Unit 7- Lecture 15 Linear optics \& beam transport

William A. Barletta
Director, United States Particle Accelerator School
Dept. of Physics, MIT

||l| Generic accelerator facility

|- These components can be seen in an early storage ring light source

IIF Optics are essential to guide the beam through the accelerator

- Optics (lattice): distribution of magnets that direct \& focus beam

- Lattice design depends upon the goal \& type of accelerator
- Linac or synchrotron
- High brightness: small spot size \& small divergence
- Physical constraints (building or tunnel)

｜｜｜｜Particle trajectories（orbits）

粦 Motion of each charged particle is determined by $\mathrm{E} \& \mathrm{~B}$ forces that it encounters as it orbits the ring：
\rightarrow Lorentz Force

$$
\mathbf{F}=\mathrm{ma}=\mathrm{e}(\mathbf{E}+\mathbf{v} \times \mathbf{B})
$$

粦 Lattice design problems：
$\rightarrow 1$ ．Given an existing lattice，determine the beam properties
$\rightarrow 2$ ．For a desired set of beam properties，design the lattice．
粦 Problem 2 requires some art

Types of magnets \& their fields:dipoles

Dipoles:
Used for steering

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{x}}=0 \\
& \mathrm{~B}_{\mathrm{y}}=\mathrm{B}_{\mathrm{o}}
\end{aligned}
$$

Types of magnets \& their fields: quadrupoles

Quadrupoles:
Used for focusing
$B_{x}=K y$
$B_{y}=K x$

Ter Types of magnets $\&$ their fields: sextupoles

Sextupoles:
Used for chromatic correction
$B_{x}=2 S x y$
$B_{y}=S\left(x^{2}-y^{2}\right)$

\|"E Average dipole strength drives ring size $\&$ cost

In a ring for particles with energy E with N dipoles of length 1 , bend angle is

$$
\theta=\frac{2 \pi}{N}
$$

The bending radius is $\quad \rho=\frac{l}{\theta}$
The integrated dipole strength will be $\quad B l=\frac{2 \pi}{N} \frac{\beta E}{e}$
The on-energy particle defines the central orbit: $\mathrm{y}=0$

｜｜｜Characteristics of a dipole magnet

类 The field B is generated by a current I in coils surrounding the polls
粦 The ferromagnetic return yoke provides a return path for the flux

米 Integrate around the path

$$
\nabla \times \frac{\mathbf{B}}{\mu_{r}}=\frac{4 \pi}{c} \mathbf{J}
$$

$$
2 G B_{\perp}+\int_{\text {ifon }} \frac{\mathbf{B}}{\mu_{r}} \circ d \mathbf{s}=\frac{4 \pi}{c} I_{\text {total }}
$$

$$
I_{\text {total }}(A m p-t u r n s)=\frac{1}{0.4 \pi} B_{\perp}(G a u s s) G(c m)
$$

Iliĩ
 Horizontal aperture of a dipole

粦 Horizontal aperture must contain the saggita, S, of the beam

$$
\begin{gathered}
\sin \theta / 2=\frac{l}{2 \rho}=\frac{l B}{2(B \rho)} \\
S= \pm \rho(1-\cos \theta / 2) \approx \pm 8 \frac{\rho \theta^{2}}{8} \approx \frac{l \theta}{8}
\end{gathered}
$$

|||T To analyze particle motion we will use local Cartesian coordinates

Change dependent variable from time, t, to longitudinal position, s
The origin of the local coordinates is a point on the design trajectory in the bend plane

The bend plane is generally called the horizontal plane
The vertical is y in American literature \& often z in European literature

11H－Charged particle motion in a uniform（dipole）magnetic field

＊Let

$$
\mathbf{B}=\mathrm{B}_{\mathrm{o}} \hat{\mathbf{y}}
$$

米 Write the Lorentz force equation in two components，z and \perp

$$
\frac{d p_{y}}{d t}=0 \quad \text { and } \quad \frac{d \mathbf{p}_{\perp}}{d t}=q\left(\mathbf{v}_{\perp} \times \mathbf{B}\right)=\frac{q B_{o}}{\gamma m_{o}}\left(\mathbf{p}_{\perp} \times \hat{\mathbf{y}}\right)
$$

米 $==>p_{y}$ is a constant of the motion
粦 Since B does no work on the particle，$\left|p_{\perp}\right|$ is also constant
\rightarrow The total momentum \＆total energy are constant
\rightarrow For $\mathrm{p}_{\mathrm{y}, \mathrm{o}} \neq 0$ ，the orbit is a helix

Iliit
 Write the equations for the velocities

$$
\frac{d^{2} v_{x}}{d t^{2}}=\omega_{c}^{2} v_{x} \quad \text { and } \quad \frac{d^{2} v_{y}}{d t^{2}}=\omega_{c}^{2} v_{y} \quad \text { where } \quad \omega_{\mathrm{c}} \equiv \frac{q B_{o}}{\gamma m_{o}}
$$

||| Integrating we obtain

$$
v_{x}=-v_{o} \sin \left(\omega_{c} t+\varphi\right) \quad \text { and } \quad v_{y}=v_{o} \cos \left(\omega_{c} t+\varphi\right)
$$

and

$$
x=R \cos \left(\omega_{c} t+\varphi\right)+x_{o} \quad \text { and } \quad \mathrm{y}=\mathrm{R} \sin \left(\omega_{c} t+\varphi\right)+y_{0}
$$

Hence, the particle moves in a circle of radius $R=v_{o} / \omega_{c}$ centered at $\left(x_{o}, y_{o}\right)$ and drifting at constant velocity in z .

Balancing the radial and centripetal force implies

$$
\frac{\gamma m v_{\perp}^{2}}{R}=q v_{\perp} B_{o} \quad \text { or } \quad p_{\perp}=q B_{o} R
$$

Or in practical units

$$
p_{\perp}(M e V / c)=299.8 B_{o}(T) R(m)
$$

IR－Returning to the circular accelerator： Orbit stability

粦 The orbit of the ideal particle（design orbit）must be closed
粦＝＝＞Our analysis strictly applies for $\mathrm{p}_{\mathrm{z}}=0$
粦 For other particles motion can be
\rightarrow Stable（orbits near the design orbit remain near the design orbit）
\rightarrow Unstable（orbit is unbounded）
类 For a pure uniform dipole B out of plane，motion is unbounded
粦 For particle deflections in the plane， the orbit is perturbed as shown

粦 For off－energy particles，the orbit size changes

｜｜Orbit stability \＆weak focusing

粦 Early cyclotron builders found that they could not prevent the beam from hitting the upper \＆lower pole pieces with a uniform field

粦 They added vertical focusing of the circulating particles by sloping magnetic fields，from inwards to outwards radii

粦 At any given moment，the average vertical B field sensed during one particle revolution is larger for smaller radii of curvature than for larger ones

｜｜｜Orbit stability \＆weak focusing

米 Focusing in the vertical plane is provided at the expense of weakening horizontal focusing
粦 Suppose along the mid－plane varies as

$$
\mathrm{B}_{\mathrm{y}}=\mathrm{B}_{\mathrm{o}} / \mathrm{r}^{\mathrm{n}}
$$

粦 For $\mathrm{n}=0$ ，we have a uniform field with no vertical focusing
类 For $\mathrm{n}>1, \mathrm{~B}_{\mathrm{y}}$ cannot provide enough centripital force to keep the particles in a circular orbit．
粦 For stability of the particle orbits we want $0<n<1$

Cross section of weak focusing circular accelerator

｜｜｜Weak focusing equations of motion

米 In terms of derivatives measured along the equilibrium orbit

$$
x^{\prime \prime}+\frac{(1-n) x}{R_{0}{ }^{2}}=0, \quad y^{\prime}+\frac{n y}{R_{0}{ }^{2}}=0
$$

where＇is a derivative with respect to the design orbit
粦 Particles oscillate about the design trajectory with the number of oscillations in one turn being

$$
\begin{array}{ll}
\sqrt{1-\mathrm{n}} & \text { radially } \\
\sqrt{\mathrm{n}} & \text { vertically }
\end{array}
$$

粦 The number of oscillations in one turn is termed the tune of the ring
粦 Stability requires that $0<n<1$

> For stable oscillations the tune is less than one in both planes.

｜｜｜Disadvantages of weak focusing

粦 Tune is small（less than 1）
粦 As the design energy increased so does the circumference of the orbit

类 As the energy increases the required magnetic aperture increases for a given angular deflection

粦 Because the focusing is weak the maximum radial displacement is proportional to the radius of the machine

Ilit What's wrong with this approach

粦 The magnetic components of a high energy synchrotron become unreasonably large \& costly
粦 As the beam energy increases, the aperture becomes big enough to fit whole physicists!!

｜｜he solution is strong focusing

粦 One would like the restoring force on a particle displaced from the design trajectory to be as strong as possible

粦 A strong focusing lattice has a sequence of elements that are either strongly focusing or defocusing

粦 The overall lattice is＂stable＂
粦 In a strong focusing lattice the displacement of the trajectory does not scale with energy of the machine
粦 The tune is a measure of the amount of net focusing．

｜｜｜F For a thin lens the particles position does not change its displacement in the lens

米 Along the particle path in the lens B is constant

$$
B_{y}=\frac{\partial B_{y}}{\partial x} x \equiv B^{\prime} x=\mathrm{constant}
$$

粦 For paraxial beams $x^{\prime}=d x / d s$
粦 The change in x due to the lens is

$$
\Delta x^{\prime}=-\frac{\Delta s}{\rho}=-\Delta s \frac{e B_{y}}{p}=-\frac{e B_{y}^{\prime} x}{p} \Delta s
$$

粦 Therefore we have a standard situation from ray optics

||1- Focusing the beam for its trip through the accelerator

For a lens with focal length f, the deflection angle, $\alpha=-\mathrm{x} / f$
Then,
For a Quadrupole with length 1 \& with gradient $B^{\prime}==>B_{y}=B^{\prime} x$

$$
\alpha=-\frac{l}{f}=-\frac{q}{\beta E} B_{y} l=\frac{q}{\beta E} B_{i}^{\prime} x l \longrightarrow k
$$

$$
\text { For } Z=1
$$

$$
k\left[m^{-2}\right]=0.2998 \frac{B^{\prime}[T / m]}{\beta E[G e V]}
$$

|1H- Chromatic aberration in lenses: Focal length depends on the beam energy

类 The higher the beam energy the longer the focal length

Ilit
 Quadrupole magnets

粦 In the absence of J，

$$
\nabla \times \mathbf{B}=0 \quad \Rightarrow \quad \frac{\partial B_{\mathrm{y}}}{\partial \mathrm{x}}=\frac{\partial B_{x}}{\partial y}
$$

粦 For small displacements from the design trajectory

$$
\begin{aligned}
\mathbf{B} & =B_{x} \hat{\mathbf{x}}+B_{y} \hat{\mathbf{y}} \\
& =\underbrace{B_{x}(0,0)+\frac{\partial B_{x}}{\partial y} y}_{\text {Force in } y \text { direction }}+\frac{\partial B_{x}}{\partial x} x) \\
) & \underbrace{B_{y}(0,0)+\frac{\partial B_{y}}{\partial x} x}_{\text {Force in -x direction }}+\frac{\partial B_{y}}{\partial y} y) \hat{\mathbf{y}}
\end{aligned}
$$

粦 Terms in circles are linear restoring forces
\rightarrow One is focusing，the other is defocusing
\rightarrow The other terms $=0$ with correct alignment of quadrupole

1|| Skew Quadrupole magnets

粦 Generally one wants to avoid coupling the motion in x \& y
\rightarrow Requires precise alignment of the quadrupole with the bend plane

Skew quadrupole

Iliii
 The quadrupole magnet \& its field

粦 Exercise: Show that

$$
B^{\prime}\left[\frac{\mathrm{T}}{\mathrm{~m}}\right]=2.51 \frac{N I[\mathrm{~A}-\text { turns }]}{\mathrm{R}\left[\mathrm{~mm}^{2}\right]}
$$

Evaluate $\oint \vec{H} \bullet d \vec{l}=I_{\text {enclosed }}$ around the integration path shown.
For infinite permeability iron $\vec{H}=\frac{\vec{B}}{\mu} \rightarrow 0$ inside the iron, so in the
gap

$$
\begin{gathered}
\oint \vec{H} \bullet d \vec{l}=\frac{1}{\mu_{0}} \int_{0}^{R} B^{\prime} r d r=\frac{B^{\prime} R^{2}}{2 \mu_{0}}=N I \Rightarrow B^{\prime}=\mu_{0} \frac{2 N I}{R^{2}} \\
B^{\prime}\left[\frac{\mathrm{T}}{\mathrm{~m}}\right]=2.51 \frac{N I[\mathrm{~A}-\text { turns }]}{R[\mathrm{~mm}]^{2}}
\end{gathered}
$$

$$
\text { Quadrupole focal length } f \approx \frac{p}{e B^{\prime} L}=\frac{(B \rho)}{B^{\prime} L}
$$

IIP－It is useful to write the action of the quadrupole in matrix form

粦 A lens transforms a ray as

$$
\binom{x}{x^{\prime}}_{\text {out }}=\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)\binom{x}{x^{\prime}}_{\text {in }}
$$

米 For a concave lens $f<0$
粦 For a drift space of length d

$$
\binom{x}{x^{\prime}}_{\text {out }}=\left(\begin{array}{ll}
1 & d \\
0 & 1
\end{array}\right)\binom{x}{x^{\prime}}_{\text {in }}
$$

Note：both matrices are unimodular（required by Liouville＇s theorem）

||| If the motion in x and y are uncoupled

类 The transport matrix is in block diagonal form

$$
\left(\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right)_{\text {out }}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / f_{x} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 / f_{y} & 1
\end{array}\right)\left(\begin{array}{c}
x \\
x^{\prime} \\
y \\
y^{\prime}
\end{array}\right)_{\text {in }}
$$

粦 We can work the transport in both planes separately in 2×2 matrices

|1F Now combine a concave + convex lens separated by a drift space

$$
\begin{aligned}
\binom{x}{x^{\prime}}_{\text {out }} & =\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)\left(\begin{array}{ll}
1 & d \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
1 / f & 1
\end{array}\right)\binom{x}{x^{\prime}}_{\text {in }} \\
& =\left(\begin{array}{ll}
1+d / f & d \\
-d / f^{2} & 1-d / f
\end{array}\right)\binom{x}{x^{\prime}}_{\text {in }}
\end{aligned}
$$

For $0<d \ll f$, the net effect is focusing with $f_{\text {net }} \approx f^{2} / d>0$
The same is true if we put the convex lens first

|li| More generally...

From optics we know that a combination of two lenses, with focal lengths f_{1} and f_{2} separated by a distance d, has

$$
\frac{1}{f}=\frac{1}{f_{1}}+\frac{1}{f_{2}}-\frac{d}{f_{1} f_{2}}
$$

If $f_{1}=-f_{2}$, the net effect is focusing!
\therefore A quadrupole doublet is focusing in both planes!
=> Strong focusing by sets of quadrupole doublets with alternating gradient

N.B. This is only valid in thin lens approximation

||| What happens in phase space?

These examples shows a slight focusing

Ilii
 Is such a transport stable？

粦 In storage rings particles may make $\approx 10^{10}$ passes through the lattice
粦 We can analyze stability of lattice for an infinite number of passes
米 Say there are n sets of lens \＆the $i^{\text {th }}$ set of lenses has a matrix \mathbf{M}_{i}
粦 Then，the total transport has a matrix

$$
\mathbf{M}=\mathbf{M}_{\mathrm{n}} \ldots \mathbf{M}_{3} \mathbf{M}_{2} \mathbf{M}_{1}
$$

粦 After m passes through the lattice

$$
\binom{x}{x^{\prime}}_{m}=\mathbf{M}^{m}\binom{x}{x^{\prime}}_{i n}
$$

类 For stability $\left|\mathbf{M}^{\mathrm{m}} \mathrm{x}\right|$ must remain finite as $\mathrm{m} \rightarrow \infty$

\|He Example of waist-to-waist transport with magnification

If we did this n times eventually the beam would be lost into the walls

｜｜｜Mathematical diversion－Eigenvectors

米 We say that \mathbf{v} is an eigenvector of the matrix \mathbf{M} if
$\mathbf{M} \mathbf{v}=\lambda \mathbf{v}$ where λ is called the eigenvalue
$\mathbf{M v}-\lambda \mathbf{v}=(\mathbf{M}-\lambda \mathbf{I}) \mathbf{v}=0 \Rightarrow \operatorname{Det}(\mathbf{M}-\lambda \mathbf{I})=\operatorname{Det}\left(\begin{array}{cccc}m_{11}-\lambda & m_{12} & \cdots & m_{1 n} \\ m_{21} & m_{22}-\lambda & & m_{2 n} \\ \ldots & & & \\ m_{n 1} & m_{n 2} & & m_{n n}-\lambda\end{array}\right)=0$

类 A $n \times n$ matrix will have n eigenvectors
粦 Any $n \times l$ vector can written as the sum of n eigenvectors

IIII
 Reminder: determinants

$$
\begin{gathered}
\operatorname{det}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a d-b c \\
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)=a e i+b f g+c d h-a f h-b d i-c e g \\
\\
\\
\text { aei + bfg + cdh-afh-bdi-ceg }
\end{gathered}
$$

\mathbf{M} is unimodular iff $\operatorname{det} \mathbf{M}=1$

｜｜1F Write the stability condition in terms of the eigenvectors

类 For our transport

$$
\binom{x}{x^{\prime}}=a \mathbf{v}_{1}+b \mathbf{v}_{2}
$$

粦 So，

$$
\binom{x}{x^{\prime}}_{m}=\mathbf{M}^{m}\binom{x}{x^{\prime}}_{\text {in }}=a \lambda_{1}^{m} \mathbf{v}_{1}+b \lambda_{2}^{m} \mathbf{v}_{2}
$$

粦 Therefore，$\lambda_{1}{ }^{\mathrm{m}}$ and $\lambda_{2}{ }^{\mathrm{m}}$ must remain finite as $\mathrm{m} \rightarrow \infty$
Notes：
粦 Since each \mathbf{M}_{i} is unimodular $=\Rightarrow$ Det $\mathbf{M}=1$ and $\lambda_{2}=1 / \lambda_{1}$
粦 If we write $\lambda_{1}=e^{i \mu}$ ，then $\lambda_{2}=e^{-i \mu}$

粦 For λ_{ι} to remain finite，μ must be real

｜｜｜Solving the eigenvalue equation．．．

米 Say that $\mathbf{M}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ ；the eigenvalue equation is $\operatorname{Det}\left(\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right)=0$
粦 So we have $(a-\lambda)(d-\lambda)-b c=\lambda^{2}-(a+d) \lambda+(a d-b c)=0$
米 Since \mathbf{M} is unimodular，$\quad(a d-b c)=1$
类 Therefore $\lambda^{2}-(a+d) \lambda+1=0$ or $\lambda+\lambda^{-1}=(a+d)=$ Trace \mathbf{M}
粦 Recalling that $\lambda=e^{i \mu}$ ，we have

$$
e^{i \mu}+e^{-i \mu}=2 \cos \mu=\operatorname{Trace} \mathbf{M} \text { for } \mu \text { real }
$$

粦 Thus the stability condition is

$$
-1 \leq 1 / 2 \text { Trace } \mathbf{M} \leq 1
$$

μ has an important physical interpretation to be discussed later

1H－This would seem to make the job of lattice design extremely difficult for large rings

But．．．．there are tricks
米 Remember the trivial result that $\quad \mathbf{I}^{n}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)^{n}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\mathbf{I}$
粦 Suppose the ring is made of a number，m ， of identical modules consisting of a small number of elements

粦 Now design the modules such that

$$
\mathbf{M}_{\mathrm{a}}=\mathbf{M}_{1} \mathbf{M}_{2} . . . \mathbf{M}_{\mathrm{few}}=\mathbf{I}
$$

米 Then the $\mathbf{M}_{\mathrm{a}}{ }^{\mathrm{m}}=\mathbf{I}^{\mathrm{m}}=\mathbf{I}$
The whole ring transport would seem to be stable ．．．BUT．．．

We can＇t sit on a resonance；still the idea of modular design is valuable

Equations of motion for particles in synchrotrons \& storage rings

Iliī
 Design orbit of a storage ring

粦 The nominal energy， E_{o} ，defines the＂design orbit＂
\rightarrow Closed orbit of the ideal particle with zero betatron amplitude
粦 Static guide（dipole）field＝＝＞trajectory is determined
\rightarrow Size of machine is approximately set
\rightarrow Final size will depend on fraction of the ring that is dipoles
粦 Assume that the guide field is symmetric about the plane of motion
\rightarrow Key quantities are $\mathrm{B}(\mathrm{s}) \& \mathrm{~dB}(\mathrm{~s}) / \mathrm{dy}$（field gradient）
\rightarrow Usually（but not always）followed in practice

｜｜｜Motion of particles in a storage ring

粦 If all magnetic fields scale $\sim \mathrm{E}_{\text {beam }}$ ，orbit doesn＇t change
\rightarrow This is exactly the concept of the synchrotron
类＝＝＞We can describe the performance in terms of an energy independent guide field

类 Define cyclic functions of s to describe the action of dipoles and quadrupoles

$$
\begin{gathered}
G(s)=\frac{e c B_{o}(s)}{E_{o}}=1 / \rho_{\text {curve }}(s)=G(s+L) \\
K(s)=\frac{e c}{E_{o}} \frac{d B}{d y}=K(s+L)
\end{gathered}
$$

||| Magnetic field properties

For simplicity
粦 Consider ideal "isomagnetic" guide fields

$$
\begin{gathered}
\mathrm{G}(\mathrm{~s})=\mathrm{G}_{\mathrm{o}} \text { in the dipoles } \\
\mathrm{G}(\mathrm{~s})=0 \text { elsewhere }
\end{gathered}
$$

米 Assume that we have a "separated function" lattice:
\rightarrow Dipoles have no gradient
\rightarrow Quadrupoles have no dipole component

$$
G(s) K(s)=0
$$

Nonetheless dipoles provide focusing in the bend plane

Iliit
 Guide functions in a real bend magnet

a real field cannot be isomagnetic because B must be continuous

US PARticle Accelerator School

||- By inspection we can write equations of motion of particles in a storage ring

$$
\begin{aligned}
x^{\prime \prime}-\left(k(s)-\frac{1}{\rho(s)^{2}}\right) x & =\frac{1}{\rho(s)} \frac{\Delta p}{p} \\
y^{\prime \prime}+k(s) y & =0
\end{aligned}
$$

Harmonic oscillator with time dependent frequency

$$
k_{\beta}=2 \pi / \lambda_{\beta}=1 / \beta(s)
$$

The term $1 / \varrho^{2}$ corresponds to the dipole weak focusing
The term $\Delta p /(p \varrho)$ is present for off-momentum particles
Tune $=\#$ of oscillations in one trip around the ring

||| Deriving the equation of motion

Consider motion in the horizontal plane along the s direction
粦 Recall that for a particle passing through a B field with gradient B^{\prime} the slope of the trajectory changes by

$$
\Delta x^{\prime}=-\frac{\Delta s}{\rho}=-\Delta s \frac{e B_{y}}{p}=-\Delta s \frac{e B_{y}^{\prime} x}{p}=-\Delta s \frac{B_{y}^{\prime} x}{(B \rho)}
$$

Or

$$
\frac{\Delta x^{\prime}}{\Delta s}=-\frac{B_{y}^{\prime}}{(B \rho)} x
$$

粦 Taking the limit as $\Delta \mathrm{s} \rightarrow 0$,

$$
x^{\prime \prime}+\frac{B_{y}^{\prime}}{(B \rho)} x=0
$$

This missed the effects of dipole focusing

|||| Let's do this more carefully, step-by-step

$\mathbf{R}=r \hat{\mathbf{x}}+y \hat{\mathbf{y}} \quad$ where $r \equiv \rho+x$

Assume $\mathrm{B}_{\mathrm{s}}=0$; then
The equation of motion is

$$
\frac{d \mathbf{p}}{d t}=\frac{d(\gamma m \mathbf{v})}{d t}=e \mathbf{v} \times \mathbf{B}
$$

The magnetic field cannot change γ

$$
\therefore \quad \frac{d \mathbf{p}}{d t}=\gamma m \ddot{\mathbf{R}}=e \mathbf{v} \times \mathbf{B}
$$

where

$$
\mathbf{v} \times \mathbf{B}=\left(-v_{s} B_{y} \hat{\mathbf{x}}+v_{s} B_{x} \hat{\mathbf{y}}+\left(v_{x} B_{y}-v_{y} B_{x}\right) \hat{\mathbf{s}}\right)
$$

|||| Express R in orbit coordinates

$$
\dot{\mathbf{R}}=r \hat{\mathbf{x}}+y \hat{\mathbf{y}}=\dot{r} \hat{\mathbf{x}}+r \dot{\hat{\mathbf{x}}}+\dot{y} \hat{\mathbf{y}}
$$

With $\quad \dot{\hat{\mathbf{x}}}=\dot{\theta} \hat{\mathbf{s}} \quad$ where $\dot{\theta}=\frac{v_{s}}{r}$
$\ddot{\mathbf{R}}=\ddot{r} \hat{\mathbf{x}}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\mathbf{S}}+r \ddot{\theta} \dot{\hat{\mathbf{S}}}+\ddot{y} \hat{\mathbf{y}}$
Since $\quad \dot{\hat{\mathbf{s}}}=-\dot{\theta} \hat{\mathbf{x}}$

$$
\ddot{\mathbf{R}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{\mathbf{x}}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \hat{\mathbf{S}}+\ddot{y} \hat{\mathbf{y}}
$$

Recall that $\quad \mathbf{v} \times \mathbf{B}=\left(-v_{s} B_{y} \hat{\mathbf{x}}+v_{s} B_{x} \hat{\mathbf{y}}+\left(v_{x} B_{y}-v_{y} B_{x}\right) \hat{\mathbf{s}}\right)$

$$
\therefore\left(\frac{d \mathbf{p}}{d t}\right)_{x}=(\gamma m \ddot{\mathbf{R}})_{x}=(e \mathbf{v} \times \mathbf{B})_{x} \Rightarrow \quad\left(\ddot{r}-r \dot{\theta}^{2}\right)=-\frac{v_{s} B_{y}}{\gamma m}=-\frac{v_{s}^{2} B_{y}}{\gamma m v_{s}}
$$

|||| In paraxial beams $\mathrm{v}_{\mathrm{s}} \gg \mathrm{v}_{\mathrm{x}} \gg \mathrm{v}_{\mathrm{y}}$

$$
d s=\rho d \theta=v_{s} d t \frac{\rho}{r}
$$

Change the independent variable to s

$$
\frac{d}{d t}=\frac{d s}{d t} \frac{d}{d s}
$$

Assuming that $\frac{d^{2} s}{d t^{2}}=0 \quad \Rightarrow$ $\frac{d^{2}}{d t^{2}}=\left(\frac{d s}{d t}\right)^{2} \frac{d^{2}}{d s^{2}}=\left(v_{s} \frac{\rho}{r}\right)^{2} \frac{d^{2}}{d s^{2}}$

Note that $\quad r=\rho+x$

$$
\frac{d^{2} x}{d s^{2}}-\frac{\rho+x}{\rho^{2}}=-\frac{B_{y}}{(B \rho)}\left(1+\frac{x}{\rho}\right)^{2}
$$

｜｜｜｜This general equation is non－linear

粦 Simplify by restricting analysis to fields that are linear in x and y
\rightarrow Perfect dipoles \＆perfect quadrupoles
粦 Recall the description of quadrupoles

$$
\mathbf{B}=B_{x} \hat{\mathbf{x}}+B_{y} \hat{\mathbf{y}}=\left(B_{y}(0,0)+\frac{\partial B_{x}}{\partial y} y+\frac{\partial B_{x}}{\partial x} x\right)^{0} \hat{\mathbf{x}}+\left(B_{y}(0,0)+\frac{\partial B_{y}}{\partial x} x+\frac{\partial B_{y}^{\prime}}{\partial y} y\right) \hat{\mathbf{y}}
$$

粦 $\operatorname{Curl} \mathrm{B}=0==>$ the mixed partial derivatives are equal $==>$

$$
\frac{d^{2} x}{d s^{2}}+\left[\frac{1}{\rho^{2}}+\frac{1}{(B \rho)} \frac{\partial B_{y}(s)}{\partial x}\right] x=0
$$

IIT－The linearized equation matches the Hill＇s equation that we wrote by inspection

粦 A similar analysis can be done for motion in the vertical plane

粦 The centripital terms will be absent as unless there are （unusual）bends in the vertical plane

$$
\begin{aligned}
x^{\prime \prime}-\left(k(s)-\frac{1}{\rho(s)^{2}}\right) x & =\frac{1}{\rho(s)} \frac{\Delta p}{p} \\
y^{\prime \prime}+k(s) y & =0
\end{aligned}
$$

粦 We will look at two methods of solution
\rightarrow Piecewise linear solutions
\rightarrow Closed form solutions

