

Pulsed Power Engineering Circuit Simulation

January 12-16, 2009

Craig Burkhart, PhD Power Conversion Department SLAC National Accelerator Laboratory

Circuit Simulation for Pulsed Power Applications

- Uses of circuit simulation
- Tools
- Limitations
- Typical methodology

Why Simulation of Power Electronic Systems

- In research & development
 - Analyze behavior of new circuit concepts
 - ⇒ Improved understanding of circuit
- In product engineering
 - Study influence of parameters
 - Optimize circuit design and control
 - \Rightarrow Shorten overall design process
- Simulation results
 - Voltage and current waveforms
 - Dynamic and steady-state system performance
 - Power losses
 - Component ratings

5

plexim

Challenges in Numerical Simulation

- Power semiconductors introduce extreme nonlinearity
 - ⇒ Program must be able to handle switching
 - Time constants differ by several orders of magnitude e.g. in electrical drives
 - ⇒ Small simulation time steps
 - ⇒ Long simulation times
- Accurate models not always available
 - e.g. semiconductor devices, magnetic components
 - \Rightarrow Behavioral models with sufficient accuracy required
- Controller modeled along with electrical circuit e.g. digital control
 - \Rightarrow Mixed signal simulation

plexim

Different Degrees of Simulation Detail

- 1. Power circuit modeled as linear transfer function
 - Small signal behavior
 - No switching, no harmonics
 - ⇒ Controller design
- Power circuit modeled with ideal components
 - Large signal behavior, voltage and current waveforms
 - Overall system performance
 - ⇒ Circuit design and controller verification
- 3. Power circuit with manufacturer specific components
 - Parasitic effects (magnetic hysteresis)
 - Switching transitions (diode reverse recovery)
 - Component stress (electrical or thermal)
 - \Rightarrow Choice of components

plexim

Different Degrees of Simulation Detail

January 12-16, 2009 USPAS Pulsed Power Engineering

C Burkhart

6

Circuit Simulation Tools

- Reduces circuit to N algebraic equations with N unknowns and solve
 - Implicit integration Methods
 - Newton's method
 - Etc.
- Spice/PSpice (Simulation Program with Integrated Circuit Emphasis)
 - Ubiquitous circuit solver
 - Developed at UC Berkeley, first presented in 1973
 - P in PSpice stands for personal computer
 - Large parts library
 - Analog and digital circuits
- Matlab/Simulink/SimPowerSystems/PLECS
 - Matlab mathematical tool teamed with specialized toolboxes
 - Simulink/SimPowerSystems
 - PLECS
 - Developed primarily for power electronics

January 12-16, 2009 USPAS Pulsed Power Engineering C Burkhart

Circuit Simulation Tools

- PSIM
 - Developed for power electronics
 - Fast convergence
 - Matlab interface
- Simplorer
 - Developed for power electronics
 - Four modeling languages
 - VHDL-AMS for analog-mixed-signal-design
 - Circuit Simulator for the simulation of power electronic circuits
 - Block diagram simulator for the simulation of controllers and similar tasks
 - State machine simulator for event driven systems
- Saber
 - Developed for a wide range of applications, including power electronics
 - Can handle analog, digital, mixed and event driven devices
 - Can be linked to digital simulations to handle models written in Verilog or VHDL
 - Very powerful/very expensive
- Bertha
 - SNL transmission line-based

January 12-16, 2009 USPAS Pulsed Power Engineering C Burkhart

Power Conversion Solutions for Challenging Problem

8

Pulsed Power Circuit Simulation

- Almost exclusively transient analysis
- Tend to generate sparse, stiff matrices, challenging for convergence
- Tips to improved convergence
 - Simplify the model as much as possible
 - Replace semiconductors with ideal switches or initial conditions
 - Use generic and/or ideal components
 - Insert resistance to ground from areas with convergence troubles
 - Avoid series elements (2 inductors → a single inductor if nothing else connects to the node between)
 - Relax tolerances
 - Avoid small time steps
 - Slow down transitions (e.g. add RC snubber)

Simulation Software Contents

- Typically included in circuit simulation programs are complementary packages.
 - Extensive part libraries for manufacturers
 - Optimization modules
 - PCB layout software
 - Specialized schematic tools
 - Advanced post-processing

• Circuit simulation programs vary with the specific steps to solve a problem, but many share similar steps

- First, simulation directories are created and a graphical schematic interface is opened.
- For Spice simulators, the graphical interface is simply a tool to easily generate Spice netlists.

Typical Work Flow

- Shown is a simple pulsed power circuit. Also shown is the Spice netlist that was generated by the software.
- Initial conditions such as voltage on a capacitor and current through an inductor are input.

- For transient, AC bias, and DC bias simulations, measurement points are typically placed at areas of interest.
- Simulation parameters such as length of simulation, maximum time step, and convergence criteria are set

Typical Work Flow

• Shown is the result in the post-processor. This example is the current through a resistor.

• Parameters such as risetime, maximum, pulsewidth, or rms value can be computed.

Typical Work Flow

• Algebraic expressions using the simulated traces can be calculated

• In this example, the power through the resistor is calculated

Parametric Study

- Parametric sweeps show the circuit response if one or more of the element values is swept through a range of magnitudes.
- In this example, the resistance value is swept.

- Complicated models can be represented as circuit elements using the Analog Behavioral Model (ABM) function.
- In the below example, a voltage controlled current source is used to represent a $30\mu P$ beam load.

January 12-16, 2009

USPAS Pulsed Power Engineering M Kemp

Analog Behavioral Model

- In the below example, a time varying load resistance is modeled using the TIME variable.
- The plot shows the simulated resistance.

