Unit 8 - Lecture 16 Motion in synchrotrons
 \& storage rings

William A. Barletta
Director, United States Particle Accelerator School
Dept. of Physics, MIT

||| Deriving the equation of motion

Consider motion in the horizontal plane along the s direction
粦 Recall that for a particle passing through a B field with gradient B^{\prime} the slope of the trajectory changes by

$$
\Delta x^{\prime}=-\frac{\Delta s}{\rho}=-\Delta s \frac{e B_{y}}{p}=-\Delta s \frac{e B_{y}^{\prime} x}{p}=-\Delta s \frac{B_{y}^{\prime} x}{(B \rho)}
$$

Or

$$
\frac{\Delta x^{\prime}}{\Delta s}=-\frac{B_{y}^{\prime}}{(B \rho)} x
$$

粦 Taking the limit as $\Delta \mathrm{s} \rightarrow 0$,

$$
x^{\prime \prime}+\frac{B_{y}^{\prime}}{(B \rho)} x=0
$$

This missed the effects of dipole focusing

|||| Let's do this more carefully, step-by-step

$\mathbf{R}=r \hat{\mathbf{x}}+y \hat{\mathbf{y}} \quad$ where $r \equiv \rho+x$

Assume $\mathrm{B}_{\mathrm{s}}=0$; then
The equation of motion is

$$
\frac{d \mathbf{p}}{d t}=\frac{d(\gamma m \mathbf{v})}{d t}=e \mathbf{v} \times \mathbf{B}
$$

The magnetic field cannot change γ

$$
\therefore \quad \frac{d \mathbf{p}}{d t}=\gamma m \ddot{\mathbf{R}}=e \mathbf{v} \times \mathbf{B}
$$

where

$$
\mathbf{v} \times \mathbf{B}=\left(-v_{s} B_{y} \hat{\mathbf{x}}+v_{s} B_{x} \hat{\mathbf{y}}+\left(v_{x} B_{y}-v_{y} B_{x}\right) \hat{\mathbf{s}}\right)
$$

||| Express R in orbit coordinates

$$
\dot{\mathbf{R}}=\frac{d}{d t}(r \hat{\mathbf{x}}+y \hat{\mathbf{y}})=\dot{r} \hat{\mathbf{x}}+r \dot{\hat{\mathbf{x}}}+\dot{y} \hat{\mathbf{y}}
$$

With $\quad \dot{\hat{\mathbf{x}}}=\dot{\theta} \hat{\mathbf{s}} \quad$ where $\dot{\theta}=\frac{v_{s}}{r}$

$$
\ddot{\mathbf{R}}=\ddot{r} \hat{\mathbf{x}}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\mathbf{s}}+r \ddot{\theta} \dot{\hat{\mathbf{s}}}+\ddot{y} \hat{\mathbf{y}}
$$

Since $\dot{\hat{\mathbf{s}}}=-\dot{\theta} \hat{\mathbf{x}}$

$$
\ddot{\mathbf{R}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{\mathbf{x}}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\mathbf{s}}+\ddot{y} \hat{\mathbf{y}}
$$

Recall that $\quad \mathbf{v} \times \mathbf{B}=\left(-v_{s} B_{y} \hat{\mathbf{x}}+v_{s} B_{x} \hat{\mathbf{y}}+\left(v_{x} B_{y}-v_{y} B_{x}\right) \hat{\mathbf{s}}\right)$

$$
\therefore\left(\frac{d \mathbf{p}}{d t}\right)_{x}=(\gamma m \ddot{\mathbf{R}})_{x}=(e \mathbf{v} \times \mathbf{B})_{x} \Rightarrow \quad\left(\ddot{r}-r \dot{\theta}^{2}\right)=-\frac{v_{s} B_{y}}{\gamma m}=-\frac{v_{s}^{2} B_{y}}{\gamma m v_{s}}
$$

|||| In paraxial beams $\mathrm{v}_{\mathrm{s}} \gg \mathrm{v}_{\mathrm{x}} \gg \mathrm{v}_{\mathrm{y}}$

$$
d s=\rho d \theta=v_{s} d t \frac{\rho}{r}
$$

Change the independent variable to s

$$
\frac{d}{d t}=\frac{d s}{d t} \frac{d}{d s}
$$

Assuming that $\frac{d^{2} s}{d t^{2}}=0 \quad \Rightarrow$
$\frac{d^{2}}{d t^{2}}=\left(\frac{d s}{d t}\right)^{2} \frac{d^{2}}{d s^{2}}=\left(v_{s} \frac{\rho}{r}\right)^{2} \frac{d^{2}}{d s^{2}}$

Note that $\quad r=\rho+x$

$$
\frac{d^{2} x}{d s^{2}}-\frac{\rho+x}{\rho^{2}}=-\frac{B_{y}}{(B \rho)}\left(1+\frac{x}{\rho}\right)^{2}
$$

｜｜｜｜This general equation is non－linear

粦 Simplify by restricting analysis to fields that are linear in x and y
\rightarrow Perfect dipoles \＆perfect quadrupoles
粦 Recall the description of quadrupoles

$$
\mathbf{B}=B_{x} \hat{\mathbf{x}}+B_{y} \hat{\mathbf{y}}=\left(B_{y}(0,0)+\frac{\partial B_{x}}{\partial y} y+\frac{\partial B_{x}}{\partial x} x\right)^{0} \hat{\mathbf{x}}+\left(B_{y}(0,0)+\frac{\partial B_{y}}{\partial x} x+\frac{\partial B_{y}^{\prime}}{\partial y} y\right) \hat{\mathbf{y}}
$$

粦 $\operatorname{Curl} \mathrm{B}=0==>$ the mixed partial derivatives are equal $==>$

$$
\frac{d^{2} x}{d s^{2}}+\left[\frac{1}{\rho^{2}}+\frac{1}{(B \rho)} \frac{\partial B_{y}(s)}{\partial x}\right] x=0
$$

IIT The linearized equation matches the Hill＇s equation that we wrote by inspection

粦 A similar analysis can be done for motion in the vertical plane

粦 The centripital terms will be absent as unless there are （unusual）bends in the vertical plane

$$
\begin{aligned}
x^{\prime \prime}-\left(k(s)-\frac{1}{\rho(s)^{2}}\right) x & =\frac{1}{\rho(s)} \frac{\Delta p}{p} \\
y^{\prime \prime}+k(s) y & =0
\end{aligned}
$$

粦 We will look at two methods of solution
\rightarrow Piecewise linear solutions
\rightarrow Closed form solutions

｜｜｜The method of piecewise solutions

粦 Harmonic oscillator with a position dependent spring constant

$$
x^{\prime \prime}+K(s) x=0
$$

米 Inside a given magnetic element $\mathrm{K}(\mathrm{s})$ is a constant （isomagnetic approximation）

粦＝＝＞Use simple harmonic oscillator solutions for each element and piece together the solutions at the interfaces

Iliit
 Piecewise solutions

粦 There are only 3 cases to consider

1. $\mathrm{K}=0$
2. $K>0$
3. $\mathrm{K}<0$

㭏 Case 1: the transport of a beam through a drift space l

$$
\binom{x}{x^{\prime}}_{\text {out }}=\underbrace{\left(\begin{array}{ll}
1 & l \\
0 & 1
\end{array}\right)}_{\mathbf{M}_{\mathrm{d}}}\binom{x_{0}}{x_{0}^{\prime}}_{\text {in }} \Rightarrow \begin{gathered}
x=x_{0}+l x_{0}^{\prime} \\
x^{\prime}=x_{0}^{\prime}
\end{gathered}
$$

||| Case 2: K is positive - thin lens

粦 Compute Δx^{\prime} by integrating Hill' equation through the lens

$$
\Delta x^{\prime}=\int_{0^{-}}^{0^{+}}\left[\frac{d}{d s} \frac{d x}{d s}+K x\right] d s \Rightarrow \Delta x^{\prime}=-K x \Delta s
$$

粦 From the figure $\mathrm{K} \Delta \mathrm{s}=1 / f==>$

$$
\mathbf{M}_{\text {lens }}=\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)
$$

｜｜｜｜More generally for a lens of finite length

粦 The solution is that of a simple harmonic oscillator

$$
\binom{x}{x^{\prime}}_{\text {out }}=\left(\begin{array}{cc}
\cos \Theta & \frac{1}{\sqrt{K}} \sin \Theta \\
\sqrt{K} \sin \Theta & \cos \Theta
\end{array}\right)\binom{x}{x^{\prime}}_{\text {out }} \quad \text { where } \quad \Theta=\sqrt{K} l
$$

米 For $\mathrm{K}<0$ the solution is

$$
\binom{x}{x^{\prime}}_{\text {out }}=\left(\begin{array}{cc}
\cosh \Theta & \frac{1}{\sqrt{|K|}} \sinh \Theta \\
\sqrt{|K|} \sinh \Theta & \cosh \Theta
\end{array}\right)\binom{x}{x^{\prime}}_{\text {out }} \quad \text { with } \Theta=\sqrt{|K|} l
$$

粦 For the thin lens，let $l \rightarrow 0$ keeping $K l$ finite and $\rightarrow 1 / f$

｜｜｜Piecewise solution for the entire ring

粦 Suppose the ring is made of a number，m ，of piecewise modules each described by \mathbf{M}_{i}

粦 Then the transport through the ring is described by

$$
\begin{aligned}
& \mathbf{M}=\mathbf{M}_{\mathrm{m}} \mathbf{M}_{\mathrm{m}-1} . . \mathbf{M}_{1} \\
& \mathbf{x}_{\text {out }}=\mathbf{M} \mathbf{x}_{\mathrm{in}}
\end{aligned}
$$

类 Subject to the stability condition

$$
-1 \leq 1 / 2 \text { Trace } \mathbf{M} \leq 1
$$

粦 Recall that Trace $\mathbf{M}=2 \cos \mu$ where $\mu=$ phase advance per cell

Iliĩ
 Exercise: FODO transport channel

Show that for stability $\sin \frac{\mu}{2}=\frac{d}{2 f} \Rightarrow f>L / 2$

Hint: compute for single FODO cell

IHe Both equations of motion have the same general form

粦 Harmonic oscillator with a position dependent spring constant

$$
x^{\prime \prime}+K(s) x=0 \quad \text { where } K(s)=\frac{e c}{E_{o}} \frac{d B}{d y}=K(s+L)
$$

粦 We can guess that the solution will have the general form

$$
x=A(s) \cos \left(\varphi(s)+\varphi_{o}\right)
$$

where $A(s)$ and $\phi(\mathrm{s})$ are non－linear functions of s with the same periodicity as the lattice

粦 Rewrite $A(s)$ as in terms of a function β and a constant ε

$$
x=\sqrt{\beta(s) \varepsilon} \cos \left(\varphi(s)+\varphi_{o}\right)
$$

Ilīin
 Insert the trial solution into Hill's equation

粦 The derivatives of x are

$$
\begin{aligned}
x^{\prime}= & -\sqrt{\varepsilon \beta(s)} \varphi^{\prime}(s) \sin \left[\varphi(s)+\varphi_{o}\right]+\left(\frac{\beta^{\prime}(s)}{2}\right) \sqrt{\frac{\varepsilon}{\beta(s)}} \cos \left[\varphi(s)+\varphi_{o}\right] \\
x^{\prime \prime}= & -\sqrt{\varepsilon \beta(s)}\left(\varphi^{\prime}(s)\right)^{2} \cos \left[\varphi(s)+\varphi_{o}\right]-\sqrt{\varepsilon \beta(s)} \varphi^{\prime \prime}(s) \sin \left[\varphi(s)+\varphi_{o}\right] \\
& -\left(\frac{\beta^{\prime}(s)}{2}\right) \sqrt{\frac{\varepsilon}{\beta(s)}} \varphi^{\prime}(s) \sin \left[\varphi(s)+\varphi_{o}\right] \\
& -\left(\frac{\beta^{\prime}(s)}{2}\right) \sqrt{\frac{\varepsilon}{\beta(s)}} \varphi^{\prime}(s) \sin \left[\varphi(s)+\varphi_{o}\right]-\left(\frac{\left(\beta^{\prime}(s)\right)^{2}}{4}\right) \sqrt{\frac{\varepsilon}{\beta^{3}(s)}} \cos \left[\varphi(s)+\varphi_{o}\right] \\
& +\left(\frac{\beta^{\prime \prime}(s)}{2}\right) \sqrt{\frac{\varepsilon}{\beta(s)}} \cos \left[\varphi(s)+\varphi_{o}\right]
\end{aligned}
$$

|l|i" To obtain...

$$
\begin{aligned}
x^{\prime \prime}+K(s) x & =-\sqrt{\varepsilon \beta(s)}\left(\varphi^{\prime}(s)\right)^{2} \cos \left[\varphi(s)+\varphi_{o}\right]-\left(\frac{\left(\beta^{\prime}(s)\right)^{2}}{4}\right) \sqrt{\frac{\varepsilon}{\beta^{3}(s)}} \cos \left[\varphi(s)+\varphi_{o}\right] \\
& +\left(\frac{\beta^{\prime \prime}(s)}{2}\right) \sqrt{\frac{\varepsilon}{\beta(s)}} \cos \left[\varphi(s)+\varphi_{o}\right]+K(s) \sqrt{\beta(s) \varepsilon} \cos \left(\varphi(s)+\varphi_{o}\right) \\
& -\beta^{\prime}(s) \sqrt{\frac{\varepsilon}{\beta(s)}} \varphi^{\prime}(s) \sin \left[\varphi(s)+\varphi_{o}\right]-\sqrt{\varepsilon \beta(s)} \varphi^{\prime \prime}(s) \sin \left[\varphi(s)+\varphi_{o}\right] \\
& =0
\end{aligned}
$$

IIII For Hill's equation to hold, coefficients of $\sin \& \cos$ must both equal zero

$$
\begin{aligned}
& 0=-\sqrt{\varepsilon \beta(s)} \varphi^{\prime \prime}(s) \sin \left[\varphi(s)+\varphi_{o}\right]-2\left(\frac{\beta^{\prime}(s)}{2}\right) \sqrt{\frac{\varepsilon}{\beta(s)}} \varphi^{\prime}(s) \sin \left[\varphi(s)+\varphi_{o}\right] \\
& \Rightarrow \varphi^{\prime \prime}(s)+\beta^{\prime}(s) \frac{1}{\beta(s)} \varphi^{\prime}(s)=0 \Rightarrow \varphi^{\prime}(s)=1 / \beta(s) \\
& \therefore \quad x^{\prime}=-\sqrt{\frac{\varepsilon}{\beta(s)}} \sin \left[\varphi(s)+\varphi_{o}\right]+\left(\frac{\beta^{\prime}(s)}{2}\right) \sqrt{\frac{\varepsilon}{\beta(s)}} \cos \left[\varphi(s)+\varphi_{o}\right]
\end{aligned}
$$

|| Now consider the cos term

$$
\begin{gathered}
-\sqrt{\varepsilon \beta(s)}\left(\varphi^{\prime}(s)\right)^{2}-\left(\frac{\left(\beta^{\prime}(s)\right)^{2}}{4}\right) \sqrt{\frac{\varepsilon}{\beta^{3}(s)}}+\left(\frac{\beta^{\prime \prime}(s)}{2}\right) \sqrt{\frac{\varepsilon}{\beta(s)}}+K(s) \sqrt{\varepsilon \beta(s)}=0 \\
\Rightarrow \\
-\beta(s)\left(\varphi^{\prime}(s)\right)^{2}-\left(\frac{\left(\beta^{\prime}(s)\right)^{2}}{4}\right) \frac{1}{\beta(s)}+\left(\frac{\beta^{\prime \prime}(s)}{2}\right)+K(s) \beta(s)=0 \quad \text { where } \varphi^{\prime}(s)=1 / \beta(s) \\
\Rightarrow \\
-\frac{1}{\beta(s)}-\left(\frac{\left(\beta^{\prime}(s)\right)^{2}}{4}\right) \frac{1}{\beta(s)}+\left(\frac{\beta^{\prime \prime}(s)}{2}\right)+K(s) \beta(s)=0 \\
\Rightarrow \\
\frac{\beta^{\prime \prime} \beta}{2}-\frac{\beta^{\prime 2}}{4}+K \beta^{2}=1 \quad \begin{array}{l}
\text { Beam envelope } \\
\text { equation }
\end{array}
\end{gathered}
$$

Iliit The solutions ==> Phase space ellipse

类 Where $\beta^{\prime}(s)=0$

$$
x^{\prime}=\sqrt{\frac{\varepsilon}{\beta(s)} \sin \left[\varphi(s)+\varphi_{o}\right]+\left(\frac{\beta^{\prime}(s)}{2}\right) \sqrt{\frac{\varepsilon}{\beta(s)}} \cos \left[\varphi(s)+\varphi_{o}\right]}=0
$$

粦 The area $\pi \varepsilon$ is a an invariant of the motion

|||- Particles with different ε have different ellipses

We return to our original picture of the phase space ellipse \& the emittance of a set of (quasi-) harmonic oscillators

IIP- We see that ε characterizes the beam while * $\beta(s)$ characterizes the machine optics

粦 $\beta(\mathrm{s})$ sets the physical aperture of the accelerator because the beam size scales as $\sigma_{x}(s)=\sqrt{\varepsilon_{x} \beta_{x}(s)}$

｜｜｜Betatron oscillations

粦 We can consider $\beta(\mathrm{s})$ to be the local wavelength of the transverse oscillations

$$
x=\sqrt{\beta(s) \varepsilon} \cos \left(\varphi(s)+\varphi_{o}\right)
$$

粦 For a constant gradient machine $\beta(\mathrm{s})=$ constant．
\rightarrow The particle with maximum excursion has initial phase ϕ_{0} ；
\rightarrow After 1 turn，the particle will have a change in phase

$$
\Delta \varphi=\varphi-\varphi_{0}=\oint \varphi^{\prime} d s=\oint \frac{d s}{\beta} \approx \frac{2 \pi R}{\beta}
$$

\rightarrow It will have been around the phase ellipse $2 \pi / \Delta \phi$ times
粦 The number of such betatron oscillations per turn is $Q=\frac{\Delta \varphi}{2 \pi}=\frac{R}{\beta}$

$$
\text { It will be important that } Q \neq m / n \text { with } m \text { or } n \text { small }
$$

｜｜F Look again at the closed solutions for periodic transport

粦 Linear motion from points 1 to 2 is described by a matrix：

$$
\binom{y\left(s_{2}\right)}{y^{\prime}\left(s_{2}\right)}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{y\left(s_{1}\right)}{y^{\prime}\left(s_{1}\right)}=\mathbf{M}_{12}\binom{y\left(s_{1}\right)}{y^{\prime}\left(s_{1}\right)} .
$$

粦 We found that

$$
y=\sqrt{\beta(s) \varepsilon} \cos \left(\varphi(s)+\varphi_{o}\right)
$$

$$
\text { and } \quad y^{\prime}=-\sqrt{\frac{\varepsilon}{\beta(s)}} \sin \left[\varphi(s)+\varphi_{o}\right]+\left(\frac{\beta^{\prime}(s)}{2}\right) \sqrt{\frac{\varepsilon}{\beta(s)}} \cos \left[\varphi(s)+\varphi_{o}\right]
$$

粦 Trace two rays：$\phi_{1}=0$ and $\phi_{1}=\pi / 2$ to generate equations for $\mathrm{a}, \mathrm{b}, \mathrm{c}, \& \mathrm{~d}$

｜｜｜Solving for the matrix elements．．．

类 In terms of $\phi=\phi_{2}-\phi_{1}$ and $w=\sqrt{\beta}$

$$
M_{12}=\left(\begin{array}{cc}
\frac{w_{2}}{w_{1}} \cos \varphi-w_{2} w_{1}^{\prime} \sin \varphi, & w_{1} w_{2} \sin \varphi \\
-\frac{1+w_{1} w_{1}^{\prime} w_{2} w_{2}^{\prime}}{w_{1} w_{2}} \sin \varphi-\left(\frac{w_{1}^{\prime}}{w_{2}}-\frac{w_{2}^{\prime}}{w_{1}^{\prime}}\right) & \cos \varphi, \\
\frac{w_{1}}{w_{2}} \cos \varphi+w_{1} w_{2}^{\prime} \sin \varphi
\end{array}\right)
$$

粦 In one period

$$
w_{1}=w_{2}=w, w_{1}^{\prime}=w_{2}^{\prime}=w^{\prime}, \mu=\phi_{2}-\phi_{1}=2 \pi Q
$$

粦 And \mathbf{M}_{12} reduces to

$$
M=\left(\begin{array}{cc}
\cos \mu-w w^{\prime} \sin \mu, & w^{2} \sin \mu \\
-\frac{1+w^{2} w^{\prime 2}}{w^{2}} \sin \mu, & \cos \mu+w w^{\prime} \sin \mu
\end{array}\right)
$$

|||| Twiss parameters revisited

粦 \mathbf{M}_{12} can be simplified by introducing "Twiss" parameters

$$
\beta=w^{2}, \alpha=-\frac{1}{2} \beta^{\prime}, \gamma=\frac{1+\alpha^{2}}{\beta}
$$

粦 Which yields the matrix for period (or ring)

$$
\mathbf{M}_{\text {period }}=\left(\begin{array}{cc}
\cos \mu+\alpha \sin \mu, & \beta \sin \mu \\
-\gamma \sin \mu, & \cos \mu-\alpha \\
\sin \mu
\end{array}\right)
$$

where μ is the phase advance

Iliĩ
 Physical meaning of Twiss parameters

Iliit
 Phase advance around the ring

粦 As the beam moves along the ring its betatron phase will change by

$$
\Delta \varphi=\varphi_{2}-\varphi_{1}=\int_{s_{1}}^{s_{2}} \varphi^{\prime} d s=\int_{s_{1}}^{s_{2}} \frac{d s}{\beta(\mathrm{~s})}
$$

粦 In a single turn

$$
\Delta \varphi=\varphi-\varphi_{0}=\oint \varphi^{\prime} d s=\oint \frac{d s}{\beta}
$$

粦 Define the betatron tune as

$$
Q(\text { or } v)=\frac{1}{2 \pi} \oint \frac{d s}{\beta(s)}
$$

Ilii
 Betatron tune

米 Tune is the number of oscillations that a particle makes about the design trajectory

｜｜F Average description of the motion

米 Define an average betatron number for the ring by

$$
\frac{1}{\beta_{n}} \equiv \frac{1}{L} \oint \frac{d s}{\beta(s)}=\frac{2 \pi Q}{L} \quad \text { and } \quad \beta_{n}=2 \pi \circ \lambda_{\beta}
$$

粦 The＂gross radius＂ R of the ring is defined by

$$
2 \pi \mathrm{R}=\mathrm{L}
$$

米＂Good＂values for β_{n}
\rightarrow Small $\beta_{\mathrm{n}}==>$ small vacuum pipe but large tune
\rightarrow In interaction regions Small β_{n} raises luminosity， \mathcal{L}
\rightarrow For undulators choose $\beta_{\mathrm{n}} \approx 2 \mathrm{~L}_{\mathrm{u}}$
\rightarrow Field errors $==>$ displacements $\sim \beta_{\mathrm{n}}$

｜｜｜｜｜Beam emittance \＆physical aperture

粦 In electron \＆most proton storage rings，the transverse distribution of particles is Gaussian

$$
n(r) r d r d \theta=\frac{1}{2 \pi \sigma^{2}} e^{-r^{2} / 2 \sigma^{2}} d r d \theta \text { for a round beam }
$$

粦 For a beam in equilibrium， $\mathrm{n}(\mathrm{x})$ is stationary in t at fixed s
粦 The fraction of particles \mathcal{F} within a radius a is

$$
\begin{gathered}
\mathcal{F}=\int_{0}^{2 \pi} \int_{0}^{a} n r d r d \theta=\int_{0}^{a} \frac{1}{\sigma^{2}} e^{-r^{2} / 2 \sigma^{2}} r d r \Rightarrow a^{2}=-2 \sigma^{2} \ln (1-\mathcal{F}) \\
\quad o r \\
\varepsilon=-\frac{2 \pi \sigma^{2}}{\beta} \ln (1-\mathcal{F})
\end{gathered}
$$

\||| Values of \mathcal{F} associated with ε definitions

$\boldsymbol{\varepsilon}$	$\mathcal{F}(\%)$
σ^{2} / β	Electron community
$\pi \sigma^{2} / \beta$	39
$4 \pi \sigma^{2} / \beta$	87
$6 \pi \sigma^{2} / \beta$	Proton community
	95

Not surprisingly, 12σ is typically chosen as a vacuum pipe radius

|l|i] Measuring the tune

粦 Measurement of Q by kicking
\rightarrow Fire a kicker magnet with a pulse lasting less than one turn
\rightarrow Observe oscillations of centre of charge as it passes a pick-up on sequential turns

｜｜｜Measurement of \mathbf{Q} by kicking

粦 A beam consisting of one short bunch is a Fourier series

$$
\rho(t)=\sum_{n} a_{n} \sin \left(2 \pi n f_{o} t\right)
$$

粦 The pick－up sees the oscillation $y(t)=y_{0} \cos 2 \pi f_{0} Q t$ modulated by $\rho(t)$

$$
\rho(t) y(t)=\frac{1}{2} \sum_{n} a_{n} y_{o}\left[\sin 2 \pi(n+Q) f_{o} t+\sin 2 \pi(n-Q) f_{o} t\right]
$$

粦 The signal envelope is the slowest term in which $(n-Q)$ is the fractional part of Q

类 The other terms in the series reconstruct the spikes in the signal occurring once per turn．

