

# Bunch length measurement with RF and microwave signals

John Byrd

Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

#### Overview



- RF and microwave pickups are common on accelerators, mainly for sensing transverse position.
- What are the limitations on bunch length measurement using RF/ microwave signals?
- Many techniques are analogous to what is done at optical frequencies.

#### **Beam Image Current**



- For relativistic beams, the EM fields are flattened to an opening angle of 1/γ, approximating a TEM wave.
- Image current flows on the inner surface of the beam pipe.
- A beam pickup (PU) intercepts some fraction of the image current



#### **Stripline as a Pickup**



- Beam passes upstream port of PU
  - Induced voltage at gap
  - If stripline impedance is matched to upstream output port, half of pulse exits port, the other half travels downstream. For vacuum, pulses moves at c.



#### **Stripline as a Pickup**



- Beam passes downstream port of PU
  - Induced voltage at gap (opposite polarity to upstream port)
  - If stripline impedance is matched to downstream output port, half of pulse cancels pulse from upstream port, the other half travels upstream and is observed at upstream port at a time 2L/c.



#### **Stripline as Pickup**



• The downstream pulse exits through the upstream port at a time 2L/c. No signal from downstream port (ideal case)



#### **Example Signals**

- Advanced Light Source stripline. Signal at the upstream port. Kicker length is 1 nsec (30 cm)



#### **Ceramic Gap**



- Bunch passes by a ceramic gap in the vacuum chamber, its field radiates from the gap into a cavity and then into a waveguide leading to a detector.
- The cavity resonates at a fixed frequency and the signal can be detected by using either a diode detector or a bolometer. Several (and different) resonance boxes can be installed giving the possibility to measure the amplitude at several frequencies.



### Waveguide coupling



Direct coupling of the beam fields into waveguide provides less distortion.



• Different size waveguides can be used to couple different frequency bands.



#### Waveguide signal transmission

- Signals usually transmitted in TE01 mode.
- Waveguide attenuation acceptable for frequencies from 10-100 GHz

Surface impedance of the waveguide wall

 $Z_{m} = \frac{1+j}{\sigma \delta_{s}} \qquad \text{where } R_{m} = (\sigma \delta_{s})^{-1}$  $\delta_{s} = (2/\omega\mu\sigma)^{1/2}$  $-\frac{\partial P}{\partial z} = P_{l} = 2\alpha P_{0} e^{-2\alpha z} = 2\alpha P$  $\alpha = \frac{P_{l}}{2P} = \frac{R_{m} \oint_{C} \vec{J} \cdot \vec{J}^{*} dl}{2Z \int \vec{H} \cdot \vec{H}^{*} dS}$  $\alpha = \frac{R_{m}}{ab\beta_{10}k_{0}Z_{0}} (2bk_{c,10}^{2} + ak_{0}^{2})^{2} \frac{Np}{m}$ 



$$k_{c,nm} = \left[ \left( \frac{n\pi}{a} \right)^2 + \left( \frac{m\pi}{b} \right)^2 \right]^{1/2}$$



#### Waveguide specifications



| WR #   | Inside<br>Dimensions<br>(in) | Frequency<br>Range<br>(GHz) | TE <sub>10</sub><br>Cutoff<br>(GHz) | •     |
|--------|------------------------------|-----------------------------|-------------------------------------|-------|
| WR-1   | 0.010 x 0.005                | 750-1100                    | 590.551                             |       |
| WR-1.5 | 0.0150 x 0.0075              | 500-750                     | 393.701                             |       |
| WR-2   | 0.020 x 0.010                | 325-200                     | 295.276                             |       |
| WR-3   | 0.034 x 0.017                | 220-325                     | 173.691                             |       |
| WR-4   | 0.0430 x 0.0215              | 170-260                     | 137.337                             |       |
| WR-5   | 0.0510 x 0.0255              | 140-220                     | 115.794                             |       |
| WR-6   | 0.0650 x 0.0325              | 110-170                     | 90.8540                             |       |
| WR-8   | 0.08 x 0.04                  | 90-140                      | 73.8189                             |       |
| WR-10  | 0.10 x 0.05                  | 75-110                      | 59.0551                             | WR-15 |
| WR-12  | 0.122 x 0.061                | 60-90                       | 48.4058                             | WR-18 |
| WR-15  | 0.148 x 0.074                | 50-75                       | 39.9021                             | WR-22 |
| WR-19  | 0.188 x 0.094                | 40-60                       | 31.4123                             | WR-28 |
| WR-22  | 0.224 x 0.112                | 33-50                       | 26.3639                             | WR-34 |
| WR-28  | 0.280 x 0.140                | 26.5-40                     | 21.0911                             | WR-43 |
| WR-34  | 0.340 x 0.170                | 20-33                       | 17.3692                             | WR-65 |
| WR-42  | 0.420 x 0.170                | 18-26.5                     | 14.0607                             | WR-77 |
| WR-51  | 0.510 x 0.255                | 15-22                       | 11.5794                             | WR-10 |
| WR-62  | 0.622 x 0.311                | 12.4-18                     | 9.49439                             | WR-11 |
| WR-75  | 0.750 x 0.375                | 10-15                       | 7.87401                             | WR-15 |
| WR-90  | 0.900 x 0.400                | 8.2-12.4                    | 6.56167                             | WR-18 |
| WR-112 | 1.122 x 0.497                | 7.05-10                     | 5.26338                             | WR-21 |

5.85-8.2

4.30431

WR-137

1.372 x 0.622

Rectangular waveguides are available over a broad frequency range.

| WR-159  | 1.590 x 0.795 | 4.9-7.05  | 3.71416 |
|---------|---------------|-----------|---------|
| WR-187  | 1.872 x 0.872 | 3.95-5.85 | 3.15465 |
| WR-229  | 2.29 x 1.15   | 3.3-4.9   | 2.57882 |
| WR-284  | 2.84 x 1.34   | 2.6-3.95  | 2.07941 |
| WR-340  | 3.4 x 1.7     | 2.2-3.3   | 1.73692 |
| WR-430  | 4.30 x 2.15   | 1.7-2.6   | 1.37337 |
| WR-650  | 6.50 x 3.25   | 1.12-1.17 | 0.90854 |
| WR-770  | 7.700 x 3.385 | 0.96-1.5  | 0.76695 |
| WR-1000 | 9.975 x 4.875 | 0.75-1.1  | 0.59203 |
| WR-1150 | 11.50 x 5.75  | 0.64-0.96 | 0.51352 |
| WR-1500 | 15.0 x 7.5    | 0.49-0.74 | 0.39370 |
| WR-1800 | 18 x 9        | 0.43-0.62 | 0.32808 |
| WR-2100 | 21.0 x 10.5   | 0.35-0.53 | 0.28121 |
| WR-2300 | 23.0 x 11.5   | 0.32-0.49 | 0.25676 |



#### Coaxial waveguides

- Convenient and flexible
- Usually contains a polyethylene dielectric
- Typically configured with 50 Ohm impedance

 $Z_0$ 





- Bandwidth from DC to cutoff frequency of next available mode (TE<sub>01</sub>) (one wavelength inside dielectric.
- Loss in resistance of center conductor and shield (skin effect) and heating of dielectric.
- Loss increases with frequency.

$$f_c = \frac{1}{\pi(\frac{D+d}{2})\sqrt{\mu\epsilon}} = \frac{c}{\pi(\frac{D+d}{2})\sqrt{\mu_r\epsilon_r}}$$

 $Z_{\rm L}$ 

J

#### **Coaxial Signal transmission**

100







#### **Example: Broadband BPM spectrum**

- Measure spectrum from single BPM button.
- Use 10 meters of high quality coaxial cable



#### **Bunch length from BPM spectrum**

• Normalize measured spectrum to zero current spectrum. Assume Gaussian distribution.



#### Microwave bunch signals





#### High frequency spectrum analysis



Use a heterdyne receiver to mix signals to detectable frequency band.



Figure 3.18: Schematic representation of the two-mixer detection system.



#### Measurements







Figure 4.12: View of the Ka band processing set-up.



Figure 4.13: Closer view of the Ka band mixers.

250



Figure 4.9: Raw frequency spectrum for a single bunch.



Figure 4.10: Raw frequency spectrum for a train of bunches.

#### Heterodyne Spectrum Analysis





Heterodyne receivers mix the signal to lower intermediate frequency where it is filtered and processed. Sweeping the LO frequency allows processing over a wide frequency range.

- The IF signal is bandpass filtered to reduce noise –
- The envelope of the IF signal drives the vertical deflection on a CRT.
- The Voltage ramp to the VCO sweeps the horizontal axis.



## Spectrum Analyzer: RBW and Sweep Time



Most SPAs use multistage filters
 to achieve high performance

- The SPA measures only the average amplitude of the signal at given frequency.
- The sweep time is typically adjusted to match the risetime of the selected resolution bandwidth filter.



## Commercial SPAs available up to 50 GH

 The Agilent E4448A PSA high-performance spectrum analyzer measures and monitors complex RF, microwave, and millimeter-wave signals up to 50 GHz. With optional external mixing, the frequency coverage expands to 110 GHz with the Agilent external mixer, and to 325 GHz with other vendors' mixers



#### Sampling scope



- Sampling scopes use a nonlinear gate to sample the waveform of a periodic signal.
- Allows much higher bandwidths than real-time scopes.



Short Bunches in Accelerators– USPAS, Boston, MA 21-25 June 2010

### **Sampling Head**



- during "on" time.
  Sampling capacitor read our during "off" period.
- Bandwidth determined by time width of sampling pulse.





#### **Commercial RF Sampling scopes**



- 86100C DCA-J
- Electrical bandwidth from 12 to over 80 GHz
- A high-precision Time Domain Reflectometer (TDR) for measuring both impedance and s-parameters

#### **Optical Sampling Scopes**

- Same principle as an RF scope, but using optical signals
- Input is an 1.5 micron optical signal (on fiber) modulated with up to 500 GHz signals.
- Sampling head (or gate) uses nonlinear optical material (diode)
  - 1 picosecond sampling resolution
  - Low sampling jitter < 100fs
  - Very high bandwidth >500GHz
  - High signal sensitivity
  - Low polarization dependency
  - Software clock recovery without external clock
  - Real-time algorithm with fast refresh rate
  - Total bit-rate independent with tunable sampling rates
  - Data modulation formt independent
  - External clock-in option available



