Unit 7- Lecture 15
Linear optics & beam transport

William A. Barletta

Director, United States Particle Accelerator School
Dept. of Physics, MIT
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Generic accelerator facility

Circular Accelerator

RF power sources /-
Beam f
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These components can be seen in an early
storage ring light source
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Optics are essential to guide the beam
through the accelerator

N XN

* Optics (lattice): distribution of magnets that direct & focus beam

e Lattice design depends upon the goal & type of accelerator
— Linac or synchrotron
— High brightness: small spot size & small divergence
— Physical constraints (building or tunnel)

The lattice must transport a real beam not just an ideal beam
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Particle trajectories (orbits)

% Motion of each charged particle 1s determined by
E & B forces that it encounters as it orbits the ring:

—>L_orentz Force
F=ma=c¢(E+VvXB)

% Lattice design problems:
= 1. Given an existing lattice, determine the beam properties

= 2. For a desired set of beam properties, design the lattice.

% Problem 2 requires some art



Types of magnets & their fields:dipoles

Dipoles:

Used for steering
B, =0
B, =B,

k-

I [ —
US PARTICLE ACCELERATOR SCHOOL




Types of magnets & their fields:
guadrupoles

Quadrupoles:
Used for focusing
B, =Ky
B, = Kx

X ma

I [ —
US PARTICLE ACCELERATOR SCHOOL




Types of magnets & their fields:
sextupoles

Sextupoles:

Used for chromatic correction
B, = 2Sxy

B, = S(x? —y?)
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Average dipole strength drives
ring size & cost

In a ring for particles with energy E with N dipoles of length 1, bend angle is

27
0=""
N
[
The bending radius is P = 5
. . . 2 PE
The integrated dipole strength will be Bl= ——
N e

The on-energy particle defines the central orbit: y =0
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Characteristics of a dipole magnet

% The field B is generated by a current | in coils surrounding the polls

% The ferromagnetic return yoke provides a return path for the flux

BJ_
V x E = 4—.7[.]
% Integrate around the path wooc

~0
4
ZGBJ_ +%ds=nltotal
'onlur ¢

I,.,(Amp —turns) = LB L (Gauss)G(cm)
0.4
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Horizontal aperture of a dipole

% Horizontal aperture must contain the saggita, S, of the beam
sin% = 21 = ‘B 2
p 2(Bp) L
2 e $‘S'—'—\ |
S=¢p(1—cos%)z18p86 zl: . 2 y s ;/«
N\ / /

M|
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To analyze particle motion
we will use local Cartesian coordinates

Change dependent variable from time, ¢, to longitudinal position, s

The origin of the local coordinates is a point on the design trajectory in
the bend plane

The bend plane is generally called the horizontal plane
The vertical is y in American literature & often z in European literature
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Charged particle motion in
a uniform (dipole) magnetic field

Let B = Boy

Write the Lorentz force equation in two components, z and L

@=O and ap, =g(v, xB) = 95,

dt dt ym,
==>p, Is a constant of the motion

(p,. x¥)

Since B does no work on the particle, |p, | is also constant
— The total momentum & total energy are constant

= For p, ,#0, the orbit is a helix .
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Write the equations for the velocities

d B dv B
vx=qovx and —2=-4 “v,
dt  ym, dt ym,
Diffefentiate Differeptiate
2 d2
d vz" = 95, ivx and sz = —q—Boivy
dt ym, dt dt ym, dt
d’v d’v B
X =@, and L=wlv, where o, = ot
dt dt ym,

Harmonic motion Relativistic cyclotron frequency
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Integrating we obtain

v, ==-v,sin(wt+¢@) and v =v cos(w.!+ @)

X

and

x=Rcos(w.t+@)+x, and y=Rsin(w.+@)+y,

Hence, the particle moves in a circle of radius R = v /w, centered at (X,,y,)
and drifting at constant velocity in z.

Balancing the radial and centripetal force implies

ymv’
R

=qVJ_B0 or pJ_=qBoR

Or in practical units

p,(MeV /c)=299.8 B (T) R(m)
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Returning to the circular accelerator:
Orbit stability

% The orbit of the ideal particle (design orbit) must be closed

* ==> Our analysis strictly applies for p,= 0

* For other particles motion can be
—> Stable (orbits near the design orbit remain near the design orbit)
= Unstable (orbit is unbounded)

* For a pure uniform dipole B out of plane, motion is unbounded

* For particle deflections in the plane, Horizontal
deflection

the orbit is perturbed as shown

% For off-energy particles, the orbit
size changes




Orbit stability & weak focusing

* Early cyclotron builders found that they could not prevent
the beam from hitting the upper & lower pole pieces with a

uniform field

% They added vertical focusing of the circulating particles by
sloping magnetic fields, from inwards to outwards radii

\\\\ M\\‘ NNV

e o i e s i
e~ ——d . — >
S—— =

|-y

& W\\

* At any given moment, the average vertical B field sensed
during one particle revolution is larger for smaller radii of

curvature than for larger ones
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Orbit stability & weak focusing

Focusing in the vertical plane is provided at the expense of weakening
horizontal focusing

Suppose along the mid-plane varies as
B, = B,/I"

For n = 0, we have a uniform field with no vertical focusing

Forn> 1, B, cannot provide enough centripital force to keep the
particles in a circular orbit.

For stability of the particle orbits we want0 <n<1

NS/ S % N
@/ \é
S// \\s

Cross section of weak focusing circular accelerator
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Weak focusing equations of motion

* In terms of derivatives measured along the equilibrium orbit
(1_ I';)X =0, n_y2 =0

R0 RO
where 'is a derivative with respect to the design orbit

X'+

y'+

% Particles oscillate about the design trajectory with the number of
oscillations in one turn being

Jv1-n radially
Jn vertically
% The number of oscillations in one turn is termed the tune of the ring

% Stability requires that O<n<1

For stable oscillations the tune is less than one in both planes.



Disadvantages of weak focusing

* Tune is small (less than 1)

% As the design energy increased so does the circumference of the
orbit

% As the energy increases the required magnetic aperture increases
for a given angular deflection

% Because the focusing is weak the maximum radial displacement
IS proportional to the radius of the machine
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What’s wrong with this approach

* The magnetic components of a high energy synchrotron
become unreasonably large & costly

* As the beam energy increases, the aperture becomes big
enough to fit whole physicists!!

Cosmotron dipole
) —
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The solution Is strong focusing

% One would like the restoring force on a particle displaced
from the design trajectory to be as strong as possible

% A strong focusing lattice has a sequence of elements that
are either strongly focusing or defocusing

% The overall lattice iIs “stable”

* In a strong focusing lattice the displacement of the
trajectory does not scale with energy of the machine

% The tune Is a measure of the amount of net focusing.
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For a thin lens the particles position does
not change Iits displacement in the lens
% Along the particle path in the lens B is constant
B
B, = —>x = B'x = constant
ox
% For paraxial beams x' = dx/ds

% The change in X' due to the lens is

eB eB’ x
_As_ a8 b
P P P

Ax' =

* Therefore we have a standard situation from ray optics
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Focusing the beam for
Its trip through the accelerator

For a lens with focal length f, the deflection angle, a = -x/f
Then,
For a Quadrupole with length 1 & with gradient B> ==> B, =B'x
z g 3 -k
f /3E \ ﬂE /,
X a Focal point
ForZ=1
B|\T/m
k[m?]=0.2998 7/m]
BE|GeV |
/
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Chromatic aberration in lenses:
Focal length depends on the beam energy

N XN

* The higher the beam energy the longer the focal length

I [ —
US PARTICLE ACCELERATOR SCHOOL



Quadrupole magnets

* In the absence of J,
oB y
VxB=0 = 9B
ox  dy
* For small displacements from the
design trajectory X
B-BX+B§ i
OB OB
=|B_.(0,0) P §+(By(0,0) +yy)§
dy dx ox ay
N N
~ J ~ J

Force in y direction Force in -x direction

% Terms in circles are linear restoring forces
=> One is focusing, the other is defocusing
= The other terms = 0 with correct alignment of quadrupole
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Skew Quadrupole magnets

% Generally one wants to avoid coupling the motion in x & y
= Requires precise alignment of the quadrupole with the bend plane

Skew quadrupole
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The quadrupole magnet & its field

% Exercise: Show that

B [T]=2.51N1 [A - turns]

m

R [mm2 ] Evaluate §l-—1 odl =1I,,.1,scq around the integration path shown.
For infinite permeability iron H = ‘—B; — 0 inside the iron, so in the
gap

g 2
§F10dl-=LJ':B'rdr=BR =N[=>B’=,102NI
Ho 219

3

NI[A — turns]
R{mm]*

p__(Bp)
eB'L B'L

B’[I] =2.51
m
Quadrupole focal length f =
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It is useful to write the action of the
guadrupole in matrix form

% A lens transforms a ray as

RIE SN

% For aconcavelensf <0

% For a drift space of length d

. )

Note: both matrices are unimodular (required by Liouville’s theorem)
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If the motion In X and y are uncoupled

% The transport matrix is in block diagonal form

N I 0 0 o),
. -%x 1 0  Of,
vl Tl o0 1 o],
Ve |00 =V 1y,

% We can work the transport in both planes separately in 2x2 matrices
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Now combine a concave + convex lens
separated by a drift space

«—Jd—»

T

1+% d X
) _%2 l_df ('x,)in

For 0 < d <<, the net effect is focusing with f ., ~f2/d >0

The same is true if we put the convex lens first

[ —
US PARTICLE ACCELERATOR SCHOOL



More generally...

N XN

From optics we know that a combination of two lenses, with focal lengths f,
and f, separated by a distance d, has

11,1 d
f L L b

If f, = - f,, the net effect is focusing!

. A quadrupole doublet is focusing in both planes!

=> Strong focusing by sets of quadrupole doublets with alternating gradient

N.B. This is only valid in thin lens approximation
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What happens in phase space?

F O D O

D O F O

N /
—

These examples shows a slight focusing
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Is such a transport stable?

% In storage rings particles may make ~ 1010 passes through the lattice
% We can analyze stability of lattice for an infinite number of passes
% Say there are n sets of lens & the it set of lenses has a matrix M,
% Then, the total transport has a matrix

M=M. ... M;M, M,

% After m passes through the lattice

L,

% For stability | M™x | must remain finite as m — o



Example of walist-to-waist transport
with magnification

If we did this n times eventually the beam would be lost into the walls
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Mathematical diversion - Eigenvectors

w w
% We say that v is an eigenvector of the matrix M if
Mv=Av where A is called the eigenvalue
m, - A m, m,
My, My, — A my,
Mv-Av=(M-Al)v=0 = Det (M~Al)=Det| .. =0
mnl mn2 mnn - }\‘

* A n x n matrix will have n eigenvectors

* Any n x 1 vector can written as the sum of n eigenvectors
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Reminder: determinants

a b
det( ) =ad - bc
c d

a b c
detld e f|=aei+bfg+cdh-afh->bdi--ceg
g h i
+ + + - - -
d f
g i

aei + bfg + cdh - afh - bdi - ceg

M is unimodular iff detM =1
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Write the stability condition
In terms of the eigenvectors

* For our transport ( x)
|=av, +bv,

* So, X X
| =M"| || =aA'v,+bA)v,
X m X in

% Therefore, A,™and A,™ must remain finite as m — oo

Notes:
% Since each M; is unimodular ==>DetM =1and A, =1/,

% If we write A, =e'® then A,=¢«

* For A, to remain finite, u must be real



*

*

*

*

*

*

Solving the eigenvalue equation...

a

C

b _ . a-A b
Say that M = p , the eigenvalue equation is Det ]y =0

So we have (a-A)(d-A)-bc=A?-(a+d)A+ (ad-bc)=0

Since M is unimodular, (ad-bc)=1

Therefore A>-(a+d)A+1=0 or |A+Al=(a+d)=Trace M

Recalling that A =e™*, we have
el“ + en =2 cos u = Trace M for u real

Thus the stability condition is
-1<1/2TraceM <1

u has an important physical interpretation to be discussed later
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This would seem to make the job of lattice
design extremely difficult for large rings

But.... there are tricks

1 "1
% Remember the trivial result that I' = 0 — 0 =1
0 1 0 1

% Suppose the ring is made of a number, m,

M, M,
of identical modules consisting of a small M
number of elements Zf A\‘i
M, M,
% Now design the modules such that
Ma = MlMZ"MfeW:
Ma
* Thenthe M,"=Im= M,
The whole ring transport would seem to be stable S\/ X
Ma Ma

...BUT...
We can’t sit on a resonance; still the idea of modular design is valuable
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Equations of motion
for
particles in synchrotrons & storage rings
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Design orbit of a storage ring

* The nominal energy, E,, defines the “design orbit”
— Closed orbit of the ideal particle with zero betatron amplitude

% Static guide (dipole) field ==> trajectory Is determined
— Size of machine is approximately set
= Final size will depend on fraction of the ring that is dipoles

% Assume that the guide field is symmetric about the plane
of motion
— Key quantities are B(s) & dB(s)/dy (field gradient)
= Usually (but not always) followed in practice
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Motion of particles in a storage ring

* If all magnetic fields scale ~ E, ., orbit doesn’t change
= This is exactly the concept of the synchrotron

% ==>We can describe the performance in terms of an energy
Independent guide field

* Define cyclic functions of s to describe the action of
dipoles and quadrupoles

G(s) = &8 (S) %O ~G(s+L)

K(s) = ﬁd—B —K(s+L)
E_dy
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Magnetic field properties

For simplicity
% Consider ideal “isomagnetic” guide fields
G(s) = G, in the dipoles
G(s) = 0 elsewhere

* Assume that we have a “separated function” lattice:

— Dipoles have no gradient

= Quadrupoles have no dipole component

G(s) K(s) =0

Nonetheless dipoles provide focusing in the bend plane

explain
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Guide functions in a real bend magnet

a real field cannot be isomagnetic because B must be continuous
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By inspection we can write equations of
motion of particles in a storage ring

x"—(k(s)— ! 2)x= L 4p
P(s) p(s) p
Hill’s equations
y'+k(s)y =0

Harmonic oscillator with time dependent frequency

ko= 2m/A, = 1/(s)

The term 1/0? corresponds to the dipole weak focusing

The term Ap/(po) is present for off-momentum particles

Tune = # of oscillations in one trip around the ring
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Deriving the equation of motion

Consider motion in the horizontal plane along the s direction

* Recall that for a particle passing through a B field with
gradient B' the slope of the trajectory changes by

Ax' = A —ASﬂ = —As B, = —As B,x
P p p (Bp)
Or Ax/ B/
As (Bp)
k h I " B),) O
* Taking the limit as As=0, |x + X =
) (Bp)

This missed the effects of dipole focusing
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Let’s do this more carefully, step-by-step

R=rXx+yy wherer=p+ux Assume B, = 0; then

The equation of motion is

dp _ d(ymv)
d  dt

=eVxB

The magnetic field cannot change vy

@=yml"{=eva
dt

where

vxB= (—vsByf( +v.By+ (B, - vyBx)§)
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Express R in orbit coordinates
R=r%X+yy=ik+rX+7yy

With X=6§ where 9=£
r

R =X+ Q0+ r0)s+ ros + yy

Since §=-6x

R=(-r0)X+ Qi0+ro)s + yy

Recall that vxB = (—vSByf( +v.By+(v.B, - vyBx)§)

d v .B V2B
4P _ ) _ PO )=y 5Ty
“(dt)x ()/mR)x (evxB) = |( ) m —
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In paraxial beams v>>v,>>v,

: v .B v’B v’B
(I-/;_r92)=_ S y=_ N yz_ sy
ym ymy P

Change the independent variable to s

d_dsd
dt  dr ds

2

Assuming that If =0 =

ATy
dt* \dt] ds* ‘1] ds

Note that r=p+ X

ds = pd6 =v dt X

r

_ 14+ 2
1o,

s’ p°  (Bp)

I
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This general equation is non-linear

* Simplify by restricting analysis to fields that are linear in x
and y

— Perfect dipoles & perfect quadrupoles

* Recall the description of quadrupoles

0
gg‘ +/@/+£+/% y
X |X Pt ayyy

% Curl B = 0 ==> the mixed partial derivatives are equal ==>

B-= Bx+By (

x| 1 1 dB,(s)
d2+ 2 A
s |p? (Bp) ox

I
-
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-b*-b

The linearized equation matches the Hill’s
equation that we wrote by inspection

* A similar analysis can be done for motion in the vertical
plane

% The centripital terms will be absent as unless there are
(unusual) bends in the vertical plane

x,,_(k(s)_ 12)x= 1 Ap
p(s) p(s) p
y'+k(s)y=0

% We will look at two methods of solution
—> Piecewise linear solutions
—> Closed form solutions
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