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Unit 8 - Lecture 16
Motion in synchrotrons
&

storage rings

William A. Barletta

Director, United States Particle Accelerator School
Dept. of Physics, MIT
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|| |i '|- Deriving the equation of motion ™ 4
** **

Consider motion in the horizontal plane along the s direction

* Recall that for a particle passing through a B field with
gradient B' the slope of the trajectory changes by

B B’ B’
M’=_§=_Ase_y=_Ase yx=—As »t
P p p (Bp)
or Ax’ B’
As (Bp)
k h I " B),) O
* Taking the limitas As=0, |[x + X =
’ (Bp)

This missed the effects of dipole focusing
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Il Let’s do this more carefully, step-by-step ol }

R=rXx+yy wherer=p+x

§
Reference trajectory

I
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Assume B, = 0; then

The equation of motion is

dp _ d(ymv)
dt  dt

=eVxB

The magnetic field cannot change vy

@=ym1"{=eva
dt

where

vxB= (—vsByf( +v By +(v.B, - vyBx)§)




g ) ) ] * *
IlII° Express R in orbit coordinates K
** **

R=%(r§+y§7)=f§+r§+y§'

Ax= A0S ) A © A S
N7 With x=60S§ where 6=—*

X r
* R=7iX+(270+r0)s+r6s+ 7y

N s | Since §=-6%
R=(-r0)X+ Qi0+ro)s + yy

Recall that vxB = (—vSByf( +v.By+(v.B, - vyBx)é)

d v .B V2B
4P _ B _ 0=y 5Ty
“(dt)x ()/mR)x (evxB) = |( ) m —

US PARTICLE ACCELERATOR SCHOOL




*
— : ** **
11 In paraxial beams v>>v,>>v X
S X y 5 -
* %
. B ’B °B . .
(i —r0%) = — M T RO Change the independent variable to s
ym ymy P
\ d dsd
\ dt dr ds
- “\ : d’s
A | - UsAE=1A8 Assuming that — =0 =
A8 o dt
P ! 4 (djzdz ( ,jzdz
! 2 - > = \VsT ) T2
S — ! paticle dt dt) ds r) ds
orbit I trajectory
,’ Note that r=p +x

ds = pdf =v dt?
r

dzx_p+x B, 1+£2
s’ p°  (Bp)
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N - . | _ - g o
I' ||| This general equation is non-linear * p
** **

* Simplify by restricting analysis to fields that are linear in x
and y

— Perfect dipoles & perfect quadrupoles

* Recall the description of quadrupoles

0
;% +/@/+£+/% y
X (X P ayyy

% Curl B = 0 ==> the mixed partial derivatives are equal ==>

B-= BX+By (

x| 1 1 dB,(s)
d2+ 2 A
s |p® (Bp) ox

I
-
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*

1 equation that we wrote by inspection «

* %

II I-- The linearized equation matches the Hill’s :* "

* A similar analysis can be done for motion in the vertical
plane

* The centripital terms will be absent as unless there are
(unusual) bends in the vertical plane

x,,_(k(s)_ 12)x= 1 Ap
p(s) p(s) p
y'+k(s)y=0

% We will look at two methods of solution
—> Piecewise linear solutions
—> Closed form solutions
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= == ) ) _ * *
|I |" The method of piecewise solutions KL
*‘* **

% Harmonic oscillator with a position dependent spring
constant

x"+K(s)x =0

* Inside a given magnetic element K(s) is a constant
(isomagnetic approximation)

A K(S)

% ==> Use simple harmonic oscillator solutions for each
element and piece together the solutions at the interfaces
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|||i|- Piecewise solutions ik *
R

% There are only 3 cases to consider
1. K=0
2. K>0
3. K<0

% Case 1: the transport of a beam through a drift space |

X 1 1\ (x, X =Xx,+ Ix,
= =
x') \0 1)\xy) x'=x,
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* *
* *
** **

% Compute AX' by integrating Hill” equation through the lens

—f[i@+lfx]ds = Ax'=-KxAs

* From the figure KAs = 1/f ==>

1 0
Mlens =
“1/f 1
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11 More generally for a lens of finite length h :l

% The solution is that of a simple harmonic oscillator

X cos © Lsin Of(x
( ,) VK ( ,) where © =+/K |
X

4 \/E sin ©® cos ®

% For K < 0 the solution iIs

( 1 \
cosh ® —— sinh ®
(x,) - JK] (x) with © =.[[K]
*ou \1/|K| sinh © cosh® | *ou

* For the thin lens, let =0 keeping Kl finite and —1/f
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_ _ _ ] ) e 4
|I |i |' Piecewise solution for the entire ring " -
* %

% Suppose the ring is made of a number, m, of piecewise
modules each described by M,

% Then the transport through the ring is described by

M=M_M_..M, .

i

\S M.
1

Xout = M Xin /
% Subject to the stability condition ™ Zf

-1<1/2Trace M <1

\oL2

M
* Recall that Trace M = 2 cos u M.

where u = phase advance per cell k X

M1 M

2
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N . * *
Il || | Exercise: FODO transport channel et
* *

«——J—r¢t—(d—P>¢— (g —d— (g —>

voa v Ay

f f

N )
e

FODO cell

Show that for stability sing = % = f>L/2

Hint: compute for single FODO cell
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II I- = Both equations of motion have the e g *
Il same general form *, L%
% Harmonic oscillator with a position dependent spring
constant ec dB
x"+K(s)x =0| where K(s) = e K(s+L)
o Ay

% We can guess that the solution will have the general form

x = A(s)cos(@(s) + @, )

where A(S) and ¢(s) are non-linear functions of s with the
same periodicity as the lattice

* Rewrite A(s) as in terms of a function [ and a constant ¢

x =+/B(s)ecos(@(s) + @,)
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|| |i|" Insert the trial solution into Hill’s equation: }

% The derivatives of x are

X' = =) ¢'()sinfq(s) + @, ]+ (’5 (S))w/ o eolo o]

2

x" = =\[ef(s) (¢'(5)) cos[@(s) + @, ] - [eB(s) @"(s)sin[e(s) + @, ]

_ (/” ;”)1 | ﬁfs)com sin[(s) + ]
- (/3 ;S))W/ ﬁfs)co%s) sin[q(s) + @, ] - ((ﬁlf)) ]1/ /338(5) cos| ¢(s) + @,

+ (/3"(5)) [58 COS[QO(S) + cpo]




|||i|- To obtain... N1
** **

X"+ K(5)x = —eB(s) (¢'(5))’ cos[p(s) + @, ] -

([J";S)) ) ’[338(5) cos[(p(S) + (,00]

2

- B(s), /%cpm sin[@(s) + @, ] - /eB(s) @"(s)sin[q(s) + @, ]

=0
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*

I|I-- For Hill’s equation to hold, coefficients of :* S
1l sin & cos must both equal zero . M,

* %

0 = —/ef(s) @"(s)sin[p(s) + @, |- 2([5’;))1 / ﬁfs) @'(s)sin[@(s) + ¢, ]

" ' 1 / _ / — 1
=>CP(S)+/3(S)m(P(S) =0 = (p(s)_/ﬁ(s)

x'=- ‘ /% sin[qo(s) + qpo] + ([5;3))1 / [a’fs) COS[CD(S) + %]




W Now consider the cos term "2 =
** **
) v (B[ e (/3"(@) ¢ )
\EB(S) (¢'(s)) ( 1 50s) 1 5 + K(5)4/ep(s) =0
—
- Bs)@'())’ —((/3 (45)) )ﬁ@ +(ﬁ Z(S))+K(S)/3(s) =0 where ¢'(s) = %,(S)
=
—% —((ﬁ (4S)) )ﬁ(ls) + (ﬁ 2(S)) +K(s)B(s)=0
=
'8 B” P KB =1 Beam envelope
) 4 equation
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= ) ] 3 e
|I |" The solutions ==> Phase space ellipse XL
** **

* Where f'(s)=0 7
x = JBecos(@()+ ¢,)

L T =0
x' = _ /ﬁ% sin[@(s) + @, | + (/3 ;S) ((gs) cos| @(s) + @, |
A X,
&
B(s)

S~

% The area sz¢ IS a an invariant of the motion
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III._ Particles with different € have * =
. , x* e
Il gifferent ellipses *, L%

We return to our original picture of the phase space ellipse &
the emittance of a set of (quasi-) harmonic oscillators
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*

Il I. = \We see that € characterizes the beam while * *u

*

B(s) characterizes the machine optics x

* *
* PB(s) sets the physical aperture of the accelerator because

the beam size scalesas o (s) = /.. (s)
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= i i * *
I§1 Betatron oscillations X
* *
* %
% We can consider 3(s) to be the local wavelength of the
transverse oscillations
x = /B(s)e cos(p(s) + @,)
% For a constant gradient machine (s) = constant.
=> The particle with maximum excursion has initial phase ¢.;
— After 1 turn, the particle will have a change in phase
ds 2nR
Ap=gp-@,=P¢ ds=P— ="
9=0-9,=Pg 5= 5
= [t will have been around the phase ellipse 2n/A¢ times
. : Ap R
% The number of such betatron oscillations per turn is Q=£ ]

It will be important that Q # m/n with m or n small
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I| I- = | ook again at the closed solutions for :* *
Il periodic transport .

* Linear motion from points 1 to 2 is described by a matrix:

o R B R B

% We found that
y =/B(s)e cos(p(s) + @, )

and y'=- /% sin[@(s) + @, | + (ﬁ;s)) ‘/ﬁ(gs) cos| (s) + @, |

* Trace two rays: ¢, = 0 and ¢, = n/2 to generate equations
fora,b,c, &d




g _ _ * *
1§ Solving for the matrix elements... 141
** **

¥ Intermsof ¢ = ¢, — ¢, and w = /B

W)

—= COS ¢ —Wowy SIn @ WiW, Sin @
M i
2= 1 + W1W1W2W2 . Wl W2 Wl o,
= sSin —|——-—=| coOSQ , — COS @+ wWw, sin ¢
wiw, Wy W L)

% In one period

w=w,=w,w=w,=w, u=¢,-¢ =210

* And M, reduces to

Cos U —ww'sin u , w? sin u

M = 1+wzw2 : |
— sin 4, COS U +ww' sin u

W2
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* Which yields the matrix for period (or ring)

coS U+ asin U , fsin u

—y sin U,

period =

CoS U—-0o sin U

where u Is the phase advance
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- ] ] ] * *
IHli1 Physical meaning of Twiss parameters ~ *  +
** **
A
y|
-0V ely
<<

eY

~

Y'max =
Ve/p
(—J -0V e/

\ ely

N

ymax -
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(N i * *
I§1 Phase advance around the ring T
** **
* As the beam moves along the ring its betatron phase will
change by
Ap =g, -g, =Sf<;0’ds= [
\ , PGs)
* In asingle turn
, d
AQ=q-@,=Pg ds= FS
% Define the betatron tune as
1 ds
Clorm= 2 §ﬁ p(s)
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|| |i|- Betatron tune gt
** **

* Tune is the number of oscillations that a particle makes
about the design trajectory

On-momentum

particle trajectory




IHli1" Average description of the motion { }
* *

% Define an average betatron number for the ring by

B, L

= and 3, =2mo A,

1 lgﬁ ds 2J'EQ
pls) L

% The “gross radius” R of the ring is defined by
2tR =L

* “Good” values for 3,

= Small 3, ==> small vacuum pipe but large tune

= In interaction regions Small 3, raises luminosity, £
=> For undulators choose 3, =2 L,

=> Field errors ==> displacements ~ 3,
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11 Beam emittance & physical aperture { }
* *

* In electron & most proton storage rings, the transverse
distribution of particles is Gaussian

n(r)rdrdf = I > e " drd® for a round beam
2m0o

% For a beam in equilibrium, n(x) is stationary in t at fixed s

* The fraction of particles F within a radius a is

27 a

F=f [nrdrdo= e rdr=a’ =-20"In(1- F)
0 0 0O
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II |i|- Values of ‘F associated with € definitions

o F(%)
2
O /[3 Electron community
ol 39
Aol 87
Proton community
6no?/p 9

Proton community

Not surprisingly, 12 o is typically chosen as a vacuum pipe radius
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H - * *
IHlI1" Measuring the tune N

* Measurement of Q by kicking
— Fire a kicker magnet with a pulse lasting less than one turn

= Observe oscillations of centre of charge as it passes a pick-up on
sequential turns

A
__..| l-—-— Period of revolution (1 turn)

Envelope - x, sin 2nAQft

AN
NI

QO = integer + 1/6

Signal from beam position monitor

c
()]
L
>
a
.
n
r
m
>
n
n
m
r
m
x
>
-
0o
x
0
n
I
(o]
0o
r



II1 Measurement of Q by kicking -1
‘ﬁ’* **

* A beam consisting of one short bunch is a Fourier series

p(t) =Y a, sin2mnf, 1)

% The pick-up sees the oscillation y(t) =y, cos 2xf,Qt
modulated by p(t)

P(1)y(t) = %Eanyo[sinln(n +Q)f t+sin2x(n - Q)fot]

n

* The signal envelope is the slowest term in which (n-Q) is
the fractional part of Q

% The other terms In the series reconstruct the spikes in the
signal occurring once per turn.
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