

Pulsed Power Engineering Engineering Simulations

January 12-16, 2009

Craig Burkhart, PhD Power Conversion Department SLAC National Accelerator Laboratory

Engineering Simulations in Pulsed Power Systems

- Uses of engineering simulation
- Tools
- Typical methodology
- Analytical estimates of electric field

January 12-16, 2009

Pulsed Power Engineering Simulations

- Differential equations govern many processes of interest to pulsed power engineers.
 - Ex. Heat flow, stress/strain, electric and magnetic field intensities
- Simulations provide a straightforward method to solve these equations for complex geometries and non-linear conditions.
- Some Types of Simulations Used
 - Finite Element Method (FEM)
 - Very common method; used for transient and non-linear problems
 - Boundary Value Method (BVM)
 - Good for odd aspect-ratio problems with open spaces; quick simulation times
 - Particle in Cell (PIC)
 - For particle trajectory problems and plasma simulation

Types of Simulations

- Electrostatic/Magnetostatic •
 - Electro, Maxwell 2D (free)/3D, Quickfield
- Multi-physics ٠
 - ANSYS, ATILA (free)
- Capacitance/Inductance Solvers •
 - FastHenry (free), FastCap (free)
- Electromagentic Solver ٠
 - HFSS, Singula
- Particle-in-Cell ٠
 - XOOPIC (free), LSP

4

Electric Field Stress

- What is the electric field stress for a certain geometry and voltage?
- Shown is a rotationally symmetric capacitor.

Electric Field Grading

- Where should field shapers be placed to evenly grade the electric field along an insulator?
- Field response to geometry changes can be modeled.

January 12-16, 2009

USPAS Pulsed Power Engineering M Kemp

Capacitance Matrices

- Many electrostatic codes can generate a matrix of capacitance values from element • values to each other.
- These values can be exported to circuit codes for transient simulations. •

January 12-16, 2009

USPAS Pulsed Power Engineering

M Kemp

7

Inductance Matrices

PIC Cathode Design

- Some PIC codes can self-consistently model E&M systems.
- Above is a cathode design showing the effect of external fields and self-fields from electrons.

January 12-16, 2009

USPAS Pulsed Power Engineering M Kemp

Multi-Physics Design

- In some cases, several systems interact. E.g. mechanical, electrical, and thermal.
- For example, left is a simulation of a piezoelectric transformer. Coupled mechanical and electrical systems are simulated.
- ANSYS and ATILA (free) are two codes available.

January 12-16, 2009

Typical Work Flow

- Create Geometry
 - Through external CAD program
 - Through included CAD program
 - By manually entering text coordinates
- Define Boundaries and Sources
 - Ex. Force on a surface, voltage on a conductor, or charge in a volume.
- Define Solution Type
- Create Mesh
- Simulate
- Post-Process

January 12-16, 2009

Typical Workflow

- A complex geometry is created in a CAD program
- Can be 2D or 3D depending on the software and the nature of the problem

January 12-16, 2009

USPAS Pulsed Power Engineering M Kemp

Typical Workflow

- The specific area of interest is imported to the simulation software.
- Excitations and boundary conditions are set.
- Simulation settings are entered.

January 12-16, 2009

Typical Workflow

- Once a problem has a converged solution, results can be viewed.
- Many programs have the option to view results in a post-processor program or export for processing elsewhere.

January 12-16, 2009

USPAS Pulsed Power Engineering M Kemp

Estimating Electric Fields

Estimating Electric Fields

Dependence of the ratio $f = \frac{\text{maximum suess}}{\text{mean stress}}$ on electrode geometry for concentric cylinders and spheres (calculated from stress table) and for cylinder surrounded by atorus. January 12-16, 2009 USPAS Pulsed Power Engineering E Cook 16

Dependence of the ratio $f = \frac{\text{maximum stress}}{\text{mean stress}}$ on electrode geometry for separate spheres and separate cylinders (calculated from stress table) and sphere-plane and cylinder-plane assemblies

January 12-16, 2009 USPAS Pulsed Power Engineering E Cook

Control of High Stress Points

Use of stress shields.

Control of stress at an electrode edge.

January 12-16, 2009

USPAS Pulsed Power Engineering E Cook

