Unit 9 - Lecture 18
 Deviations from the design orbit

William A. Barletta
Director, United States Particle Accelerator School
Dept. of Physics, MIT

Off- momentum particles

\&
Momentum dispersion

IIF Momentum dispersion function of the lattice

粦 Off-momentum particles undergo betatron oscillations about a new class of closed orbits in circular accelerators

类 Orbit displacement arises from dipole fields that establish the ideal trajectory + less effective quadrupole focusing

｜｜｜Start with the equation of motion

粦 We have derived

$$
\frac{d^{2} x}{d s^{2}}-\frac{\rho+x}{\rho^{2}}=-\frac{B_{y}}{(B \rho)}\left(1+\frac{x}{\rho}\right)^{2}
$$

燐 Using $\mathrm{p}=(\mathrm{B} \rho)$

$$
\frac{d^{2} x}{d s^{2}}-\frac{\rho+x}{\rho^{2}}=-\frac{B_{y}}{(B \rho)_{d e s i g n}}\left(1+\frac{x}{\rho}\right)^{2} \frac{p_{o}}{p}
$$

粦 Consider fields that vary linearly with transverse position

$$
B_{y}=B_{o}+B^{\prime} x
$$

＊ 粦 Then neglecting higher order terms in x / ρ we have

$$
\frac{d^{2} x}{d s^{2}}+\left[\frac{1}{\rho^{2}} \frac{2 p_{o}-p}{p}+\frac{B^{\prime}}{(B \rho)_{d e s i g n}} \frac{p_{o}}{p}\right] x=\frac{1}{\rho} \frac{p-p_{o}}{p} \equiv \frac{1}{\rho} \frac{\Delta p}{p}
$$

｜｜｜Equation for the dispersion function

粦 Define $D(x, s)$ such that $x=D(x, s)\left(\Delta p / p_{o}\right)$
类 Look for a closed periodic solution；$D(x, s+L)=D(x, s)$ of the inhomogeneous Hill＇s equation

$$
\frac{d^{2} D}{d s^{2}}+[\underbrace{\frac{1}{\rho^{2}} \frac{2 p_{o}-p}{p}+\frac{B^{\prime}}{(B \rho)_{\text {design }}} \frac{p_{o}}{p}}_{\mathrm{K}(\mathrm{~s})}] D=\frac{1}{\rho} \frac{p_{o}}{p}
$$

粦 For a piecewise linear lattice the general solution is

$$
\binom{D}{D^{\prime}}_{\text {out }}=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right)\binom{D}{D^{\prime}}_{\text {in }}+\binom{e}{f} \quad \text { or } \quad\left(\begin{array}{c}
D \\
D^{\prime} \\
1
\end{array}\right)_{\text {out }}=\left(\begin{array}{lll}
a & b & e \\
c & d & f \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
D \\
D^{\prime} \\
1
\end{array}\right)_{\text {in }}
$$

Iliĩ
 Solution for D

粦 The solution for the homogeneous portion is the same as that for x and x,

粦 The values of M_{13} and M_{23} for ranges of K are
$\left.\left.\begin{array}{ccc}\hline \boldsymbol{K} & \boldsymbol{e} & \boldsymbol{f} \\ \hline \boldsymbol{<} & \frac{e}{p|K|} B_{o}[\cosh (\sqrt{K} \mid l)-1] & \frac{e}{p \sqrt{K K}} B_{o}[\sinh (\sqrt{\mid K} \mid\end{array}\right)\right] \quad$.

IIIT
 What is the shape of D ？

粦 In the drifts $\mathrm{D}^{\prime \prime}=0$
\rightarrow D has a constant slope

粦 For focusing quads， $\mathrm{K}>0$
$\rightarrow \mathrm{D}$ is sinusoidal

粦 For defocusing quads， $\mathrm{K}<0$
\rightarrow D grows（decays）exponentially

粦 In dipoles， $\mathrm{K}_{\mathrm{x}}(\mathrm{s})=\mathrm{G}^{2}$
$\rightarrow D$ is sinusoidal section＂attracted to＂$D=1 / G=\rho$

||| SPEAR-I dispersion

IIIT
 The condition for the achromatic cell

粦 We want to start with zero dispersion and end with zero dispersion

粦 This requires

$$
\begin{aligned}
& I_{a}=\int_{0}^{s} a(s) \frac{d s}{\rho(s)}=0 \\
& \text { and } \\
& I_{b}=\int_{0}^{s} b(s) \frac{d s}{\rho(s)}=0
\end{aligned}
$$

粦 In the DBA this requires adjusting the center quad so that the phase advance through the dipoles is π

｜｜｜Momentum compaction

类 Consider bending by sector magnets
粦 The change in the circumference is

$$
\Delta C=\oint\left(\rho+D \frac{\Delta p}{p_{o}}\right) d \theta-\oint \rho d \theta
$$

＊Therefore

$$
\frac{\Delta C}{C}=\frac{\oint(D / \rho) d s}{\oint d s} \frac{\Delta p}{p_{o}}=\left\langle\frac{D}{\rho}\right\rangle \frac{\Delta p}{p_{o}} \quad \text { or } \quad \alpha \equiv\left\langle\frac{D}{\rho}\right\rangle=\frac{1}{\gamma_{t}}
$$

粦 For simple lattices $\gamma_{t} \sim Q \sim$ number of cells of an AG lattice

11P－Total beam size due to betatron oscillations plus momentum spread．

粦 Displacement from the ideal trajectory of a particle
\rightarrow First term＝increment to closed orbit from off－momentum particles
\rightarrow Second term $=$ free oscillation about the closed orbit

$$
x_{\text {total }}=D \frac{\Delta p}{p_{o}}+x_{\beta}
$$

米 Average the square of $x_{\text {total }}$ to obtain the rms displacement

$$
\sigma_{x}^{2}(s)=\frac{\varepsilon \beta(s)}{\pi}+D^{2}(s)\left\langle\left(\frac{\Delta p}{p_{o}}\right)^{2}\right\rangle
$$

粦 \therefore in a collider，design for $D=0$ in the interaction region

III
 Chromatic aberrations

粦 The focusing strength of a quadrupole depends on the momentum of the particle

$$
1 / f \propto 1 / p
$$

粦＝＝＞Off－momentum particles oscillate around a chromatic closed orbit NOT the design orbit

粦 Deviation from the design orbit varies linearly as

$$
x_{D}=D(s) \frac{\Delta p}{p}
$$

类 The tune depends on the momentum deviation
\rightarrow Expressed as the chromaticity ξ

$$
Q_{x}^{\prime}=\frac{\Delta Q}{\Delta p / p_{o}} \text { or } \xi_{\mathrm{x}}=\frac{\Delta Q_{x} / Q_{x}}{\Delta p / p_{o}} \quad Q_{y}^{\prime}=\frac{\Delta Q}{\Delta p / p_{o}} \quad \text { or } \xi_{\mathrm{x}}=\frac{\Delta Q_{y} / Q_{y}}{\Delta p / p_{o}}
$$

IIIIT initial

Chromatic aberration in muon collider ring

|| Chromatic closed orbit

粦 The uncorrected, "natural" chromaticity is negative \& can lead to a large tune spread and consequent instabilities
\rightarrow Correction with sextupole magnets

$$
\xi_{\text {natural }}=-\frac{1}{4 \pi} \oint \beta(s) K(s) d s \approx-1.3 Q
$$

US Particl e Accel er ator School

Iliit
 Measurement of chromaticity

粦 Steer the beam to a different mean radius \& different momentum by changing rf frequency, $f_{a}, \&$ measure Q

$$
\Delta f_{a}=f_{a} \eta \frac{\Delta p}{p} \quad \text { and } \quad \Delta r=D_{a v} \frac{\Delta p}{p}
$$

粼 Since $\Delta Q=\xi \frac{\Delta p}{p}$

$$
\therefore \xi=f_{a} \eta \frac{d Q}{d f_{a}}
$$

Iliī
 Chromaticity correction with sextupoles

｜｜｜｜Sextupole correctors

粦 Placing sextupoles where the betatron function is large， allows weak sextupoles to have a large effect

粦 Sextupoles near F quadrupoles where β_{x} is large affect mainly horizontal chromaticity

粦 Sextupoles near D quadrupoles where β_{y} is large affect mainly horizontal chromaticity

｜｜｜｜i Coupling

粦 Rotated quadrupoles \＆misalignments can couple the motion in the horizontal \＆vertical planes

粦 A small rotation can be regarded a normal quadrupole followed by a weaker quad rotated by 45°

$$
B_{s, x}=\frac{\partial B_{x}}{\partial y} x \quad \text { and } \quad B_{s, y}=\frac{\partial B_{y}}{\partial x} y
$$

\rightarrow This leads to a vertical deflection due to a horizontal displacement
粦 Without such effects $D_{y}=0$
类 In electron rings vertical emittance is caused mainly by coupling or vertical dispersion

Field errors \& Resonances

Ilī
 Integer Resonances

粦 Imperfections in dipole guide fields perturb the particle orbits
\rightarrow Can be caused by off－axis quadrupoles

粦＝＝＞Unbounded displacement if the perturbation is periodic

粦 The motion is periodic when

$$
m Q_{x}+n Q_{y}=r
$$

$M, n, \& r$ are small integers

\｜｜｜Effect of steering errors

类 The design orbit $(\mathrm{x}=0)$ is no longer a possible trajectory
粦 Small errors＝＞a new closed orbit for particles of the nominal energy

米 Say that a single magnet at $s=0$ causes an orbit error θ

$$
\theta=\Delta B l /(B \rho)
$$

粦 Determine the new closed orbit

IIF After the steering impulse, the particle oscillates about the design orbit

粦 At $\mathrm{s}=0^{+}$, the orbit is specified by $\left(\mathrm{x}_{\mathrm{o}}, \mathrm{x}_{\mathrm{o}}{ }^{\prime}\right)$
粦 Propagate this around the ring to $s=0^{-}$using the transport matrix \& close the orbit using $(0, \theta)$

$$
\mathbf{M}\binom{x_{o}}{x_{o}^{\prime}}+\binom{0}{\theta}=\binom{x_{o}}{x_{o}^{\prime}}
$$

specifies the new closed orbit

$$
\binom{x_{o}}{x_{o}^{\prime}}=(\mathbf{I}-\mathbf{M})^{-1}\binom{0}{\theta}
$$

｜｜｜Recast this equation

类 $\operatorname{As}(\Delta \phi)_{\text {ring }}=Q, \mathbf{M}$ can be written as

$$
\mathbf{M}_{\text {ring }}=\left(\begin{array}{cc}
\cos (2 \pi Q)+\alpha \sin (2 \pi Q), & \beta \sin (2 \pi Q) \\
-\gamma \sin (2 \pi Q), & \cos (2 \pi Q)-\alpha \sin (2 \pi Q)
\end{array}\right)
$$

粦 After some manipulation（see Syphers or Sands）

$$
x(s)=\frac{\theta \beta^{1 / 2}(s) \beta^{1 / 2}(0)}{2 \sin \pi Q} \cos (\phi(s)-\pi Q)
$$

業 As Q approaches an integer value，the orbit will grow without bound

｜｜｜The tune diagram

粦 The operating point of the lattice in the horizontal and vertical planes is displayed on the tune diagram

粦 The lines satisfy

$$
m Q_{x}+n Q_{y}=r
$$

$M, n, \& r$ are small integers
粦 Operating on such a line leads to resonant perturbation of the beam

粦 Smaller $m, n, \& r=>$
stronger resonances

IIT Example：

Quadrupole displacement in the Tevatron

粦 Say a quad is horizontally displaced by an amount δ
\rightarrow Steering error，$\Delta \mathrm{x}^{\prime}=\delta / F$ where F is the focal length of the quad
粦 For Tevatron quads $F \approx 25 \mathrm{~m} \& Q=19.4$ ．Say we can align the quads to the center line by an rms value 0.5 mm
\rightarrow For $\delta=0.5 \mathrm{~mm}==>\theta=20 \mu \mathrm{rad}$
\rightarrow If $\beta=100 \mathrm{~m}$ at the quad，the maximum closed orbit distortion is

$$
\Delta \hat{x}_{\text {quad }}=\frac{20 \mu \mathrm{rad} \cdot 100 \mathrm{~m}}{2 \sin (19.4 \pi)}=1 \mathrm{~mm}
$$

粦 The Tevatron has ~ 100 quadrupoles．By superposition

$$
\langle\Delta \hat{x}\rangle=N_{\text {quad }}^{1 / 2} \Delta \hat{x}_{\text {quad }}=10 \mathrm{~mm} \text { for our example }
$$

Steering correctors are essential！

||| Effect of field gradient errors

粦 Let

$$
K_{\text {actual }}(s)=K_{\text {design }}(s)+k(s)
$$

where $\mathrm{k}(\mathrm{s})$ is a small imperfection

$$
k(s)=>\text { change in } \beta(s) \Rightarrow \Delta Q
$$

粦 Consider k to be non-zero in a small region Δ at $s=0$

$$
==>\text { angular kick } \Delta y^{\prime} \sim y
$$

||F Sinusoidal approximation of betatron motion

粦 Before $\mathrm{s}=0^{-}$

$$
\begin{equation*}
y=b \cos \frac{s}{\beta_{n}} \tag{2}
\end{equation*}
$$

米 At $\mathrm{s}=0^{+}$the new (perturbed) trajectory will be

$$
y=(b+\Delta b) \cos \left(\frac{s}{\beta_{n}}+\Delta \phi\right)
$$

where

$$
\frac{b+\Delta b}{\beta_{n}} \sin \phi=\Delta y^{\prime}
$$

｜｜｜｜Sinusoidal approximation cont＇d

粦 If Δy^{\prime} is small，then Δb and $\Delta \phi$ will also be small

$$
=\Rightarrow \quad \Delta \phi \approx \frac{\beta_{n} \Delta y^{\prime}}{b}
$$

粦 Total phase shift is $2 \pi \mathrm{Q}$ ；the tune shift is

$$
\text { (1) \& (2) } \Rightarrow \Delta \phi \approx \beta_{n} k \Delta s \propto \text { phase shift }
$$

粦 Principle effect of the gradient error is to shift the phase by $\Delta \phi$

$$
\Delta Q \approx-\frac{\Delta \phi}{2 \pi}=-\beta_{n} \frac{k \Delta s}{2 \pi}
$$

The total phase advanced has been reduced

IIIT
 This result overestimates the shift

粦 The calculation assumes a special case：$\phi_{o}=0$
\rightarrow The particle arrives at $\mathrm{s}=0$ at the maximum of its oscillation
粦 More generally for $\phi_{o} \neq 0$
\rightarrow The shift is reduced by a factor $\cos ^{2} \phi_{o}$
\rightarrow The shift depends on the local value of β
类 On successive turns the value of ϕ will change
米 \therefore the cumulative tune shift is reduced by $\left\langle\cos ^{2} \phi_{o}\right\rangle=1 / 2$

粦＝＝＞

$$
\Delta Q=-\frac{1}{4 \pi} \beta(s)(k \Delta s)
$$

\｜IF Gradient errors lead to half－integer resonances

粦 For distributed errors

$$
\Delta Q=-\frac{1}{4 \pi} \oint \beta(s) k(s) d s
$$

粦 Note that $\beta \sim K^{-1 / 2}=\Rightarrow Q \propto 1 / \beta \propto K^{1 / 2}$
米 $\therefore \Delta Q \propto k \beta==\Delta Q / Q \propto k \beta^{2} \propto k / K$（relative gradient error）
粦 $\operatorname{Or} \Delta Q \sim Q\left(\Delta B^{\prime} / B^{\prime}\right)$

米 Machines will large Q are more susceptible to resonant beam loss

> Therefore, prefer lower tune

||| Tune shifts \& spreads

类 Causes of tune shifts
\rightarrow Field errors
\rightarrow Intensity dependent forces

- Space charge
- Beam-beam effects

業 Causes of tune spread
\rightarrow Dispersion
\rightarrow Non-linear fields

- Sextupoles
\rightarrow Intensity dependent forces
- Space charge
- Beam-beam effects

Iliī
 Example for the RHIC collider

\|\| Stopbands in the tune diagram

Think of the resonance lines as having a width that depends on the strength of the effective field error

Also the operation point has a finite extent

Resonances drive the beam into the machine aperture

｜｜｜F In real rings，aperture may not be limited by the vacuum chamber size

粦 Resonances can capture particles with large amplitude orbits \＆bring them in collision with the vacuum chamber
＝＝＞＂virtual＂or dynamic aperture for the machine
粦 Strongly non－linearity＝＝＞

粦 Momentum acceptance is limited by the size of the RF bucket or by the dynamic aperture for the off－ momentum particles．
\rightarrow In dispersive regions off－energy particles can hit the dynamic aperture of the ring even if Δp is still within the limits of the RF acceptance

