

Electro-optic sampling of coherent radiation John Byrd

Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

Overview

- General principle
- A few examples
 - -SDL (Henrik Loos)
 - -SPPS (Adrian Cavalieri)
 - -LBNL (Jeroen Van Tilborg)

Coulomb field of a relativistic particle

$$E_{x} = \frac{e}{4\pi\epsilon_{0}} \frac{\gamma x}{(x^{2} + y^{2} + \gamma^{2}Z^{2})^{3/2}},$$

$$E_{y} = \frac{e}{4\pi\epsilon_{0}} \frac{\gamma y}{(x^{2} + y^{2} + \gamma^{2}Z^{2})^{3/2}},$$

$$E_{z} = \frac{e}{4\pi\epsilon_{0}} \frac{\gamma Z}{(x^{2} + y^{2} + \gamma^{2}Z^{2})^{3/2}},$$

$$\mathbf{B} = -\beta \times \mathbf{E},$$

When $r/\gamma \ll \sigma_z$ The radial field component is

For q=1 nC, r=5 mm, σ_z = 150 micron (0.5 psec); 🕅=1e3 E_r =60 MV/m (!) Use electro-optic effect to measure field and its time dependence.

$$E_r \approx \frac{q}{\sqrt{2\pi} \left(\varepsilon_0 \sigma_z r \right)}$$

Sampling beam fields

- The electron field can be sampled in several ways
 - directly in the vacuum chamber
 - Extracted via transition radiation
 - Extracted via diffraction radiation
 - Separated from the beam via synchrotron radiation

The Pockels Electro-optic Effect

Applying a voltage to a crystal changes its refractive indices and introduces birefringence. In a sense, this is sum-frequency generation with a beam of zero frequency (but not zero field!).

A few kV can turn a crystal into a half- or quarter-wave plate.

Abruptly switching a Pockels cell allows us to switch a pulse into or out of a laser.

Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

Benchtop setup

Benchtop setup

- Create THz field with fsec laser incident on an emitter.
- Use THz field to create EO effect on a crystal.
- Change in crystal index of refraction will vary polarization of probe laser proportional to THz Efield.
- Analyze change in polarization and detect.
- Bandwidth limited by response of EO crystal and time width of laser pulse.
- THz generator and probe inherently synchronized.

THz sampling

THz field is sampled by varying relative delay of generator and probe laser pulse. Synchronization between beam and sampling laser must be good.

Wollaston Polarizing Beam Splitter

The Wollaston polarizing beam splitter uses two rotated birefringent prisms, but relies only on refraction.

The ordinary and extraordinary rays have different refractive indices and so diverge.

THz field sampling

Bench-top THz source: spectral encoding

EO Sampling: spectral encoding

- Probe laser is optically stretched with time-wavelength correlation
- EO effect is imprinted on pulse
- Correlation is imaged from an optical spectrometer.

- Probe laser is optically stretched with time-wavelength correlation
- EO effect is imprinted on pulse
- Coincidence of stretched pulse and short pulse generates optical sum signal.
- Output angle is a function of sum signal frequency, creating an image.

Single-shot "temporal decoding" of optical probe

Temporal profile of probe pulse \rightarrow Spatial image of SHG

Symmetrical optical arrangement No temporal blurring with crystal thickness

Example:Deep UV Free Electron Laser

Photocathode gun produces ~ 0.84nC (5x10⁹ electrons) per "shot"

- Coherent output to over 1 THz. Potential for shorter bunches with less charge.
- Low rep. rate (1 to 10 Hz)

Characterization of High Intensity THz Pulses

- Coherent Transition Radiation (CTR)
- Experimental techniques
 - Pulse energy measurement
 - Electro-optic detection
- CTR simulation
- Experimental results
 - Pulse energy
 - Intensity distribution
 - Electric field

Coherent Transition Radiation

Transition radiation occurs when an electron crosses the boundary between two different media. For a relativistic electron ($b^{\circ} v/c@1$) incident on a perfect conductor, the number of photons emitted per solid angle and wavelength range is:

$$\frac{dN}{d\lambda d\Omega} = \frac{\alpha}{\pi^2 \lambda} \frac{\beta^2 \sin^2 \theta \cos^2 \theta}{\left(1 - \beta^2 \cos^2 \theta\right)}$$

Intensity is 0 on axis, peaks at $q \sim 1/g$.

Coherent radiation emission:

$$dW_{\rm N}/d\mathbf{w} = N^2 dW_1/d\mathbf{w} |f(\mathbf{w})|^2$$

Setup for Pulse Energy

Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

Energy per Pulse Exceeds 50 mJ

- Pyroelectric pulse energy detector (Molectron J4S-5) with 2.07x10³ V/J responsivity.
- Light collection cone connected directly to quartz extraction window.
- Signal up to to 165mV
 => 80 mJ (!)
- Nearly 2 orders of magnitude larger than largest coherent THz pulses produced by laser methods.

Electro-Optic Detection Method

Coherent detection setup for measuring THz waveforms using Pockels Effect: "THz Electro-Optic switch" (*Zhang et al, Heinz et al*)

Result: Detector signal gives instantaneous THz E-field.

Electro-optic Imaging

Coherent detection setup for measuring THz waveforms using Pockels Effect: "THz Electro-Optic switch" (Zhang et al, Heinz et al)

$$E_{laser} \sim \cos\left[kz + \Delta\phi_E(t) - \omega t\right]$$
 where $\Delta\phi_E(t) = \left(\frac{2\pi L}{\lambda_0}\right) \Delta n[E_{THz}(t)]$

Electro-optic material (ZnTe) acts as a "variable waveplate"

Short Bunches in Accelerators- USPAS, Boston, MA 21-25 June 2010

Focus Distribution of THz

- Focus spot size
 3 mm diameter.
- Single cycle oscillation.
- 300 fs rms length.
- Electric field strength more than 300 kV/cm at 300 pC charge.
- Pulse Energy 4 mJ.
 70 mJ (700 pC, 150 fs)

Image Processing for Field Measurement

- Use compensator waveplate to detect sign of polarization change.
- Reference $I_{\rm R}$ (left) and Signal $I_{\rm S}$ (right) obtained simultaneous.
- Rescale and normalize both.
- Calculate asymmetry A of Signal.
- Subtract asymmetry pattern w/o THz.

- Use `mildly' compressed bunch of 500 fs and 300 pC to get both 0-phasing and electro-optic measurement.
- Temporal scan by varying phase of accelerator RF to both sample and cathode laser.
- Approximately equivalent to varying delay between both lasers but much faster and computer controlled.
- Measured to be 1.2 ps/degree.

Transverse-Temporal Distribution

- Take horizontal slice through images.
- Asymmetry of 1 equals 170 kV/cm electric field strength.
- Charge 300 pC.
- Saturation and 'overrotation' at higher compression.
- Needs crystal « 500 mm.

Simulation vs. Experiment

- Simulation gives 2 times more field.
- Tighter focus in simulation.
- Up to 50 kV/cm measured.

Single Cycle THz Pulses

- Pulse energy from field ~60 nJ.
- Pulse energy with Joulemeter 170 nJ.
- Pulse energy from simulation 800 nJ.
- Good match of temporal and spectral properties.
- Factor 2 and 4 difference in field and energy.
- Measured 80 mJ to have 1 MV/cm field in focus.

THz Spectrum

- Present intensity limited by geometric apertures.
- Low frequency cutoff at 15 cm⁻¹ or 0.5 THz.

Single Shot Technique

Use <u>chirped</u> sampling laser to encode waveform's entire time-dependence onto different wavelengths of laser in a single pulse. Avoids need for multiple sampling. [Jiang and Zhang, *Appl. Phys. Lett.* **72**, 1945 (1998)].

Single shot layout

Short Bunches in Accelerators- USPAS, Boston, MA 21-25 June 2010

Single Shot Results

Short Bunches in Accelerators- USPAS, Boston, MA 21-25 June 2010

Strong THz give higher order effects

"Simple" EO setup to observe time-dependent phase modulation

$$E_{laser} \sim \cos\left[kz + \Delta\phi_E(t) - \omega t\right]$$
 where $\Delta\phi_E(t) = \left(\frac{2\pi L}{\lambda_0}\right) \Delta n[E_{THz}(t)]$

Electro-optic material (ZnTe) acts cross phase modulator

Calculated effects

<u>Other details</u>: Lensing from spatial variation of n(t) (time-dependent gradient index lens)

Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

Example: SPPS Facility

Short Bunches in Accelerators- USPAS, Boston, MA 21-25 June 2010

Spatially Resolved Electro-Optic Sampling (EOS)

- Spatially resolved EOS can deliver measurements with high enough Laser probe teadereneratievte teleteted to but on the resolution to capture electron bunches at SPPS
 - technique pioneered using table-top systems by Heinz et. al. in 2000 EO Crystal
 - spectrally reserved EOS cannot be used due to fundamental bandwidth

limitation ~ $\tau_{input} \tau_{chirped}$

Resolution limit of technique dominated by EQ crystal thickness

 \vec{v}

 \vec{v}

 \vec{v}

Effect of Long Pulse Probe Laser

- Probe pulse longer than e-bunch
 - EO signal will be broadened
 - If probe pulse shape is very well known, we should be able to deconvolve e-bunch shape
 - Signal to background problems introduced
 - Probe pulse uncompressed (~10's of picoseconds or longer)
 - Measurement will yield no spatially dependent signal

Ultrafast Laser Transport

Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

Spatially Resolved EOS Data

Single-Shot Data acquired 200 micron ZnTe

Short Bunches in Accelerators- USPAS, Boston, MA 21-25 June 2010

Effect of accelerator parameters on EO signal: Observation of resolution limit

Changing Linac Phase detunes electron bunch compressor

Example: laser wakefield accelerator

- 1. Ionization of gas by laser
- 2. Ponderomotive push of plasma electrons
- 3. Restoring force from due to charge separation
- 4. Density oscillation: strong electric fields (100 GV/m)

LWFA: two regimes for bunch production

- Large-energy-spread bunch (unchanneled)
- Quasi-mono-energetic bunch (channeled)

Sprangle *et al.* (92); Antonsen, Mora (92); Andreev *et al.* (92); Esarey *et al.* (94); Mori *et al.* (94)

Tool: LOASIS multi-terawatt laser

LOASIS laser system

Three main amplifiers (Ti:sapphire, 10 Hz):

- Godzilla:

0.5-0.6 J in 40-50 fs (10-15 TW) ===> main drive beam (to date)

- Chihuahua:

20-50 mJ in 50 fs 250-300 mJ in 200-300 ps 100-200 mJ in 50 fs

===> ignitor beam
===> heater beam
===> colliding beam

guiding

- T-REX:

2-3 J in 30-40 fs

===> capillary experiments

Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

Mid 90's -2003: short pulse laser systems generate electron beams with 100 % energy spread

How short are the bunches ?

- •Simulations predict 10-20 fs
- •Can we measure them? (Is the linac stable enough?)
- Coherent emission

Coherent transition radiation from the plasma-vacuum boundary

Schematic for Transition Radiation Medium 1, ε_1 (Coherent) Transition Radiation surface at $1/\gamma$ electrons electron bunch Medium 2, ε_2

Boundary size

Diagnostic implementation:

- Use radiated field
- Couple out of vacuum chamber

Short Bunches in Accelerators- USPAS, Boston, MA 21-25 June 2010

CTR from Plasma-vacuum boundary

CTR (THz) in spectral and temporal domain

Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

Multi-shot sampling setup

EO Crystal Bandwidth

• CTR based on 50 fs (rms) Gaussian electron bunch

- ZnTe vs GaP:
 - ZnTe cutoff ~ 4 THz
 - GaP cutoff ~ 8 THz

Scanning technique provides bunch duration: Resolution limited by crystal properties

Scanning technique (takes 1.5 hours)

Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

Single-Shot Technique

G. Berden et al., Phys. Rev. Lett. 93, 114802 (2004) Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

Experiments show double THz pulse

Red curves are double-THz-pulse-based waveforms and spectra

Use GaP instead of ZnTe

Higher bandwidth

Observation

- •Temporal waveform: double pulse
- •Spectral modulation

Why?

• Double bunch e-beam ?

Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

Single-shot 2D EO imaging provides spatial profile of THz beam

•Measure 2 D THz profile

- Focused THz beam
- Collimated laser beam
- Step laser beam in time

Short Bunches in Accelerators- USPAS, Boston, MA 21-25 June 20 Toborg et al., to be published

'Ray Optics' approach to analyze spatio-temporal effects of coma Image: Comparison of the perfect focus!

Fig. 9.8 Images in the Gaussian focal plane in the presence of coma $\Phi = 0.3\lambda\rho^3\cos\theta$, $\lambda\rho^3\cos\theta$, $2.4\lambda\rho^3\cos\theta$, $5\lambda\rho^3\cos\theta$, $10\lambda\rho^3\cos\theta$. (After K. Nienhuis, Thesis (University of Groningen, 1948), p. 40.)

Focus with coma!

Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

Propagation of a single-cycle pulse through focus

Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

'Ray optics' model for waveform and spectrum

Short Bunches in Accelerators- USPAS, Boston, MA 21-25 June 2010