

Unit 8 - Lecture 17 Building blocks of storage rings

William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT

Dipole magnets to bend the beam

∦ In practical units

$$\frac{1}{\rho} [m^{-1}] = 0.2998 \frac{B_o[T]}{\beta_{rel} E[GeV]}$$
$$\frac{L_{dipole}}{\rho} = \vartheta_{bend}$$

$$I_{total}(Amp - turns) = \frac{1}{0.4\pi} B_{\perp}(Gauss) \ G(cm)$$

For a Quadrupole with length l & with gradient B'

$$\alpha = \frac{\sqrt{q}}{\beta E} \frac{B' x l}{\beta E} = - k$$
 For Z = 1 $k [m^{-2}] = 0.2998 \frac{B' [T/m]}{\beta E [GeV]}$

$$B'\left[\frac{\mathrm{T}}{\mathrm{m}}\right] = 2.51 \frac{NI \left[\mathrm{A} - \mathrm{turns}\right]}{\mathrm{R} \left[\mathrm{mm}^2\right]}$$

Magnet input screens

edit beam line element:

running index	1		next element
drift space	Name		previous element
ID	1		insert element
path length	0.25000	m	delete element
			cancel
			🖌 accept data
pnMType			

edit beam line element:

edit beam line element:

running index	2		running index	3	
sector magnet	Name	1	foc. quadrupole	Name	
ID	12		ID	20	
path length	0.25000	m	path length	0.25000	m
curvature	0.10000	1/m	quadrupole strength	1.00000	1/m^2
gradient strength	0.00000	1/m^2			
pole face angles: Ain/Aout(rad) radian 💌	0.00000	0.00000			
full magnet gap	0.00000	cm			
deflection angle	1.43239	degrees			
C rect.Magnet C wedge Ma	gnet		🗭 foc.quadrupole 🕜 defoc. quadrupole	vary/	scroll quad strength

FODO transport channel

For stability
$$\sin \frac{\mu}{2} = \frac{L}{2f} \implies f > L/2$$

℁ The (symmetric) FODO transport matrix is

$$\mathbf{M}_{FODO} = \begin{bmatrix} 1 - 2\frac{L^2}{f^2} & 2L \cdot \left(1 + \frac{L}{f}\right) \\ -\frac{1}{f^*} & 1 - 2\frac{L^2}{f^2} \end{bmatrix} = \begin{bmatrix} \cos\varphi & \beta\sin\varphi \\ \frac{1}{\beta} & \cos\varphi \end{bmatrix}$$

Where

 $\frac{1}{f^*} = 2 \cdot \left(1 - \frac{L}{f}\right) \cdot \left(\frac{L}{f^2}\right) \text{ and } \varphi = \text{betatron phase advance}$

$$# \text{Let } \kappa = f/L$$

$$\cos\varphi = 1 - 2\frac{L^2}{f^2} = \frac{\kappa^2 - 2}{\kappa^2} \quad \text{or} \quad \sin\frac{\varphi}{2} = \frac{1}{\kappa}$$

More generally for a lens of finite length

* The solution is that of a simple harmonic oscillator

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{out} = \begin{pmatrix} \cos \Theta & \frac{1}{\sqrt{K}} \sin \Theta \\ \sqrt{K} \sin \Theta & \cos \Theta \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{out} \quad \text{where} \quad \Theta = \sqrt{K} \ l$$

For K < 0 the solution is

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{out} = \begin{pmatrix} \cosh \Theta & \frac{1}{\sqrt{|K|}} \sinh \Theta \\ \sqrt{|K|} \sinh \Theta & \cosh \Theta \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{out} \quad \text{with} \quad \Theta = \sqrt{|K|} \ l$$

***** For the thin lens, let *l*→0 keeping *Kl* finite and $\rightarrow 1/f$

12-fold symmetric 1 GeV FODO ring

fRF Rf-system energy scan graph	s phase space rf-potential		
f voltage, kV 1000.000 f power, kW 200.000 energy loss/turn = 13.895 addl. energy loss/turn [keV	rf frequency = 500.27866 MHz harmonic number = 267.000 keV] 0.0	change beam parameter ? momentum cp , GeV 1.000 beam current, mA 100.000	energy acceptance, % = 0.646 over voltage factor = 71.97 phase = 179.204 deg synchrotron frequency, kHz = 91.250 rms bunch length, mm = 9.398
	Cavity Impedance © scaled cavity impedance Cavity material © copper © aluminum Shunt impedance is defined by Fe tot. cavity voltage = 1000.000 kVo tot.available rf-power = 200.000 kVo	© select Impedance bx shunt impedance lance = 28.630 MOhm/m ng impedance = 8.578 MOhm t_s = V*V/P olt cW	

Longitudinal phase space

The bend magnet can be in the drift: 1/12th of 10 GeV DESY ring

DESY ring parameters

Storage Ring Parameters

<pre>particle =</pre>	electron	
<pre>particle momentum, cp = gamma = beam current = ring circumference,C = energy loss/turn = tot. radiation power = horiz.damping time = synchrotron damping time =</pre>	10.000 GeV 19569.34144 100.000 mA 288.24000 m 32.618 MeV 3.262 MW 309.458 usec 294.764 usec 143.964 usec	ring geometry # of superperiods 12 (full ring: 12 cells) ring circumference = 288.240 m revolution frequency = 1.04008 MHz rf frequency, MHz 500.27814 harmonic number is 481.000 now total defl.angle is 360.000 deg perfect ring with integer harmonic number!
 <pre>betatron tunes,0_x= 0_y= natural chromaticity,xi_xo= xi_yo= corrected chromaticity,xi_x= xi_y=</pre>	6.08396 5.92782 -7.03662 -7.17701 0.00000 0.00000	✓ study full ring? ✓ study superperiod?

US Particle Accelerator School

Example of synchrotron complex: ELSA

Achromatic Transport Cells

Figure 5.5 A simple achromatic system consisting of two bending magnets separated by a horizontally focusing quadrupole.

Why use achromats?

- We may want to deliver the beam to a region with no residual dispersion (energy dependent orbit displacement)
 - → Interaction regions in colliders
 - → Insertion devices in storage rings
- * For circulating electron beams we may want a very low emittance
 - → Synchrotron light sources
- ₭ We would like many long straight sections
- ₭ Hence the low-emittance Chasman-Green lattice (1975)
 - → Basis is Double Bend Achromat (Panofsky, 1965)

Storage ring building blocks: Double Bend Achromat

12 of the cells make a 2 GeV electron ring

With a tune in a dangerous position

The longitudinal phase space is

