frequency of the TEmnl
mode is

And for TMnml mode is
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Circular Cavity Resonators

Then the dominant TE mode is the TE111 mode, while the dominant TM mode is the
TM110 mode. The fields of the TEnml mode can be written as
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Circular Cavity Resonators

Since the time-average stored electric and magnetic energies are equal, the total
stored energy is
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Circular Cavity Resonators

The power loss in the conducting walls is
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Circular Cavity Resonators
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To compute the Q due to dielectric loss, we must compute the power dissipated in
the dielectric. Thus,

Where is the loss tangent of the dielectric. This is the same as the result
of Qd for the rectangular cavity.

δtan
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Cavity wave guide mode patterns
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Cylindrical Cavity mode patterns
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Circular TE011 mode
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Circular TE011 mode

The electric field lines form closed 
circular loops centered around the cylinder 
axis.

The electric field lines are threaded with 
closed loops of magnetic filed lines in the 
radial planes.

No surface charges appear on any of the 
cavity walls, since the normal electric field 
is zero everywhere on the walls

However surface currents                  do 
flow in the walls due to tangential 
magnetic fields.

HnJ s ×= ˆ
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Circular TE011 mode

On the curved surface of the cylinder we have Jsϕdue to Hz given 
by
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On the flat end  surfaces we have Jsϕ due to Hr given by
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It is interesting to note that the surface currents are entirely
circumferential. No surface current flows between the flat walls and
the curved walls.
Hence, if one end of the cavity is mounted on micrometers and

moved to change the length of the cavity, the TE011can still be fully
supported, since the current flow is not interrupted.
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Circular TE011 mode

Movable construction of the end faces also suppress other modes,
particularly TM111, which has the same resonant frequency but
lower Q.

The currents that are required to support TE111 are interrupted by
the space between the movable ends and the side walls.

As in the case of of the rectangular cavity resonator, the resonant
frequency of the TE011mode can be found by substituting the
expressions for any one of the field components into the wave
equation.
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Circular TE011 mode

The resonant free-space wavelength of the cavity corresponding to
the resonant frequency is given by
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For the most general case of Temnp mode, the resonant free-space
wavelength λmnp is given by
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Circular TE011 mode

Using the expression derived for the Q of the circular Temnp and
using x01=3.832, we have
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Excitation of the TE011 mode in a circular cavity via coupling from a 
TE01mode in a rectangular wave guide.
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Loop or Probe Coupling

For a probe coupler the electric flux arriving on the probe tip 
furnishes the current induced by a cavity mode:   

I = ωε SE
where E is the electric field from a mode averaged over probe tip 
and S is the antenna area. The external Q of this simple coupler 
terminated on a resistive load R for a mode with stored energy W 
is 

In the same way for a loop coupler the magnetic flux going 
through the loop furnishes the voltage induced in the loop by a 
cavity mode:                  V= ωµ SH
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A WR-1500 rectangular air wave guide has inner dimensions
38.1cm ×19.05 cm. Find (a) the cutoff wavelength for the dominant
mode; (b) the phase velocity, guide wavelength and wave
impedance for the dominant mode at a wavelength of 0.8 times the
cutoff wavelength;(c) the modes that will propagate in the wave
guide at a wavelength of 30 cm.
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The phase velocity, guide wavelength and the wave impedance can 
be calculates as 
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(c) At  λair=40 cm, only the dominate mode TE10 mode propagates 
since the next higher mode TE20 (or TE11) has λc20= λc10/2 = 
38.1 cm < 40 cm.
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(d) At  λair=30 cm, the propagating modes are TE10, TE20, and TM20
(λc20=38.1 cm), TE01(λc01=38.1 cm), and TE11 and TM11
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Problem 2

Design a rectangular  cavity resonator that will resonant in the TE101
mode at 10GHz and resonant in the TM110 mode at 20 GHz.
Assuming a=2b. The resonant frequencies of the TE101 and TM110
modes are given by
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Dielectric Wave guide

We have shown that it is possible to propagate electromagnetic 
wave s down a hollow conductor. However, other types of guiding 
structures are also possible. 

The general requirement for a guide of electromagnetic waves is 
that there be a flow of energy along the axis of the guiding structure 
but not perpendicular to it.

This implies that the electromagnetic fields are appreciable only in 
the immediate neighborhood of the guiding structure.

Consider an axisymmetric tube of arbitrary cross section made of 
some dielectric material and surrounded by a vacuum. This structure 
can serve as a wave guide provided that dielectric constant of the 
material is sufficiently large. 



Massachusetts Institute of Technology                   RF Cavities and Components for Accelerators                 USPAS 2010 44

Dielectric Wave guide

The boundary conditions satisfied by the electromagnetic fields are 
significantly different to those of a conventional wave guide. The 
transverse fields are governed by two equations; one for the region 
inside the dielectric, and the other for the vacuum regions.

Inside the dielectric we have 
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In  the vacuum region we have 
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Dielectric Wave guide

Here, stands for either Ez or Hz, ε1 is the relative
permittivity of the dielectric material, and kg is the guide propagation
constant.

( ) zikgeyx ,ψ

The guide propagation constant must be the same both inside
and outside dielectric in order to satisfy the electromagnetic
boundary conditions at all points on the surface of the tube.

Inside the dielectric the transverse Laplacian must be negative,
so that the constant

is positive. Outside the cylinder the requirement of no transverse
flow of energy can only be satisfied if the fields fall off
exponentially (instead of oscillating).

2
2

2

1
2

gs k
c

k −
ω

ε=



Massachusetts Institute of Technology                   RF Cavities and Components for Accelerators                 USPAS 2010 46

Dielectric Wave guide

Thus
2

2
22

c
kk gt

ω
−=

The oscillatory solutions (inside) must be matched to the
exponentially solutions (outside). The boundary conditions are the
continuity of and on the
surface of the tube.

normal B and D tangential E and H

The boundary conditions are far more complicated than those in
a conventional wave guide. For this reason, the normal modes
cannot usually be classified as either pure TE or TM modes.

In general, the normal modes possess both electric and magnetic
field components in the transverse plane. However, for the special
case of a cylindrical tube of dielectric material the normal modes
can have either pure TE or pure TM characteristics.
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Dielectric Wave guide

Consider a dielectric cylinder of radius a and dielectric constant
ε1. For the sake of simplicity, let us only search for normal modes
whose electromagnetic fields have no azimuthal variation. We can
write
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The general solution to this equation is
some linear combination of the Bessel
functions J0(ksr) and Y0(ksr). However,
since Y0(ksr) is “badly” behaved at the
origin(r=0) the physical solution is ( )rkJ s∝ψ
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Dielectric Wave guide

We can write
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This type of modified Bessel’s equation,whose most general
form is
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Dielectric Wave guide

The two linearly independent solutions are denoted Im(z) and
Km(z). The asymptotic behavior of these solutions at small is
as follows:
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Dielectric Wave guide
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Hence Im(z) is well behaved in the limit whereas
Km(z) is badly behaved. The asymptotic behavior at large is

,0→z
z

Hence,Im(z) is badly behaved in the limit whereas
Km(z) is well behaved.

,∞→z
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Dielectric Wave guide

The behavior of I0(z) and K0(z)

I0(z)

K0(z)
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Dielectric Wave guide

Is it clear that the physical solution (I.e., the one which 

Decays as                   is∞→r ( ).rkK t∝ψ
The physical solution is 
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  andfor 





A is an arbitrary constant, and                        stands for 
either Ez or Hz.

( ) zikgerψ
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Dielectric Wave guide

We can now write
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There are analogous set of relationships for                   . The 
fact that the field components form two groups;(Hr,Eθ), which 
depends on Hz and (Hθ,Er), which depend on Ez; means that the 
normal modes takes the form of either pure TE modes or pure 
TM modes.
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Dielectric Wave guide

For a TM mode (Ez=0) we find that
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Dielectric Wave guide

The boundary conditions require Hz,Hr, and Eθ to be continuous 
across r = a. Thus, it follows that 
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Eliminating the arbitrary constant A, will yield 
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Dielectric Wave guide

Graphical solution of the dispersion relation
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Dielectric Wave guide

Since the first root of               occurs at z=2.4048 the condition 
condition for the existence of propagating modes can be written

( )zJ 

a
c

1
40482

1
01 −ε

=ω>ω
.

In other words, the mode frequency must lie above the cutoff
frequency ω01 for the TE01 mode (here, the 0 corresponds to the
number of nodes in the azimuthal direction, and 1 refers to the 1st

root of J0(z)=0.

The cutoff frequency for the TE0p mode is given by
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Dielectric Wave guide

At the cutoff frequency for a particular kt=0, which implies that








 ω
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kk gtc
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The mode propagates along the guide at the velocity of light in
vacuum. Immediately below this cutoff frequency the system no
longer acts as a guide but as an antenna, with energy being radiated
radially. For the frequencies well above the cutoff, kt and kg are of
the same order of magnitude, and are large compared to ks. This
implies that the fields do not extend appreciably outside the
dielectric cylinder.
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Dielectric Wave guide

For the TM mode (Hz=0) we find that
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Dielectric Wave guide

The boundary conditions require Ez, Hθ, and Dr to be continuous
across r = a. Thus, it follows that
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Again, eliminating constant A between the two equations gives 
the dispersion relation
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Dielectric Wave guide

It is clear from this dispersion relation that the cutoff frequency
For the TM0p mode is exactly the same as that for the TE0p mode.

It is also clear that in the limit                the propagation constants
are determined by the roots of J1(ksa) ≈ 0. However, this is exactly
The same as the determining equation for TE modes in a metallic
Wave guide of circular cross section (filled with dielectric of relative
Permittivity ε1).

11 >>ε

Modes with azimuthal dependence (i.e., m > 0) have longitudinal
Components of both E and H. This makes the math somewhat more
Complicated. However, the basic results are the same as for m=0
Modes: for frequencies well above the cutoff frequency the modes
are localized in the immediate vicinity of the cylinder.
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