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Engineering Simulations in Pulsed Power Systems Ij"ﬁ

« Uses of engineering simulation
 Tools

* Typical methodology

» Analytical estimates of electric field
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Pulsed Power Engineering Simulations )|

» Differential equations govern many processes of interest to pulsed power
engineers.
— Ex. Heat flow, stress/strain, electric and magnetic field intensities

« Simulations provide a straightforward method to solve these equations for
complex geometries and non-linear conditions.

o Some Types of Simulations Used

— Finite Element Method (FEM)
« Very common method; used for transient and non-linear problems

— Boundary Value Method (BVM)
» (Good for odd aspect-ratio problems with open spaces; quick simulation times

— Particle in Cell (PIC)
» For particle trajectory problems and plasma simulation
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Types of Simulations Iji%

» Electrostatic/Magnetostatic

— Electro, Maxwell 2D (free)/3D, Quickfield
e Multi-physics

— ANSYS, ATILA (free)
» Capacitance/Inductance Solvers

— FastHenry (free), FastCap (free)

» Electromagentic Solver
— HFSS, Singula

o Particle-in-Cell
— XOOPIC (free), LSP
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Electric Field Stress !h%

» What is the electric field stress for a certain geometry and voltage?
« Shown is a rotationally symmetric capacitor.

WATER CAD Drawing of O e S B R T R R
Water Capacitor . .
(azimuthally symmetric)

CONDUCTOR

— Eleqtric Field
Magnitude Plots

Open Space

Along a O A S U O |
Measurement Line N

ﬂ I ‘ h [\ Power Conversion
qh nv January 12-16, 2009 USPAS Pulsed Power Engineering M Kemp 5 'G””‘“"“ T

NATIONAL ACCELERATOR LABORATORY




w
Electric Field Gradin !h%

* Where should field shapers be placed to evenly grade the electric field along an
insulator?

* Field response to geometry changes can be modeled.

Electric Field Vectors

Equipotentials

Floating Conductors in a

Gas Discharge Switch oL T
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Capacitance Matrices !h%

» Many electrostatic codes can generate a matrix of capacitance values from element
values to each other.

» These values can be exported to circuit codes for transient simulations.

Simulation-Generated Capacnance I\/Iatrlx
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Effective Capacitance
Between Isolated conductors
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Inductance Matrices !h"rh

CAD Drawing

Simplified
Representation

Inductance
Matrix

« Simplified representations are in many time
necessary and appropriate for simulating
complex geometries.

e Self- and mutual- inductance matrices can be
generated.
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PIC Cathode Design I\%

Ground
-209 kV -200¢kV+300V S|

» Some PIC codes can self-consistently model E&M
systems.

» Above is a cathode design showing the effect of
external fields and self-fields from electrons.
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Multi-Physics Design I\%

e In some cases, several systems interact. E.qg. Grounded
mechanical, electrical, and thermal. electrode ‘+/lkV

e For example, left is a simulation of a piezoelectric
transformer. Coupled mechanical and electrical
systems are simulated.

« ANSYS and ATILA (free) are two codes

available.
~35 kV
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Typical Work Flow Iji”lg

e Create Geometry
— Through external CAD program
— Through included CAD program
— By manually entering text coordinates

» Define Boundaries and Sources
— Ex. Force on a surface, voltage on a conductor, or charge in a volume.

o Define Solution Type
» Create Mesh

e Simulate

e Post-Process
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Typical Workflow !.!q’

A complex
geometry is created
ST gt R e g fase & in a CAD program

] 3 B ) ) [

e Canbe2Dor3D
depending on the
software and the
nature of the

problem

g ! A ﬂ q Power Conversion
anuary 12-10, ulsed Power Engineering emp

q ﬂv J 12-16, 2009 USPAS Pulsed P Engi I M K 12 Sotons or Chalenging Probms

NATIONAL ACCELERATOR LABORATORY



Typical Workflow !ﬁ"rﬁ

1 A~

The specific area of interest
Is imported to the
simulation software.

Excitations and boundary
conditions are set.

Simulation settings are
entered.
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Typical Workflow !h”lg

e Once aproblem has a
converged solution, results
can be viewed.

e Many programs have the
option to view results in a
pOSt-processor program or
export for processing
elsewhere.
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Estimating Electric Fields

Maximum Stress (E,,)
_ maximum stress
mean stress
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Optimum ratio T

and corresponding
maximum stress
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Cylinders
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equal spheres
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Maximum Stress (E,,)
_ maximum stress
mean stress
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Estimating Electric Fields Iji%
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10

B maximum stress

Dependence of the ratio —eanstess | ON electrode geometry for concentric
cylinders and spheres (calculated from stress table) and for cylinder sur Rnded
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Estimating Electric Fields Iji%
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Dependence of the ratio  f=—_——-—— on electrode geometry for separate

spheres and separate cylinders (calculated from stress table) and sphere-plane
and cylinder-plane assemblies
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Control of High Stress Points !ﬁ"rs
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Use of stress shields.
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Electrode
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A Electrode ) ) \ N N

(a) (b) (c) (d)

Control of stress at an electrode edge.
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