

# Pulsed Power Engineering Switching Devices

January 12-16, 2009

Craig Burkhart, PhD
Power Conversion Department
SLAC National Accelerator Laboratory





## Ideal Switch



- $V = \infty$
- $I = \infty$
- Closing/opening time = 0
- L = C = R = 0
- Simple to control
- No delay or jitter
- Lasts forever
- Never fails



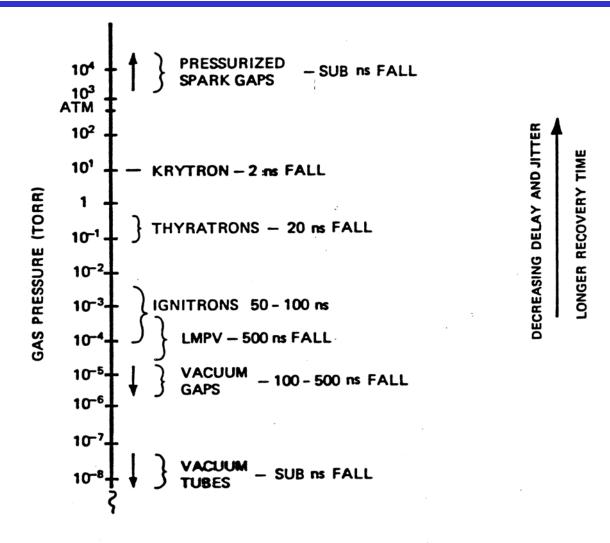
# Switches



- Electromechanical
- Vacuum
- Gas
  - Spark gap
  - Thyratron
  - Ignitron
  - Plasma Opening
- Solid state
  - Diodes
    - Diode opening switch
  - Thyrsitors
    - Electrically triggered
    - Optically triggered
    - dV/dt triggered
  - **Transistors** 
    - IGBT
    - MOSFET



### Switches




- Electromechanical
  - Open relay
    - To very high voltages, set by size of device
    - Commercial devices to  $\sim 0.5$  MV,  $\sim 50$  kA
      - Ross Engineering Corp.
    - Closing time ~10's of ms typical
      - Large jitter, ~ms typical
    - Closure usually completed by arcing
      - Poor opening switch
    - Commonly used as engineered ground
  - Vacuum relay
    - Models that can open under load are available
    - Commercial devices
      - Maximum voltage ~0.1 MV
      - Maximum current ~0.1 kA
      - Tyco-kilovac
      - Gigavac





## Gas/Vacuum Switch Performance vs. Pressure









## Vacuum Tube (Switch Tube)

- Space-charge limited current flow
  - $-V_{ON} \alpha V^{1.5}$
  - High power tubes have high dissipation
- Similar opening/closing characteristics
- Maximum voltage ~0.15 MV
- Maximum current ~0.5 kA, more typically << 100 A
- HV grid drive
- Decreasing availability
- **High Cost**



## Spark Gaps



- Closing switch
- Generally inexpensive in simplest form: two electrodes with a gap
- Can operated from vacuum to high pressure (both sides of Paschen Curve)
- Can use almost any gas or gas mixture as a dielectric. (air, dry nitrogen, SF<sub>6</sub>, CO<sub>2</sub>, etc.) There are also liquid spark gaps (shock wave).
- Wide operating range
  - kV to MV
  - Amps to MA
- Time jitter ranges from ns for triggered gaps to 100's of µs (or longer) for self-breaking overvoltage gaps
  - Low jitter
    - Trigger voltage ~ switch voltage
    - High dV/dt trigger
- Repetition rates usually single shot but low kHz possible for burst mode
- $L_{arc} \sim 15 \text{ nH/cm}$ 
  - Rail-gap switch with multiple arc channels → lower inductance
- Lifetime limited

NATIONAL ACCELERATOR LABORATORY

- Erosion of electrodes (tungsten, copper, stainless steel, steel, brass, molybdenum, special alloys)
- Debris across insulating surfaces
- Performance affected by temperature, pressure, electrode materials, surface condition of electrode, condition of insulators, operating conditions, etc.
- Devices are commercially available



## Spark Gaps



PerkinElmer's Triggered Spark Gaps are a family of versatile high voltage switches. They consist of three electrodes in a hermetically sealed, pressurized ceramic envelope. Triggered Spark Gaps are generally characterized by a peak current capability of thousands to tens of thousands of amperes, delay times of tens of nanoseconds, arc resistance of tens of milliohms and inductance of 5 to 30 nanohenries. They are suitable for capacitor switching applications such as flashlamps, electrically pumped gas lasers, medical lithotripters, and as crowbar protection devices.

### **Triggered Spark Gaps** Ceramic-Metal



#### Features

- Fast switching operation
- · High voltage holdoff
- · Ceramic-metal construction
- · No warm up period
- · High current capability
- · Long life

#### **Triggered Spark Gap Ratings**

| PerkinElmer<br>Model | Rang | /Max |         | V <sub>T</sub><br>Min Trig<br>(kV Open | Trigger | Recommended<br>PerkinElmer | * when opera | elay Time*<br>ted in mode A<br>econds) | Simultaneous Ratings<br>Crowbar Service,<br>Typical Life: | Simultaneous Ratings<br>Repetitive Switching<br>Typical Life: |
|----------------------|------|------|---------|----------------------------------------|---------|----------------------------|--------------|----------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|
| No.                  | (1,  | 10)  | SBV, kV | Circuit                                | Mode    | Transformer                | At 70% SBV   | At 40% SBV                             | 5000-20,000 Shots                                         | 1-5 Million Shots                                             |
|                      | (2)  | (3)  | (4)     | (5)                                    |         | (6, 7)                     |              |                                        | (11)                                                      | (11)                                                          |
| GP-89                | 0.7  | 2.1  | 2.6     |                                        | C       | TR-148A                    |              |                                        |                                                           |                                                               |
| GP-90                | 1.3  | 3.4  | 4.2     | 10                                     | C       | The 1-day.                 | 100          | 100 1000                               | 5 kA ревк                                                 | 3 millicoulombs/shot                                          |
| GP-91                | 4.4  | 10   | 12.5    | ] "                                    | A,C     | TR-190B                    | 100          | 1000                                   | 0.1 coulomb                                               | lb = 35 mAdc                                                  |
| GP-93                | 8    | 20   | 25      |                                        | A, C    |                            |              |                                        |                                                           | Ip = 6 Aac                                                    |
| GP-82B               | 0.4  | 1.6  | 2       |                                        | AΒ      | TR-148A                    |              |                                        |                                                           |                                                               |
| GP-31B               | 2    | - 6  | 7.5     | 10                                     | A       |                            | 30           | 300                                    | 7.5 kA peak                                               | 4 millicoulombs/shot                                          |
| GP-20B               | 3.5  | -11  | 14      | 10                                     | A       | TR-190B                    | 30           | 300                                    | 0.2 coulomb                                               | lb = 60 mAdc                                                  |
| GP-46B               | 8    | 20   | 25      |                                        |         |                            |              |                                        |                                                           | Ip = 8 Aac                                                    |
| GP-85                | 2    | - 6  | В       |                                        | AΒ      | TR-1795                    |              |                                        |                                                           |                                                               |
| GP-86                | 6    | 15   | 20      | 20                                     |         | TR-190B                    | 30           | 300                                    | 25 kA peak                                                | 4 millicoulombs/shot                                          |
| GP-87                | 10   | 24   | 30      |                                        | A       | TR1700                     | 253          | 56.63                                  | 0.4 coulomb                                               | lb = 100 mAdc                                                 |
| GP-70                | 12   | 36   | 42(8)   |                                        |         |                            |              |                                        |                                                           | Ip = 10 Aac                                                   |
| GP-30B               | 2    | - 6  | 7.5     |                                        | AΒ      |                            |              |                                        |                                                           |                                                               |
| GP-22B               | 6    | 15   | 19      | 20                                     |         | TR-1795                    | 30           | 300                                    | 50 kA peak                                                |                                                               |
| GP-12B               | 10   | 24   | 30      | 20                                     | A       | TR-1700                    | 30           | 300                                    | 0.5 coulomb                                               |                                                               |
| GP-14B               | 12   | 36   | 42(8)   |                                        |         |                            |              |                                        |                                                           | 10 millicoulombs/shot                                         |
| GP-41B               | 12   | 36   | 42      |                                        | ĄВ      | TR-1795                    |              |                                        | Peak currents up to 100                                   | lb = 200 mAdc                                                 |
| GP-32B               | 20   | 48   | 60(8)   | 20                                     |         | TR-1700                    | 30           | 300                                    | kA and charge transfer                                    | lp = 15 Aac                                                   |
| GP-15B               | 25   | 60   | 86(8)   |                                        | Α       |                            |              |                                        | up to 5 coulombs are<br>obtainable at reduced             |                                                               |
| GP-74B               | 40   | 100  | 120(8)  | 20                                     | A       | TR-1795                    | 30           | 300                                    | life (100-1000 shots).                                    |                                                               |
| GP-81B               | 40   | 100  | 120(9)  | 1                                      | 71      | TR-1700                    | 30           | 300                                    | and the same                                              |                                                               |

#### Notes

- 1. Optimum operating voltage is typically 60 to 80% of SBV.
- 2. Operation below minimum value may result in erratic firing
- 3. Operation at this value may result in self-firing over time.
- 4. Represents minimum main-gap breakdown voltage with no
- 5. Value shown contains safety factor for end-of-life requirements.
- 6. PerkinElmer TM-11A Trigger Module can be used to trigger
- 7. Transformers listed vary mechanically and electrically. See PerkinElmer Transformer Data Sheet.
- 8. These units must be operated in a liquid or gas dielectric to prevent external flashover: GP-70 and GP-14B, above 24 kV; GP-32B and GP-15B, above 35 kV; GP-74B and GP-81B, above 60 kV.
- 9. Designed for high altitude, high holdoff conditions.
- 10. Other voltage ranges and mechanical configurations are available on request; for example, the GP-20B can be supplied with a 6 to 16 kV operating range by specifying GP-20B-20. The 20 would be the SBV and E-E maximum would be 80% of SBV = 16kV.
- 11. E Stored energy in joules (12CV1), lb average current in amperes, Ip - RMS current in amperes, R - total circuit resistance in ohms, P = average power in watts.



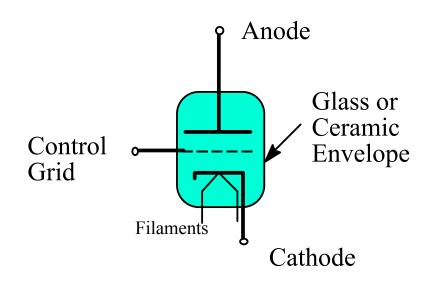


## **Thyratrons**



- Closing switch, forward drop ~100 V
- High voltage: kV to  $\sim 100kV$  (normally  $\sim 30-40kV$  per internal gap)
- Maximum peak current 20-40 kA
- Gas filled: 0.1-5.0 torr hydrogen or deuterium and hot cathode
  - Operate on the low pressure side of Paschen minimum
- High repetition rate: limited by recovery time after conduction of 30-100µs
- Low jitter (<1ns) with appropriate trigger
- Limited di/dt (emission limitations of hot cathode)
- Turn-on time (anode voltage fall time)
  - 20 ns typical
  - ~5 ns for special tubes
- Lifetime usually limited by cathode depletion (1-2 years of continuously on operation) or loss of ability to control gas pressure (causes misfires, reduction of standoff voltage capability)
- Limited pulse duration

ONAL ACCELERATOR LABORATOR


- Low average current rating
- Significant voltage reversal (>4 kV) during recovery can damage tube







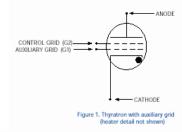
- Envelope: glass or ceramic (high power tubes)
- Anode materials: molybdenum, copper
- Grid materials: copper, molybdenum
- Cathode material: BaO, SrO, CaO coating on tungsten or barium aluminate impregnated tungsten
- Reservoir (maintains gas pressure over life of tube) is a hydride material such as titanium, tantalum, etc.





## **Thyratrons**






Thyratrons are fast acting high voltage switches suitable for a variety of applications including radar, laser and scientific use.

PerkinElmer's thyratrons are constructed of ceramic and metal for strength and long life. Over 300 thyratron types are available from PerkinElmer. The types listed in this guide are a cross section of the broad line available. We encourage inquiries for thyratrons to suit your particular application.

### Features

- · Wide operating voltage range
- · High pulse rate capability
- · Ceramic-metal construction
- · High current capability



### How a Thyratron works

The operation of the device can be divided into three phases: triggering and commutation (closure), steady-state conduction, and recovery (opening), each of which is discussed below.

### **Triggering and Commutation**

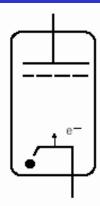
When a suitable positive triggering pulse of energy is applied to the grid, a plasma forms in the grid-cathode region from electrons. This plasma passes through the apertures of the grid structure and causes electrical breakdown in the high-voltage region between the grid and the anode. This begins the process of thyratron switching (also called commutation). The plasma that is formed between the grid and the

anode diffuses back through the grid into the grid-cathode space. "Connection" of the plasma in the anode-grid space with the plasma in the cathode-grid space completes the commutation process. The commutation process is simply modeled as shown in Figure 2.

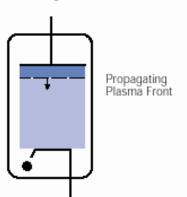
The time interval between trigger breakdown of the grid-cathode region and complete closure of the thyratron is called the anode delay time. It is typically 100-200 nanoseconds for most tube types.

During commutation, a high voltage spike appears at the grid of the thyratron. This spike happens in the time it takes for the plasma in the grid-anode space to "connect" to the plasma in the grid-cathode space. During this time, the anode is momentarily "connected" to the grid thereby causing the grid to assume a voltage nearly that of the anode's. Although the grid spike voltage is brief in duration, usually less than

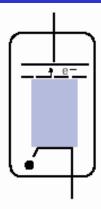
brief in duration, usually less than Power Conversion


January 12-16, 2009

## **Thyratron** - Operation




100 nS, it can damage the grid driver circuit unless measures are taken to suppress the spike before it enters the grid driver circuit. The location of the grid spike suppression circuit is shown in Figure 3, Grid Circuit.


Figure 4, Typical Grid Spike Suppression Circuits, shows the more common methods used to protect the grid driver circuit. In using any of these types of circuits, care must be exercised to assure that the Grid Driver Circuit pulse is not attenuated in an unacceptable manner. The values for the circuit components are dependent on the characteristics of the thyratron being driven, the



 Trigger pulse applied to control grid.



3. Electrons from grid-cathode region create a dense plasma in the grid-anode region. The plasma front propagates toward the cathode via breakdown of gas.



2. Grid-cathode breakdown.



4. Closure



Figure 2. Thyratron commutation





grid driver circuit design, and the performance required from the thyratron itself. Contact the applications engineering department at PerkinElmer to discuss the specific details of your requirement.

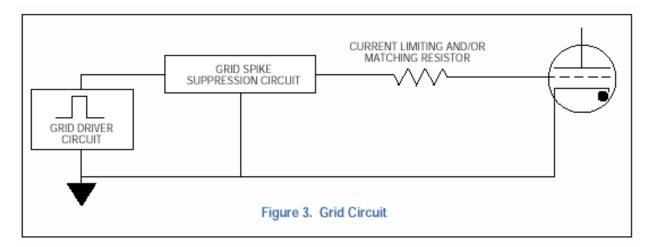
#### Conduction

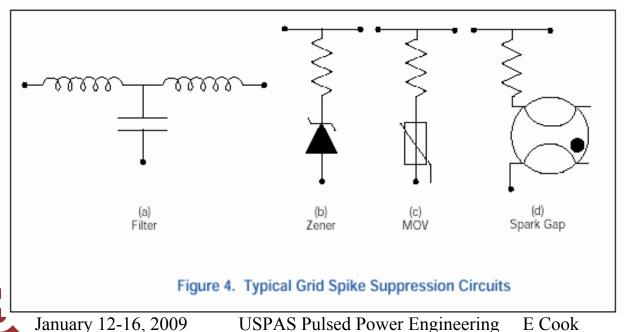
Once the commutation interval has ended, a typical hydrogen thyratron will conduct with nearly constant voltage drop on the order of 100 volts regardless of the current through the tube.

### Recovery

Thyratrons open (recover) via diffusion of ions to the tube inner walls and electrode surfaces, where the ions can recombine with electrons. This process takes from 30 to 150 microseconds, depending on the tube type, fill pressure, and gas (hydrogen or deuterium). The theoretical maximum pulse repetition rate is the inverse of the recovery time. 15, 2009

Recovery can be promoted by arranging to have a small negative DC bias voltage on the control grid when forward conduction has ceased. A bias voltage of 50 to 100 volts is usually sufficient.


Recovery can also be improved by arranging to have small negative voltage on the anode after forward conduction has ceased. In many radar circuits, a few-percent negative mismatch between a pulse-forming network and the load ensures a residual negative anode voltage. In laser circuits, classical pulse-forming networks are seldom used, so inverse anode voltage may not be easily generated. Recovery then strongly depends on the characteristics of the anode charging circuit. In general, charging schemes


involving gently rising voltages (i.e., resonant charging and ramp charging) favor thyratron recovery, and therefore allow higher pulse repetition rates. Fast ramping and resistive charging put large voltages on the anode quickly, thus making recovery more difficult. The ideal charging scheme from the viewpoint of thyratron recovery is command charging, wherein voltage is applied to the thyratron only an instant before firing.



# **Thyratrons**









NATIONAL ACCELERATOR LABORATORY



# **Thyratrons**

| Туре     | Peak<br>Anode<br>Voltage<br>epy (kV) | Peak<br>Anode<br>Current<br>ib (a) | Average<br>Anode<br>Current<br>Ib (Adc) | RMS<br>Anode<br>Current<br>Ip (Aac) | Plate<br>Dissipa-<br>tion<br>Factor<br>Pb<br>(x 10 <sup>9</sup> ) | Cathode<br>Heater<br>V/A | Reser-<br>voir<br>Heater<br>V/A | Peak<br>Forward<br>Grid<br>Voltage<br>egy<br>(Min) | Impe-<br>dence<br>of Grid<br>Circuits<br>g (Max) | EIA Type & Comments | Notes | Seated<br>Height x<br>Tube Width<br>(Inches) |
|----------|--------------------------------------|------------------------------------|-----------------------------------------|-------------------------------------|-------------------------------------------------------------------|--------------------------|---------------------------------|----------------------------------------------------|--------------------------------------------------|---------------------|-------|----------------------------------------------|
| HY-2     | 8                                    | 100                                | 0.1                                     | 2                                   | 2.7                                                               | 6.3/3.5                  | Note 1                          | 175                                                | 1200                                             | JAN 7821            | 1     | 2.35 x 1.0                                   |
| HY-6     | 16                                   | 350                                | 0.5                                     | 6.5                                 | 5                                                                 | 6.3/7                    | 8.3/2.5                         | 150                                                | 1500                                             | JAN 7782            |       | 2 x 1.4                                      |
| HY-60    | 16                                   | 350                                | 0.5                                     | 6.5                                 | 5                                                                 | 6.3/7                    | 8.3/7                           | 150                                                | 1500                                             | JAN 7665A           |       | 2.4 x 1.4                                    |
| HY-61    | 16                                   | 350                                | 0.5                                     | 6.5                                 | 5                                                                 | 6.3/8.5                  | Note 1                          | 150                                                | 1500                                             |                     | 1     | 3.6 x 1.4                                    |
| HY-10    | 20                                   | 500                                | 0.5                                     | 8                                   | 10                                                                | 6.3/7.5                  | 8.3/4                           | 200                                                | 500                                              | JAN 7820            |       | 3.4 x 2                                      |
| HY-11    | 18                                   | 1600                               | 0.5                                     | 8                                   | 10                                                                | 6.3/7.5                  | 6.3/4                           | 200                                                | 500                                              |                     |       | 2.2 x 2.25                                   |
| HY-1A    | 18                                   | 500                                | 0.5                                     | 8                                   | 10                                                                | 8.3/11                   | Note 1                          | 175                                                | 500                                              | JAN8813             | 1     | 5 x 2                                        |
| HY-1102  | 18                                   | 1000                               | 0.5                                     | 16                                  | 10                                                                | 6.3/7.5                  | 6.3/8                           | 20                                                 | 500                                              |                     | 2     | 2 x 2                                        |
| HY-3192  | 32                                   | 1000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 6.3/5.5                         | 1500                                               | 250                                              |                     | 3     | 3.75 x 3.25                                  |
| HY-32    | 32                                   | 1500                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/18                   | 6.3/5.5                         | 450                                                | 400                                              |                     | 4     | 4 x 3.25                                     |
| HY-3204  | 32                                   | 1500                               | 1                                       | 25                                  | 40                                                                | 6.3/18                   | 6.3/6                           | 450                                                | 400                                              | ib to 10kA @ <1useo | 4     | 3 x 6                                        |
| 1802     | 25                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 6.3/5.5                         | 500                                                | 400                                              | JAN 7322            | 4     | 4 x 3.25                                     |
| HY-3002  | 25                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 8.3/5.5                         | 500                                                | 400                                              |                     |       | 4 x 3.25                                     |
| HY-3003  | 35                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 6.3/5.5                         | 500                                                | 400                                              |                     |       | 4 x 3.25                                     |
| HY-3004  | 25                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 8.3/5.5                         | 500                                                | 400                                              |                     |       | 4.75 x 3.25                                  |
| HY-3005  | 35                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 6.3/5.5                         | 500                                                | 400                                              |                     | 3     | 4.75 x 3.25                                  |
| HY-3025  | 28                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 6.3/5.5                         | 500                                                | 250                                              |                     |       | 4.25 x 3.25                                  |
| HY-3189  | 32                                   | 5000                               | 2.2                                     | 47.5                                | 50                                                                | 6.3/12.5                 | 6.3/5.5                         | 500                                                | 250                                              |                     |       | 3.75 x 3                                     |
| HY-5     | 40                                   | 5000                               | В                                       | 125                                 | 180                                                               | 6.3/30                   | 4.5/11                          | 1300                                               | 100                                              | 8614                |       | 5 x 4.5                                      |
| HY-53    | 40                                   | 5000                               | 4                                       | 90                                  | 100                                                               | 6.3/30                   | 4.5/11                          | 1300                                               | 100                                              |                     | 3     | 5 x 4.5                                      |
| LS-3101S | 35                                   | 5000                               | 2                                       | 45                                  | 50                                                                | 6.3/18                   | 6.3/6                           | 500                                                | 250                                              |                     | 6     | 5.25 x 3                                     |
| LS-4101  | 40                                   | 12000                              | 3                                       | 55                                  | 50                                                                | 6.3/28                   | 6.3/6                           | 500                                                | 250                                              |                     | 3,6   | 8 x 3.5                                      |
| LS-4111  | 40                                   | 12000                              | 3                                       | 55                                  | 100                                                               | 6.3/28                   | 6.3/6                           | 500                                                | 250                                              |                     | 3.5,6 | 8.25 x 3.5                                   |
| HY-3246  | 45                                   | 15000                              | 2                                       | 45                                  | 50                                                                | 6.3/16                   | 6.3/6                           | 500                                                | 250                                              | Two gap tetrode     |       | 5.75 x 3                                     |
| LS-3229  | 70                                   | 15000                              | 2                                       | 45                                  | 50                                                                | 6.3/16                   | 6.3/6                           | 450                                                | 400                                              |                     | 3,6   | 6.4 x 3                                      |
| HY-3202  | 32                                   | 20000                              | 0.5                                     | 47.5                                | 50                                                                | 6.3/18                   | 6.3/13                          | 500                                                | 250                                              |                     | 2,6   | 6.4 x 3                                      |
| LS-5001  | 40                                   | 20000                              | 4                                       | 90                                  | 100                                                               | 6.3/29                   | 4.5/10                          | 2500                                               | 50                                               |                     | 3     | 6.75 x 4.5                                   |
| LS-5002  | 50                                   | 20000                              | 4                                       | 70                                  | 100                                                               | 6.3/35                   | 4.5/15                          | 2500                                               | 100                                              | Two gap tetrode     | 3     | 9.5 x 4.5                                    |
| LS-5101  | 40                                   | 20000                              | 4                                       | 90                                  | 100                                                               | 6.3/29                   | 4.5/10                          | 2500                                               | 50                                               |                     | 3,6   | 6.75 x 4.5                                   |
| LS-5111  | 40                                   | 20000                              | 4                                       | 90                                  | 200                                                               | 6.3/29                   | 4.5/10                          | 2500                                               | 50                                               |                     | 3,5,6 | 7.2 x 4.5                                    |









#### TERMS USED TO CHARACTERIZE INDIVIDUAL PULSES

Peak Anode Voltage (epy): maximum positive anode voltage, with respect to the cathode.

Peak Inverse Anode Voltage (epx): maximum negative anode voltage, with respect to the cathode.

Peak Forward Anode Current (ib): maximum instantaneous positive anode current.

Peak Inverse Current (lbx): maximum instantaneous negative anode current.

Pulse Width (tp): current pulse full-width at half-maximum.

Pulse Repetition Rate (prr): average number of pulses/second.

Current Rise Time (tr): time for the forward current to rise from 10% to 90% of its peak value.

Anode Fall Time: time for the forward anode voltage to collapse from 90% to 10% of its maximum value.

Anode Delay Time (tad): time interval between triggering and commutation (commutation is defined below). The precise reference points for this interval vary with the application.

Anode Delay Time Drift (\( \Delta tad \)): gradual decrease in anode delay time that occurs as the thyratron warms up.

Jitter (tj): pulse-to-pulse variation in anode delay time.

### TIME AVERAGED QUANTITIES

DC Average Current (lb): forward current averaged over one second.

RMS Average Current (Ip): root-mean-square current averaged over one second.

Plate Breakdown Factor (Pb): numerical factor proportional to the power dissipated at the anode, averaged over one

second. Pb = epy x ib x prr.



E Cook





### STRUCTURAL PARTS OF THE THYRATRON

Auxiliary Grid: grid placed between the control grid and cathode in some thyratrons. A small DC current (or a larger pulsed current) applied between Auxiliary Grid and cathode can be used to control the anode delay time. (Anode delay time is defined above). Thyratrons with auxiliary girds are called Tetrode Thyratrons.

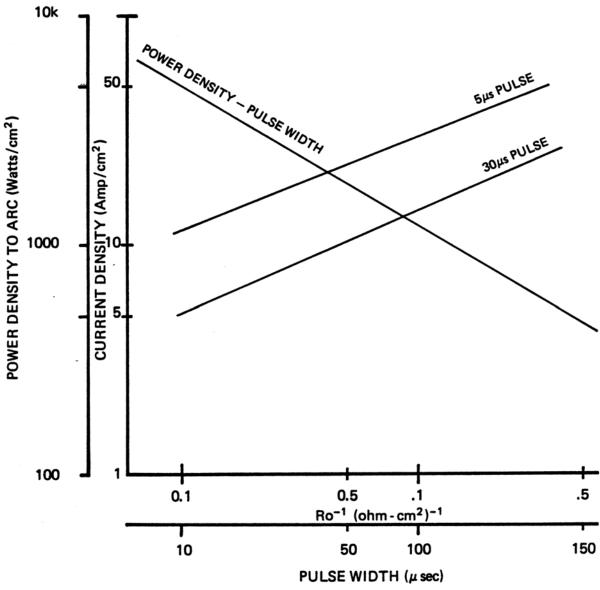
Reservoir: maintains the gas pressure in the tube at a level which depends on the reservoir heater voltage.

### GENERAL TERMINOLOGY

Static (Self) Breakdown Voltage (SBV): applied voltage at which a thyratron will break down spontaneously, without being triggered.

Commutation: transition from trigger breakdown to full closure of the thyratron.

Recovery Time: time which must elapse after decay of the circuit current before anode voltage can be reapplied to the thyratron without causing self-breakdown. The maximum possible pulse repetition rate is the inverse of the recovery time.


Grid Bias: negative DC voltage which may be applied to the control grid to speed up recovery.



E Cook

# **Thyratron Tradeoffs**

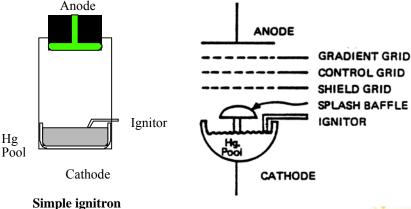


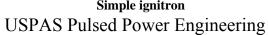




January 12-16, 2009

USPAS Pulsed Power Engineering


E Cook 18 Power Conversion
Solutions for Challenging Problems


### Ignitron



- Mercury filled switch
- Low pressure device: ~0.001 Torr @ 70° F
- High voltage, high current (kA to 100's kA)
- Very simple device with many operational issues
  - Mounting (must be mounted vertically)
  - Vibration
  - Anode needs to be heated to keep mercury evaporated off
  - Ringing discharge affects lifetime
  - Has rep-rate limits and requires temperature control
- Operating voltage affected by tube pressure and electrode condition
- Current affected by plasma instabilities
- Jitter and turn-on delays issues

Anode material - molybdenum or graphite Grids - graphite Igniter - boron carbide





NATIONAL ACCELERATOR LABORATORY

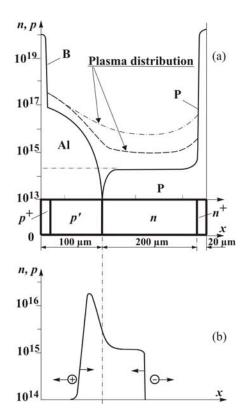
# Plasma Opening Switch (POS)



- Initially, a high density plasma forms a low-conductivity channel (switch closed)
- Plasma conductivity is rapidly increased, ~10 to 100 ns, opening the switch
- Opening mechanisms
  - Plasma erosion switch: plasma source is turned off, conductive particles are swept out by applied fields (plasma erodes), switch opens
  - Applied fields inhibit the flow of conductive particles (electrons) across switch
- Used primarily in effects simulators
- Voltage: >MV
- Current: >MA



### Solid-state Devices - General Observations


- Low jitter (ns)
- Switching speed varies from very fast (ns) to slow(100's µs)
- Limited in peak power capability. High voltage requires series stacks and high peak current requires parallel arrays.
- Usually high average current capability (compared with thyratrons)
- Both closing devices and opening devices available
- Most can operate at high repetition rate
- Low cost in terms of average power rating
- Long lifetime if operated within peak ratings, but usually catastrophic failure when voltage ratings exceeded







- Solid state equivalent to POS
- Forward bias junction, switch closed
- Reverse bias switch, carriers swept from junction, when carriers are depleted, switch is open
- Any diode will work, but, ideally junction carrier density remains constant until all remaining carriers are swept out of gap
  - Dependent on doping profile across junction
  - Carrier crossing time (500 V, Si junction): ~0.5 ns
    - Electrons  $\sim$ 3X faster than holes
  - Drift Step Recovery Diode/Device (DSRD), approximates ideal



DSRD: (a) design and "plasma" distribution,— dc bias,—pulse bias, (b) "plasma" distribution at start of reverse bias

Grekhov, et.al., 2004 PMC



Power Conversion

### **Thyristors**



- Closing switch
- Maximum voltage:
  - Silicon: ∼6.5 kV, limited by defects
  - Silicon carbide: ~20 kV, not commercially available
- Maximum current
  - RMS: ~5 kA
  - Pulsed: 10 to 100X (or more) greater (pulse length dependent)
- Low forward drop, <3 V (typical), low loss
- Simple to trigger
- All types of thyristors can be triggered by applying high dV/dt
- Generally, slow switch for pulsed power applications



# Thyristors (cont.)



- Silicon Controlled Rectifier (SCR)
  - Simple, powerful, relatively inexpensive
  - Switching speed
    - Phase Control: intended for 50/60 Hz operation
    - Inverter grade: ~10 μs (typical)
  - Triggering
    - Low energy trigger switches device, will remain on as long as  $I_{conducted} > I_{threshold}$
    - Electrical
      - $-\sim 3 \text{ V}$
      - <mA small devices, <A largest devices
    - Optical
- Closing/opening devices
  - Gate turn-off thyristor (GTO)
  - Integrated gate commutated thyristor (IGCT)
  - Limited use in pulsed power



## Fast Thyristors



- Higher energy trigger → faster carrier injection and faster turn on
- Reverse blocking diode thyristor (RBDT) (Break over diode, BOD)
  - Triggered by high  $dV/dt \sim 10^{12} V/s$
  - Turn on time  $< \mu s$
- Photon initiated (optical) thyristor
  - Triggered by intense optical pulse that liberates carriers throughout junction
  - Turn on time  $<< \mu s$

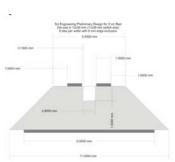



Fig. 2. End view drawings of optical thyristor McDonald, IPMC2006

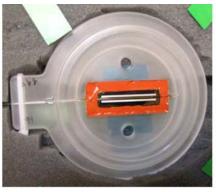



Fig. 3. Photograph of PIMM optical thyristor



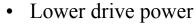
Fig. 4. Photograph of Two-Switch Electrode assembly.







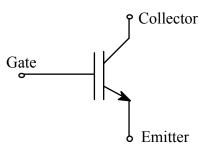
### **Bulk Semiconductor Switches**


- Bulk semiconductor materials; Si, GaAs, diamond-like carbon, can be used as a switch
- Carriers can be produced through the bulk of the material by depositing energy; photons (laser) or electron beam, to trigger the switch
- If trigger induces carrier avalanching, then can only operate as a closing switch, if not avalanching, then removal of trigger source will cause switch to open
- Not commercially available at present, but subject to ongoing investigation and development
- Potential for very high power solid state switch

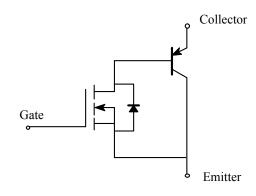


### **Power Transistors**

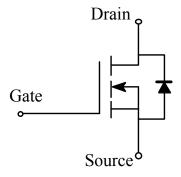



- Hard switch: closes and opens
- Bi-polar devices
  - Minority carrier devices
  - Conduction characterized by Gate  $V_{CE} < 3 \text{ V (typical)}$
  - NPN/PNP power transistors generally replaced by Insulated Gate Bipolar Transistors (IGBT)




- Available at higher voltage, current and power
- Field effect transistors

NATIONAL ACCELERATOR LABORATORY


- Majority carrier devices
- Metal Oxide Semiconductor Field Effect Transistor (MOSFET)
- Conduction characterized by  $R_{DS-ON} \sim \Omega$







**Equivalent Circuit** 



Symbol (N-type)





- Wide-spread use in power electronics  $\rightarrow$  availability of high power modules
  - Voltages: 600 V, 1.2 kV, 1.7 kV, 3.3 kV, 4.5 kV, 6.5 kV
  - Currents: to ~kA average
    - Pulsed current, ~us pulse duration, to ~10X greater
  - Configurations: single die, single switch-parallel die, chopper, bridge
- Switching characteristics
  - Turn on
    - Ultra-fast (single die): as fast as  $\sim$ 50 ns
    - Power modules:  $\sim 0.5 \,\mu s$  (with sophisticated triggering)
  - Turn off
    - Initial turn off is fast, ~turn on time
    - Tail: following initial turn off, a low current tail (~ A to 10's of A) due to carrier recombination may persist for us to 10's of us, full voltage across device → high dissipation
  - Switching losses typically dominate device dissipation, small devices may operate to ~MHz, power modules typically operate at 10 to 50 kHz or less



Power Conversion

### IGBT (cont.)



- Switching
  - Insulated gate structure, capacitive load to trigger circuit
  - Threshold (to turn on)  $\sim$ 5 V
  - Maximum gate voltage ~30 V (higher voltage may punch through oxide)
  - Typically bias gate to 10 15 V
    - Saturation current ( $V_{CE}$  increases dramatically for  $I > I_{SAT}$ )  $\alpha V_{GE}$
    - ullet Low  $I_{SAT}$  limits fault current, protects device/system
    - V<sub>CE</sub> only weakly dependent on V<sub>GE</sub>
  - Optimum (fastest, lowest loss) triggering
    - 2-stage:
      - HV (50 to >100 V): initiates current flow to gate (parasitic L)
      - $-2^{nd}$  ary drive holds gate at 10-15 V
    - Bi-polar, fast turn off requires inverse pulse
    - Does not significantly reduce tail
    - Turn off slowly from fault condition, may loose control if L dI/dt is too high



### IGBT (cont.)



- Easily damaged by reverse voltage (>100 V)
  - Include anti-parallel diode in circuit
  - Integrated into modules
- "Traction motor" modules
  - "Single wide": 12 chips: 8 IGBT/4 diode
  - Internal interconnections may promote oscillations between chips under fault conditions
- Exercise caution when connecting in parallel
  - Often have negative coefficient of V<sub>CE</sub> with temperature
  - Device carrying excess current than neighbors will get hotter, forward voltage will drop, and it will carry even more current







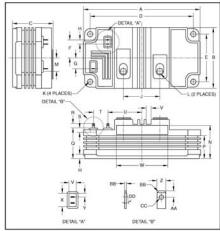
- Collector-Emitter voltage, V<sub>CE</sub>
  - Exceeding, even momentarily, will damage/destroy device
  - Usually limit nominal off-state voltage to 67% of  $V_{\rm CE}$
- Cosmic ray withstand voltage
  - Statistical probability dies will be struck by cosmic ray, if V > withstand voltage, die will fail. Limits "normal" voltage across device.
  - Not always on data sheet, ask manufacturer, typically  $\sim 60\%$  of  $V_{CE}$
- Partial discharge rating/insulation capability
  - International standard sets minimum voltage cycle that results in 10 pC internal discharge for package rating (e.g. 3.3 kV device). Exceeding voltage will shorten device life.

### Thermal

- Exceeding maximum die temperature will result in rapid failure of device
- Thermal cycling
  - Die temperature variations (as device cycles on/off) fatigue bond wires
  - Manufacturer can provide data to determine impact on life for a calculated cycle



### IGBT Data Sheet






CM200HG-130H

rex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272

Single IGBTMOD™ **HVIGBT Module** 200 Amperes/6500 Volts



#### Outline Drawing and Circuit Diagram

NATIONAL ACCELERATOR LABORATORY

| Dimensions | Inches         | Millimeters   | Dimensions |
|------------|----------------|---------------|------------|
| A          | 5.51           | 140.0         | Q          |
| В          | 2.87           | 73.0          | R          |
| С          | 1.89+0.04/-0.0 | 48.0+1.0/-0.0 | S          |
| D          | 4.88           | 124.0         | T          |
| E          | 2.24           | 57.0          | U          |
| F          | 0.85           | 21.6          | v          |
| G          | 0.51           | 12.9          | w          |
| Н          | 0.20           | 5.0           | ×          |
| J          | 1.73           | 44.0          | Y          |
| К          | M6 Metric      | M6            | Z          |
| L          | M8 Metric      | MB            | AA         |
| м          | 0.64           | 16.2          | BB         |
| N          | 1.59           | 40.4          | CC         |
| P          | 1.10           | 28.0          | DD         |

| Dimensions | Inches    | Millimeters |
|------------|-----------|-------------|
| Q          | 1.44      | 36.5        |
| R          | 0,22      | 5.5         |
| S          | 0.16      | 4.0         |
| T          | 0.68      | 17,4        |
| U          | 1.61      | 41.0        |
| ٧          | 0.24      | 6.0         |
| W          | 2.44      | 62.0        |
| X          | 0.47      | 12.0        |
| Y          | 0.14      | 3.5         |
| Z          | 0.11      | 2.8         |
| AA         | 0.06      | 1.6         |
| 88         | 0.02      | 0.5         |
| CC         | 0.05 Dia. | 1.2 Dia.    |
| DD         | 10°       | 10°         |



#### Description:

Powerex IGBTMOD™ Modules are designed for use in switching applications. Each module consists of one IGBT Transistor in a reverse-connected super-fast recovery free-wheel diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

#### Features:

- ☐ Low Drive Power
- ☐ Low V<sub>CE(sat)</sub>
- ☐ Super-Fast Recovery Free-Wheel Diode
- ☐ Isolated Baseplate for Easy Heat Sinking

#### Applications:

- ☐ Traction
- ☐ Medium Voltage Drives
- ☐ High Voltage Power Supplies

#### Ordering Information:

Example: Select the complete part module number you desire from the table below -i.e. CM200HG-130H is a 6500V (V<sub>CES</sub>), 200 Ampere Single IGBTMOD™ Power Module.

| Туре | Current Rating<br>Amperes | V <sub>CES</sub><br>Volts (x 50) |  |
|------|---------------------------|----------------------------------|--|
| CM   | 200                       | 130                              |  |

Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272

CM200HG-130H Single IGBTMOD™ HVIGBT Module 200 Amperes/6500 Volts

#### Absolute Maximum Ratings, T<sub>j</sub> = 25 °C unless otherwise specified

| Ratings                                                                                                                           | Symbol           | CM200HG-130H | Units   |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|---------|
| Junction Temperature                                                                                                              | T <sub>i</sub>   | -40 to 150   | °C      |
| Storage Temperature                                                                                                               | T <sub>stg</sub> | -40 to 125   | °C      |
| Operating Temperature                                                                                                             | Topr             | -40 to 125   | °C      |
| Collector-Emitter Voltage (V <sub>GE</sub> = 0V, T <sub>i</sub> = -40°C)                                                          | V <sub>CES</sub> | 5800         | Volts   |
| Collector-Emitter Voltage (V <sub>GE</sub> = 0V, T <sub>j</sub> = +25°C)                                                          | VCES             | 6300         | Volts   |
| Collector-Emitter Voltage (V <sub>GE</sub> = 0V, T <sub>i</sub> = +125°C)                                                         | VCES             | 6500         | Volts   |
| Gate-Emitter Voltage (V <sub>CE</sub> = 0V)                                                                                       | V <sub>GES</sub> | ±20          | Volts   |
| Collector Current (DC, T <sub>C</sub> = 80°C)                                                                                     | lc               | 200          | Amperes |
| Peak Collector Current (Pulse)                                                                                                    | ICM              | 400*         | Amperes |
| Emitter Current** (T <sub>c</sub> = 25°C)                                                                                         | 1 <sub>E</sub>   | 200          | Ampere  |
| Emitter Surge Current** (Pulse)                                                                                                   | 1 <sub>EM</sub>  | 400*         | Ampere  |
| Maximum Collector Dissipation (T <sub>C</sub> = 25°C, IGBT Part, T <sub>i(max)</sub> ≤ 125°C)                                     | PC               | 2900         | Watts   |
| Partial Discharge (V <sub>1</sub> = 6900 V <sub>rms</sub> , V <sub>2</sub> = 5100 V <sub>rms</sub> , 60 Hz (Acc. to IEC 1287))    | Q <sub>pd</sub>  | 10           | pC      |
| Max. Mounting Torque M8 Main Terminal Screws                                                                                      | -                | 133          | in-lb   |
| Max. Mounting Torque M6 Mounting Screws                                                                                           | _                | 53           | in-lb   |
| Module Weight (Typical)                                                                                                           | -                | 0.52         | kg      |
| Isolation Voltage (Charged Part to Baseplate, AC 60Hz 1 min.)                                                                     | Viso             | 10200        | Volts   |
| Maximum Turn-Off Switching Current                                                                                                | 2                | 400          | Amperes |
| $(V_{CC} \le 4500V, V_{GE} = \pm 15V, R_{G(off)} \ge 72\Omega, T_j = 125^{\circ}C)$                                               |                  |              |         |
| Short Circuit Capability, Maximum Pulse Width                                                                                     | 0                | 10           | μs      |
| $(V_{CC} \le 4500V, V_{GE} = \pm 15V, R_{G(off)} \ge 72\Omega, T_j = 125^{\circ}C)$                                               |                  |              |         |
| Maximum Reverse Recovery Instantaneous Power<br>(V <sub>CC</sub> ≤ 4500V, di <sub>o</sub> /dt ≤ 1000A/μs, T <sub>1</sub> = 125°C) | -                | 1200         | kW      |

\* Pulse width and repetition rate should be such that device junction temperature (T<sub>i</sub>) does not exceed T<sub>opmax</sub> rating (125°C).
\*\*Represents characteristics of the anti-parallel, emitter-to-collector free-wheel dode (FWO).





## IGBT Data Sheet (cont.)





rex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272

CM200HG-130H Single IGBTMOD™ HVIGBT Module 200 Amperes/6500 Volts

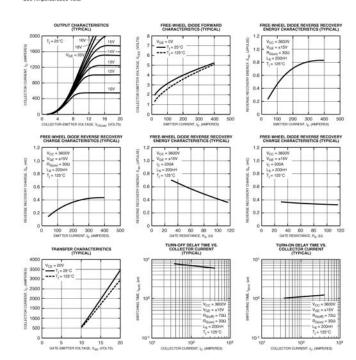
#### Static Electrical Characteristics, Ti = 25 °C unless otherwise specified

| Characteristics                      | Symbol               | Test Conditions                                                                   | Min.  | Typ. | Max. | Units |
|--------------------------------------|----------------------|-----------------------------------------------------------------------------------|-------|------|------|-------|
| Collector-Cutoff Current*            | ICES                 | V <sub>CE</sub> = V <sub>CES</sub> , V <sub>GE</sub> = 0V, T <sub>j</sub> = 25°C  | _     | -    | 3.0  | mA    |
|                                      |                      | V <sub>CE</sub> = V <sub>CES</sub> , V <sub>GE</sub> = 0V, T <sub>j</sub> = 125°C | -     | 10   | 30.0 | mA    |
| Gate-Emitter Threshold Voltage       | V <sub>GE(th)</sub>  | I <sub>C</sub> = 20mA, V <sub>CE</sub> = 10V                                      | 5.0   | 6.0  | 7.0  | Volts |
| Gate Leakage Current                 | IGES                 | $V_{GE} = V_{GES}, V_{CE} = 0V$                                                   | 100   | -    | 0.5  | μΑ    |
| Collector-Emitter Saturation Voltage | V <sub>CE(sat)</sub> | I <sub>C</sub> = 200A, V <sub>GE</sub> = 15V, T <sub>j</sub> = 25°C               | 1077  | 5.1  | 0.70 | Volts |
|                                      |                      | I <sub>C</sub> = 200A, V <sub>GE</sub> = 15V, T <sub>j</sub> = 125°C              | -     | 5.0  | -    | Volts |
| Input Capacitance                    | Cies                 | V <sub>CE</sub> = 10V, V <sub>GE</sub> = 0V,                                      | -     | 41.0 | (+)  | nF    |
| Output Capacitance                   | Coes                 | f = 100kHz,                                                                       | -     | 2.5  | -    | nF    |
| Reverse Transfer Capacitance         | Cres                 | T <sub>j</sub> = 25°C                                                             | -     | 0.7  |      | nF    |
| Total Gate Charge                    | QG                   | V <sub>CC</sub> = 3600V, I <sub>C</sub> = 200A, V <sub>GE</sub> = 15V             | -     | 3.3  | -    | μC    |
| Emitter-Collector Voltage**          | VEC                  | I <sub>E</sub> = 200A, V <sub>GE</sub> = 0V, T <sub>j</sub> = 25°C                | -     | 4.0  | -    | Volts |
|                                      |                      | I <sub>E</sub> = 200A, V <sub>GE</sub> = 0V, T <sub>j</sub> = 125°C               | -     | 3.6  | -    | Volts |
| Turn-On Delay Time                   | t <sub>d(on)</sub>   | V <sub>CC</sub> = 3600V, I <sub>C</sub> = 200A,                                   | ( + ) | 1.2  | 3.50 | μs    |
| Turn-On Rise Time                    | t <sub>r</sub>       | $V_{GE1} = -V_{GE2} = 15V, R_{G(on)} = 30\Omega,$                                 | -     | 0.35 | -    | μs    |
| Turn-On Switching Energy             | Eon                  | T <sub>j</sub> = 125°C, t <sub>off</sub> = 60µs, Inductive Load                   | -     | 1.5  | -    | J/P   |
| Turn-Off Delay Time                  | t <sub>d(off)</sub>  | V <sub>CC</sub> = 3600V, I <sub>C</sub> = 200A,                                   | -     | 6.6  | -    | μs    |
| Turn-Off Fall Time 1                 | t <sub>f1</sub>      | $V_{GE1} = -V_{GE2} = 15V$                                                        | -     | 0.5  | -    | μs    |
| Turn-Off Fall Time 2                 | 112                  | $R_{G(off)} = 72\Omega$                                                           | -     | 3.3  | (17) | μs    |
| Turn-Off Switching Energy            | Eoff                 | T <sub>j</sub> = 125°C, t <sub>off</sub> = 60µs, Inductive Load                   |       | 1.2  | -    | J/P   |
| Reverse Recovery Time 1**            | \$rr1                | V <sub>CC</sub> = 3600V, I <sub>E</sub> = 200A,                                   |       | 1.0  | _    | μs    |
| Reverse Recovery Time 2**            | t <sub>m2</sub>      | di <sub>e</sub> /dt = -670A/µs,                                                   | -     | 2.4  | -    | μs    |
| Reverse Recovery Charge**            | Qrr                  | T <sub>j</sub> = 125°C,                                                           | -     | 370  | -    | μC    |
| Reverse Recovery Energy**            | Erec                 | toff = 60µs, Inductive Load                                                       | -     | 0.7  | -    | J/P   |

<sup>\*</sup> Pulse width and repetition rate should be such that device junction temperature rise is negligible. "Recessants characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDs).

| merma Characteristic | 5, 1 = 20 0 umess one wit | se specified    |      |      |
|----------------------|---------------------------|-----------------|------|------|
| Characteristics      | Symbol                    | Test Conditions | Min. | Typ. |
|                      |                           |                 |      |      |

| Characteristics                         | Symbol                 | Test Conditions                    | Min. | Typ. | Max. | Units |
|-----------------------------------------|------------------------|------------------------------------|------|------|------|-------|
| Thermal Resistance, Junction to Case    | R <sub>th(j-c)</sub> Q | Per IGBT                           | -    | -    | 42.0 | K/kW  |
| Thermal Resistance, Junction to Case    | R <sub>th(j-c)</sub> D | Per FWDi                           | 177  | =    | 66.0 | K/kW  |
| Contact Thermal Resistance, Case to Fin | R <sub>th(c-f)</sub>   | Per Module, Thermal Grease Applied | -    | 18.0 | -    | K/kW  |


#### Mechanical Characteristics. Ti = 25 °C unless otherwise specified

| Characteristics            | Symbol                | Test Conditions | Min. | Typ. | Max. | Units |
|----------------------------|-----------------------|-----------------|------|------|------|-------|
| Comparative Tracking Index | CTI                   | 12              | 600  | _    | _    | _     |
| Clearance                  | -                     | -               | 26.0 | -    | -    | mm    |
| Creepage Distance          | -                     | -               | 56.0 | -    | -    | mm    |
| Internal Inductance        | L <sub>C-E(int)</sub> | (#)             | -    | 54.0 |      | μH    |
| Internal Lead Resistance   | Rc-E(int)             | -               | -    | -    | -    | mΩ    |

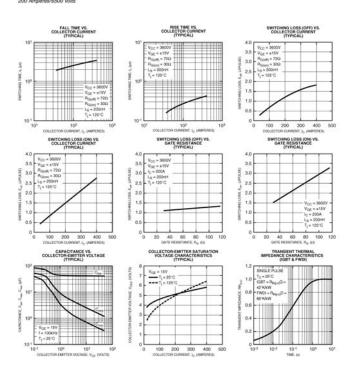


Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272

CM200HG-130H Single IGBTMOD™ HVIGBT Module 200 Amperes/6500 Volts






**Power Conversion** Solutions for Challenging Problems







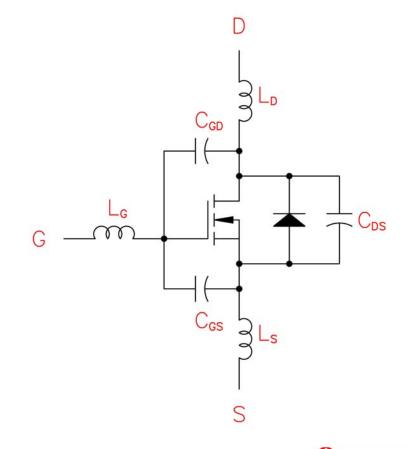
Single IGBTMOD™ HVIGBT Module 200 Amperes/6500 Volts





### MOSFET




- Fastest commercial solid state switch available
  - Intrinsic turn on/off time ~ns set by R<sub>DS-ON</sub>C<sub>OUTPUT</sub> time constant (carrier junction crossing time much faster)
  - Effective switching time limited by input capacitance, stray packaging inductance, and  $dI_S/dt$  to  $\ge 10$  ns
- Maximum voltage: 1200 V
  - Avalanche rated, limited excursion to  $V > V_{DSS}$  will not damage device
  - Can operate at near V<sub>DSS</sub>
- Maximum current: ~0.1 kA (higher for modules and lower voltage FETs)
  - Pulsed current limited to ~4X average rating due to increase in  $R_{DS-ON}$
- "Intrinsic" reverse body diode, acts as anti-parallel diode
  - FREDFET: improved reverse body diode, soft recovery
- Well suited for parallel operation, positive coefficient of V<sub>DS</sub> with temperature





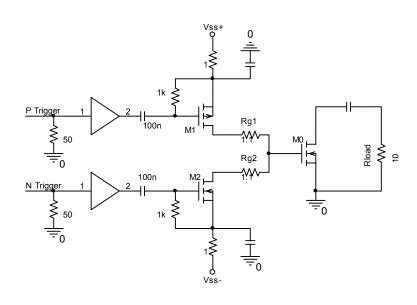


- Data sheet information
  - Drain-source breakdown voltage: V<sub>DSS</sub>
  - Drain current
    - Continuous: I<sub>D</sub>
    - Pulsed: I<sub>DM</sub>
  - $-R_{DS-ON} @ I_D$
  - Input capacitance:  $C_{ISS} = C_{GD} + C_{GS}$
  - Output capacitance:  $C_{OSS} = C_{DS}$
  - Reverse transfer capacitance (Miller capacitance):  $C_{RSS} = C_{GD}$
- Typical values for 1 kV TO-247/264
  - $L_{D}: <1 \text{ nH}$
  - $L_G \& L_S$ : ~6 nH
  - C<sub>ISS</sub>: ∼few nF
  - C<sub>OSS</sub> & C<sub>RSS</sub>: ~few 100 pF

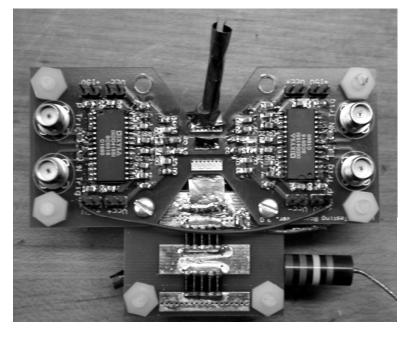







# MOSFET Fast Switching

- Input capacitance and parasitic inductance form resonant circuit
  - $-\omega < 10^9$ , therefore  $\tau_r \sim$  few ns will excite the resonance
  - Z  $\sim$  few ohm, therefore need significant gate resistance to damp
- Inductive voltage due to rising source current: L<sub>S</sub>dI<sub>S</sub>/dt
  - 50 A in 10 ns would induce ~30 V across source inductance
  - Inductive voltage subtracts from applied gate voltage
- Effects are internal to package
  - May not see true causes of slow MOSFET turn on
- Remediations
  - Use a bi-polar high voltage gate drive (limited by gate breakdown)
  - Use high gate drive resistance (balance with drive current requirements)
  - Use a larger number of smaller MOSFETs in parallel
  - Integrate driver into MOSFET package
    - Commercial units show little gain
    - Hybrid circuits can achieve ∼1 ns risetime






# Hybrid MOSFET/Driver for Ultra-Fast Switching



Hybrid schematic: totem pole driver, output MOSFET, and load



Hybrid circuit; dual drivers on each side of PCB, MOSFET on bottom-side of PCB, load at bottom of photo

Tang & Burkhart, IPMC2008



C Burkhart

### MOSFET Data Sheet







#### APT13F120B **APT13F120S**

1200V, 13A, 1.40Ω Max, t<sub>ff</sub>, ≤250ns

#### N-Channel FREDFET

Power MOS 8" is a high speed, high voltage N-channel switch-mode power MOSFET. This 'FREDFET' version has a drain-source (body) diode that has been optimized for high reliability in ZVS phase shifted bridge and other circuits through reduced  $t_{\rm rr}$ , soft recovery, and high recovery dv/dt capability. Low gate charge, high gain, and a greatly reduced ratio of C<sub>rss</sub>/C<sub>iss</sub> result in excellent noise immunity and low switching loss. The intrinsic gate resistance and capacitance of the poly-silicon gate structure help control di/dt during switching, resulting in low EMI and reliable paralleling, even when switching at very high frequency.



#### **FEATURES**

- · Fast switching with low EMI
- · Low t<sub>rr</sub> for high reliability
- Ultra low C<sub>rss</sub> for improved noise immunity
- Low gate charge
- · Avalanche energy rated
- RoHS compliant

#### TYPICAL APPLICATIONS

- . ZVS phase shifted and other full bridge
- Half bridge
- . PFC and other boost converter
- . Single and two switch forward
- Flyback

| bsolute         | Maximum Ratings                                   |         | ы    |
|-----------------|---------------------------------------------------|---------|------|
| Symbol          | Parameter                                         | Ratings | Unit |
| 7.              | Continuous Drain Current @ T <sub>C</sub> = 25°C  | 13      |      |
| ь               | Continuous Drain Current @ T <sub>C</sub> = 100°C | 8       | _ A  |
| I <sub>DM</sub> | Pulsed Drain Current <sup>®</sup>                 | 50      |      |
| V <sub>GS</sub> | Gate-Source Voltage                               | ±30     | V    |
| E <sub>AS</sub> | Single Pulse Avalanche Energy <sup>∅</sup>        | 1070    | mJ   |
| I <sub>AR</sub> | Avalanche Current, Benetitive or Non-Benetitive   | 7       | A    |

| Symbol                           | Characteristic                                         | Min | Тур  | Max  | Unit   |  |
|----------------------------------|--------------------------------------------------------|-----|------|------|--------|--|
| PD                               | Total Power Dissipation @ T <sub>C</sub> = 25°C        |     |      | 625  | W      |  |
| R <sub>euc</sub>                 | R <sub>BJC</sub> Junction to Case Thermal Resistance   |     |      | 0.20 | °C/W   |  |
| R <sub>ecs</sub>                 | Case to Sink Thermal Resistance, Flat, Greased Surface |     | 0.11 |      | C/VV   |  |
| T <sub>J</sub> ,T <sub>STG</sub> | Operating and Storage Junction Temperature Range       | -55 |      | 150  |        |  |
| TL                               | Soldering Temperature for 10 Seconds (1.6mm from case) |     |      | 300  | °C     |  |
| W.                               | Package Weight                                         |     | 0.22 |      | 02     |  |
|                                  | Package Weight                                         |     | 6.2  |      | 9      |  |
| Torque                           | W                                                      |     |      | 10   | in-lbf |  |
|                                  | Mounting Torque ( TO-247 Package), 6-32 or M3 screw    |     |      | 1.1  | N·m    |  |

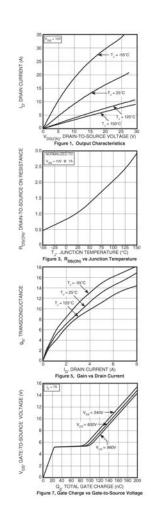
Microsemi Website - http://www.microsemi.com

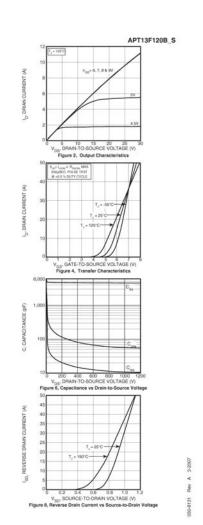
| Static Characteristics            |                                           | T <sub>J</sub> = 25°C unless otherwise specified         |                        |      |      | APT13F120B_ |       |  |  |
|-----------------------------------|-------------------------------------------|----------------------------------------------------------|------------------------|------|------|-------------|-------|--|--|
| Symbol                            | Parameter                                 | Test Conditions                                          |                        | Min  | Тур  | Max         | Unit  |  |  |
| V <sub>BR(DSS)</sub>              | Drain-Source Breakdown Voltage            | V <sub>GS</sub> = 0V, I <sub>D</sub> = 250μA             |                        | 1200 |      |             | V     |  |  |
| $\Delta V_{BR(DSS)}/\Delta T_{j}$ | Breakdown Voltage Temperature Coefficient | Reference to 25°C, I <sub>D</sub> = 250µA                |                        |      | 1.41 |             | V/°C  |  |  |
| R <sub>DS(on)</sub>               | Drain-Source On Resistance <sup>™</sup>   | V <sub>GS</sub> = 10V, I <sub>D</sub> = 7A               |                        |      | 1.11 | 1.40        | Ω     |  |  |
| V <sub>GS(tr)</sub>               | Gate-Source Threshold Voltage             | V <sub>GS</sub> = V <sub>DS</sub> , i <sub>D</sub> = 1mA |                        | 3    | 4    | 5           | V     |  |  |
| $\Delta V_{GS(m)}/\Delta T_{J}$   | Threshold Voltage Temperature Coefficient |                                                          |                        |      | -10  |             | mV/°C |  |  |
| I <sub>DSS</sub>                  | Zero Gate Voltage Drain Current           | V <sub>DS</sub> = 1200V                                  | T <sub>J</sub> = 25°C  |      |      | 250         | μА    |  |  |
|                                   |                                           | V <sub>os</sub> = ov                                     | T <sub>j</sub> = 125°C |      |      | 1000        | I pA  |  |  |
| ass                               | Gate-Source Leakage Current               | V <sub>GS</sub> = ±30V                                   |                        |      | 3 8  | ±100        | nA    |  |  |

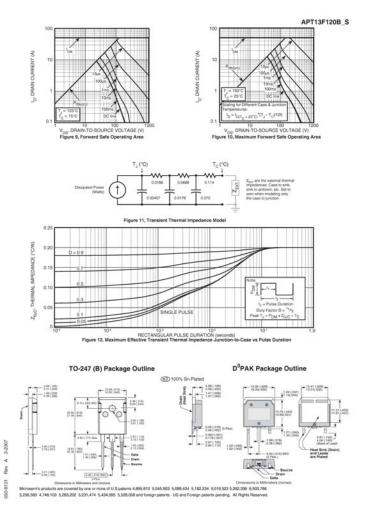
| Symbol               | Parameter                                    | Test Conditions                                              | Min | Тур  | Max | Unit |  |
|----------------------|----------------------------------------------|--------------------------------------------------------------|-----|------|-----|------|--|
| g <sub>h</sub>       | Forward Transconductance                     | V <sub>DS</sub> = 50V, I <sub>D</sub> = 7A                   |     | 15   |     | S    |  |
| Cies                 | Input Capacitance                            | No. of the second                                            |     | 4765 |     | pF   |  |
| Cms                  | Reverse Transfer Capacitance                 | $V_{GS} = 0V$ , $V_{DS} = 25V$<br>f = 1MHz                   |     | 55   |     |      |  |
| Coss                 | Output Capacitance                           | 1-10-0                                                       |     | 350  |     |      |  |
| C <sub>0(0)</sub> @  | Effective Output Capacitance, Charge Related |                                                              |     | 135  |     |      |  |
| C <sub>o(er)</sub> ® | Effective Output Capacitance, Energy Related | $V_{GS} = 0V$ , $V_{DS} = 0V$ to 800V                        |     | 70   |     |      |  |
| Q <sub>0</sub>       | Total Gate Charge                            | 100000000000000000000000000000000000000                      |     | 145  |     | nC   |  |
| Qgs                  | Gate-Source Charge                           | $V_{QS} = 0 \text{ to } 10V, I_{D} = 7A,$<br>$V_{DS} = 600V$ |     | 24   |     |      |  |
| O <sub>gd</sub>      | Gate-Drain Charge                            | V <sub>DS</sub> = 600V                                       |     | 70   |     |      |  |
| t <sub>a(on)</sub>   | Turn-On Delay Time                           | Resistive Switching                                          |     | 26   |     | ns   |  |
| 1,                   | Current Rise Time                            | $V_{DD} = 800V, I_{D} = 7A$                                  |     | 15   |     |      |  |
| f <sub>acotts</sub>  | Turn-Off Delay Time                          | $R_{G} = 4.70^{\circ}$ , $V_{GG} = 15V$                      |     | 85   |     | lis  |  |
| 4                    | Current Fall Time                            |                                                              |     | 24   |     |      |  |

| Symbol          | Parameter                                          | Test Conditions                                                                        |                        | Min | Тур  | Max        | Unit |
|-----------------|----------------------------------------------------|----------------------------------------------------------------------------------------|------------------------|-----|------|------------|------|
| l <sub>s</sub>  | Continuous Source Current<br>(Body Diode)          | MOSFET symbol showing the showing the integral reverse p-n junction diode (body diode) |                        |     |      | 13         | A    |
| I <sub>SM</sub> | Pulsed Source Current<br>(Body Diode) <sup>®</sup> |                                                                                        |                        |     |      | 50         |      |
| V <sub>SD</sub> | Diode Forward Voltage                              |                                                                                        |                        |     |      | 1.0        |      |
| <b>L</b> ,      | Reverse Recovery Time                              |                                                                                        | T <sub>j</sub> = 25°C  |     |      | 250<br>520 | ns   |
|                 |                                                    |                                                                                        | T <sub>j</sub> = 125°C |     |      |            |      |
| O <sub>rr</sub> | Reverse Recovery Charge                            | I <sub>SO</sub> = 7A <sup>Q</sup>                                                      | T <sub>J</sub> = 25°C  |     | 1.12 |            | μC   |
|                 |                                                    | di <sub>SO</sub> /dt = 100A/µs                                                         | T <sub>j</sub> = 125°C |     | 3.03 |            |      |
| <u></u>         | Reverse Recovery Current                           | V <sub>DO</sub> = 100V                                                                 | T_ = 25°C              |     | 10   |            | A    |
|                 |                                                    | T <sub>J</sub> = 125                                                                   | T <sub>j</sub> = 125°C |     | 13.5 |            |      |
| dv/dt           | Peak Recovery dv/dt                                | $I_{SD} \le 7A$ , di/dt $\le 1000$ /<br>$T_{c} = 12$                                   |                        |     | 25   | V/ns       |      |

- Repetitive Rating: Pulse width and case temperature limited by maximum junction temperature.
- Starting at T<sub>J</sub> = 25°C, L = 43.59mH, R<sub>G</sub> = 4.70, I<sub>AS</sub> = 7A.
- 3 Pulse test: Pulse Width < 380µs, duty cycle < 2%.</p>
- C<sub>cicri</sub> is defined as a fixed capacitance with the same stored charge as C<sub>CSS</sub> with V<sub>DS</sub> = 67% of V<sub>(BP(DSS)</sub>. (5) C<sub>c(ef)</sub> is defined as a fixed capacitance with the same stored energy as C<sub>DSS</sub> with V<sub>DS</sub> = 67% of V<sub>(BF)DSS</sub>. To calculate C<sub>c(ef)</sub> for any value of  $V_{DS}$  less than  $V_{(BR)DSS}$  use this equation:  $C_{o(ee)} = -2.17E-7N_{DS}^2 + 2.63E-8N_{DS} + 3.74E-11$ .
- (6) R<sub>o</sub> is external gate resistance, not including internal gate resistance or gate driver impedance. (MIC4452)


Microsemi reserves the right to change, without notice, the specifications and information contained herein.

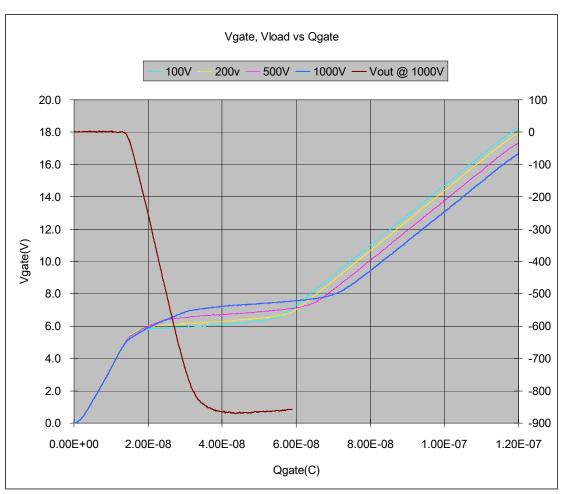



# MOSFET Data Sheet












## Interpretation of Hybrid MOSFET Data During Nanosecond Switching

- No switching until V<sub>GS</sub> exceeds threshold
- Switching is effectively complete before Miller capacitance is fully charged (~20 nC < Q < 60 nC)
- Ultra-fast is unlike normal MOSFET switching
  - Switching time depends on "linear" behavior of device
  - Sensitive to
    - Transistor gain, g<sub>m</sub>
    - Die temperature
    - Device-to-device variations



Gate and drain-source voltage as a function of gate charge, for a range of initial MOSFET voltage



Power Conversion



# High Power Switching with Solid State Switches

- Peak switching power of commercial devices is limited
  - Array, series/parallel, devices to increase power
  - Use alternative topologies
- Arrays
  - Parallel
    - MOSFETs well suited
    - IGBTs may present challenges
  - Series
    - Prevent overvoltage of individual elements under ALL CONDITIONS
      - Derate device operating: reduces effective device power
      - Add protection (e.g. RC snubber): reduces switching speed



# Commercial Suppliers



### Semiconductors

- Power Semiconductors (MOSFETs, IGBTs, Thyristors)
  - APT: http://www.advancedpower.com/ → Microsemi: http://www.microsemi.com/
  - EUPEC:http://www.eupec.com/index.html → Infineon: http://www.infineon.com/
  - Powerex/Mitsubishi: http://www.pwrx.com/
  - DYNEX: http://www.dynexsemi.com/
  - ST Microelectronics: http://us.st.com/stonline/index.shtml
  - Westcode: http://www.westcode.com/
  - International Rectifier: http://www.irf.com/
  - Toshiba: http://www.toshiba.com
  - ABB: http://www.abb.com
  - IXYS/DEI: http://www.ixys.com/

### Driver Circuits

- IXYS/DEI: http://www.ixys.com/
- Vishay/Siliconix: http://www.vishay.com/
- Intersil/Elantec: http://www.intersil.com

